Cell growth inhibition, G2M cell cycle arrest, and apoptosis induced by the novel compound Alternol in human gastric carcinoma cell line MGC803

2007 ◽  
Vol 25 (6) ◽  
pp. 505-517 ◽  
Author(s):  
Xia Liu ◽  
Jingze Wang ◽  
Bo Sun ◽  
Yajing Zhang ◽  
Jin Zhu ◽  
...  
2020 ◽  
Vol 19 (16) ◽  
pp. 2019-2033 ◽  
Author(s):  
Pratibha Pandey ◽  
Mohammad H. Siddiqui ◽  
Anu Behari ◽  
Vinay K. Kapoor ◽  
Kumudesh Mishra ◽  
...  

Background: The aberrant alteration in Jab1 signalosome (COP9 Signalosome Complex Subunit 5) has been proven to be associated with the progression of several carcinomas. However the specific role and mechanism of action of Jab1 signalosome in carcinogenesis of gall bladder cancer (GBC) are poorly understood. Objective: The main objective of our study was to elucidate the role and mechanism of Jab1 signalosome in gall bladder cancer by employing siRNA. Methods: Jab1 overexpression was identified in gall bladder cancer tissue sample. The role of Jab1-siRNA approach in cell growth inhibition and apoptotic induction was then examined by RT-PCR, Western Blotting, MTT, ROS, Hoechst and FITC/Annexin-V staining. Results: In the current study, we have shown that overexpression of Jab1 stimulated the proliferation of GBC cells; whereas downregulation of Jab1 by using Jab1-siRNA approach resulted incell growth inhibition and apoptotic induction. Furthermore, we found that downregulation of Jab1 induces cell cycle arrest at G1 phase and upregulated the expression of p27, p53 and Bax gene. Moreover, Jab1-siRNA induces apoptosis by enhancing ROS generation and caspase-3 activation. In addition, combined treatment with Jab1-siRNA and gemicitabine demonstrated an enhanced decline in cell proliferation which further suggested increased efficacy of gemcitabine at a very lower dose (5μM) in combination with Jab1-siRNA. Conclusion: In conclusion, our study strongly suggests that targeting Jab1 signalosome could be a promising therapeutic target for the treatment of gall bladder cancer.


2013 ◽  
Vol 700 (1-3) ◽  
pp. 13-22 ◽  
Author(s):  
Hui-Yu Xu ◽  
Zhi-Wei Chen ◽  
He Li ◽  
Li Zhou ◽  
Feng Liu ◽  
...  

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1333-1333
Author(s):  
Seiichi Okabe ◽  
Tetsuzo Tauchi ◽  
Seiichiro Katagiri ◽  
Yuko Tanaka ◽  
Kazuma Ohyashiki

Abstract Abstract 1333 Chronic myeloid leukemia (CML) is characterized by cytogenetic aberration (Philadelphia chromosome: Ph) and chimeric tyrosine kinase BCR-ABL. ABL tyrosine kinase inhibitor, imatinib has demonstrated the potency against CML patients. However, resistance to imatinib can develop in CML patients due to BCR-ABL point mutations. One of T315I mutation is resistant to currently available ABL tyrosine kinase inhibitors. Therefore, new approach against T315I mutant may improve the outcome of Ph-positive leukemia patients. Aurora kinases are serine/threonine kinases and upregulated in many malignancies including leukemia, and play an important role in cell cycle control and tumor proliferations. Because Aurora kinases are overexpressed in leukemia cells, Aurora kinases may present attractive targets for leukemia treatment. One of Aurora kinase inhibitor, MLN8237 (alisertib) is an oral and selective Aurora kinase A inhibitor and is currently being investigated in a pivotal phase 3 clinical trial against hematological malignancies. We suggested that alisertib mediated inhibition Aurora kinase activity and in combination with ponatinib, also known as AP24534 may abrogate the proliferation and survival of Ph-positive cells including T315I mutation. In this study, we investigated the combination therapy with a ponatinib and an alisertib by using the BCR-ABL positive cell line, K562, murine Ba/F3 cell line which was transfected with T315I mutant, ponatinib resistant Ba/F3 cells and T315I primary sample. Protein expression of Aurora A and B were increased in Ph-positive leukemia cells. 72 hours treatment of alisertib exhibits cell growth inhibition and induced apoptosis against K562 cells in a dose dependent manner. Alisertib also induced cell cycle arrest. The treatment of ponatinib exhibits cell growth inhibition partially against K562 cells in the presence of feeder cell (HS-5) conditioned media. We found that the treatment of alisertib abrogated the protective effects of HS-5 conditioned media in K562 cells. We investigated the alisertib activity against T315I positive cells. Alisertib potently induced cell growth inhibition of Ba/F3 cells ectopically expressing T315I mutation and induced cell cycle arrest. We investigated the efficacy between ponatinib and alisertib by using these cell lines. Combined treatment of Ba/F3 T315I cells with ponatinib and alisertib caused significantly more cytotoxicity than each drug alone. Ponatinib and alisertib were also effective against T315I primary samples. We examined the intracellular signaling of alisertib. Phosphorylation of Aurora A was inhibited in a time dependent manner. We also found the phosphorylation of histone H3 was also reduced in a dose dependent manner suggested that high concentration of alisertib also inhibits Aurora B activity. We next investigated by using ponatinib resistant Ba/F3 cells. In the ponatinib resistant cell lines, IC50 of ponatinib was up to 200 nM. BCR-ABL triple point mutations (T315I, E255K and Y253H) were detected by direct sequence analysis. The treatment of alisertib exhibits cell growth inhibition against Ba/F3 ponatinib resistant cells in the dose dependent manner. Alisertib induced cell cycle arrest in ponatinib resistant cells. Combined treatment of Ba/F3 ponatinib resistant cells with ponatinib and alisertib caused significantly more cytotoxicity. To assess the activity of alisertib and ponatinib, we performed to test on CML tumor formation in mice. We injected nude mice subcutaneously with 1×107 Ba/F3 T315I cells. A dose of 30 mg/kg/day p.o of ponatinib and 30 mg/kg/day p.o of alisertib inhibited tumor growth and reduced tumor volume compared with control mice. The treatments were well tolerated with no animal health concerns observed indicating the feasibility of alisertib combination strategies in the clinic. Data from this study suggested that administration of the ponatinib and Aurora inhibitor, alisertib may be a powerful strategy against BCR-ABL mutant cells including T315I. Disclosures: No relevant conflicts of interest to declare.


2016 ◽  
Vol 39 (3) ◽  
pp. 308-312
Author(s):  
Tomomi Akita ◽  
Michiko Horiguchi ◽  
Chihiro Ozawa ◽  
Hiroshi Terada ◽  
Chikamasa Yamashita

Oncogene ◽  
2001 ◽  
Vol 20 (23) ◽  
pp. 2927-2936 ◽  
Author(s):  
Sreenivasa R Chinni ◽  
Yiwei Li ◽  
Sunil Upadhyay ◽  
Prathima K Koppolu ◽  
Fazlul H Sarkar

2020 ◽  
Author(s):  
Nianli Liu ◽  
Aoxing Chen ◽  
Ning Feng ◽  
Xiaochen Liu ◽  
Longzhen Zhang

Abstract Background: Our previous study has demonstrated that small nuclear ribonucleoprotein polypeptides B And B’ (SNRPB) is highly expressed in non-small-cell lung cancer (NSCLC) and functions as an oncogene. However, whether SNRPB contributes to cisplatin resistance in NSCLC is still unknown. This study aimed to explore how SNRPB regulates the effect of cisplatin in NSCLC.Methods: In this study, cell counting kit-8 (CCK-8) and flow cytometry assays were performed to examine cell survival, cell cycle and apoptosis in NSCLC cells upon cisplatin treatment. Western blotting assays were used to examine the cell cycle and apoptosis-related protein expression. The effects of SNRPB on cisplatin-mediated tumor inhibition was measured via a xenograft tumor model in nude mouse.Results: SNRPB negatively regulates cisplatin resistance in NSCLC cells. Knocking out of SNRPB could significantly decrease cisplatin-induced cell growth inhibition, cell cycle arrest and apoptosis in H1299 cells. However, enforced expression of SNRPB in H460 cells can markedly promote cisplatin-induced cell growth inhibition, cell cycle arrest and apoptosis. Our results also indicate that overexpression of SNRPB enhances the inhibitory effects of cisplatin on H460 cell-mediated xenograft tumors.Conclusion: Our results suggest that SNRPB may be a prediction marker for NSCLC patients in response to cisplatin-based chemotherapy.


Sign in / Sign up

Export Citation Format

Share Document