IGFBP7 Gene Promoting Cell Proliferation in Acute Myeloid Leukemia Through Activation of AKT3 and CCND1

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1447-1447
Author(s):  
Shaoyan Hu ◽  
Shui-yan Wu ◽  
Jian-nong Cen ◽  
Jian Pan ◽  
Xiaofei Qi ◽  
...  

Abstract Abstract 1447 Insulin-like growth factor binding protein 7 (IGFBP7) has been ascribed properties of both tumor suppressor and enhancer of cell proliferation. In solid tumors the important role of IGFBP7 as a tumor suppressor was revealed in several studies. In acute T-lymphoblastic leukemia (T-ALL), high IGFBP7 expression is associated with a more immature phenotype of early T-ALL, inferior survival, and predicts primary chemotherapy resistance. In a separate study, IGFBP7 acts as a positive regulator of ALL and bone marrow stromal cells growth, and significantly enhances in-vitro resistance to asparaginase. Higher IGFBP7 mRNA levels were associated with lower leukemia-free survival (P=0.003) in precursor B-cell Ph negative ALL patients (n=147) treated with a contemporary polychemotherapy protocol. In acute myeloid leukemia, the role of IGFBP7 is largely unknown. In our previous published study [Hu et al, 2011], we demonstrated that IGFBP7 overexpressed in majority of childhood AML (n=66) at diagnosis and upon relapsed, but not at remission stage. We now further explore its mechanism in promoting AML cells proliferation. Compared with control, transfection of full length IGFBP7 in K562 cells [V-BP7] resulted in 23% increased of proliferation in 48 hours. Cell cycle analysis by flow cytometry showed decreased G0/G1 phase and increased S phase in V-BP7 comparing with control, suggesting enhanced cell cycle progression. While transfection of IGFPB7 siRNA produced an opposite effect of reducing the cell growth in K562 cells. In consistent with the nature of a secretory protein, the extracellular IGFBP7 level in the condition media from v-BP7 was significantly higher than that from vector control or parental K562 cells measured by ELISA. Incubation parental K562 cells in V-BP7 derived conditioned medium resulted in significant growth enhancement. Gene expression profiling (GEP) was performed on V-BP7 in contrast to parental K562 cells. Genes which were up-regulated or down-regulated more than 2 folds were regarded as significant difference. Among 10 verified genes, AKT3 showed the highest extent of up-regulation and IGFBP7 siRNA transfection reduced its expression. Cyclin D1 (CCND1) expression was also significantly up-regulated and validated by RT-PCR and Western blot. V-BP7 treated with an AKT inhibitor (Triciribine) at 2.5μM for 72 hours showed 50% reduction of cell viability. The cell cycle analysis indicated that triciribine reversed cell cycle progression in V-BP7, by increasing cells in G0/G1 phase and reducing cells in S phase. Western blot demonstrated that both phospho-AKT3 and CCND1 were down regulated after treatment with triciribine. Using real time RT-PCR, we further identified that IGFBP7 and AKT3 expression were significantly correlated (p=0.001; r=0.255) in 39 newly diagnosed childhood AML. Conclusions IGFBP7 aberrantly overexpressed in majority of childhood AML. IGFBP7 promotes proliferation of K562 cells and AML via overexpression/activation of AKT3 and CCND1. Disclosures: No relevant conflicts of interest to declare.

1993 ◽  
Vol 13 (6) ◽  
pp. 3577-3587 ◽  
Author(s):  
E A Musgrove ◽  
J A Hamilton ◽  
C S Lee ◽  
K J Sweeney ◽  
C K Watts ◽  
...  

Cyclins and proto-oncogenes including c-myc have been implicated in eukaryotic cell cycle control. The role of cyclins in steroidal regulation of cell proliferation is unknown, but a role for c-myc has been suggested. This study investigated the relationship between regulation of T-47D breast cancer cell cycle progression, particularly by steroids and their antagonists, and changes in the levels of expression of these genes. Sequential induction of cyclins D1 (early G1 phase), D3, E, A (late G1-early S phase), and B1 (G2 phase) was observed following insulin stimulation of cell cycle progression in serum-free medium. Transient acceleration of G1-phase cells by progestin was also accompanied by rapid induction of cyclin D1, apparent within 2 h. This early induction of cyclin D1 and the ability of delayed administration of antiprogestin to antagonize progestin-induced increases in both cyclin D1 mRNA and the proportion of cells in S phase support a central role for cyclin D1 in mediating the mitogenic response in T-47D cells. Compatible with this hypothesis, antiestrogen treatment reduced the expression of cyclin D1 approximately 8 h before changes in cell cycle phase distribution accompanying growth inhibition. In the absence of progestin, antiprogestin treatment inhibited T-47D cell cycle progression but in contrast did not decrease cyclin D1 expression. Thus, changes in cyclin D1 gene expression are often, but not invariably, associated with changes in the rate of T-47D breast cancer cell cycle progression. However, both antiestrogen and antiprogestin depleted c-myc mRNA by > 80% within 2 h. These data suggest the involvement of both cyclin D1 and c-myc in the steroidal control of breast cancer cell cycle progression.


2007 ◽  
Vol 27 (23) ◽  
pp. 8364-8373 ◽  
Author(s):  
J. Veis ◽  
H. Klug ◽  
M. Koranda ◽  
G. Ammerer

ABSTRACT In budding yeast (Saccharomyces cerevisiae), the periodic expression of the G2/M-specific gene CLB2 depends on a DNA binding complex that mediates its repression during G1 and activation from the S phase to the exit of mitosis. The switch from low to high expression levels depends on the transcriptional activator Ndd1. We show that the inactivation of the Sin3 histone deacetylase complex bypasses the essential role of Ndd1 in cell cycle progression. Sin3 and its catalytic subunit Rpd3 associate with the CLB2 promoter during the G1 phase of the cell cycle. Both proteins dissociate from the promoter at the onset of the S phase and reassociate during G2 phase. Sin3 removal coincides with a transient increase in histone H4 acetylation followed by the expulsion of at least one nucleosome from the promoter region. Whereas the first step depends on Cdc28/Cln1 activity, Ndd1 function is required for the second step. Since the removal of Sin3 is independent of Ndd1 recruitment and Cdc28/Clb activity it represents a unique regulatory step which is distinct from transcriptional activation.


2006 ◽  
Vol 26 (6) ◽  
pp. 2441-2455 ◽  
Author(s):  
Laurent Sansregret ◽  
Brigitte Goulet ◽  
Ryoko Harada ◽  
Brian Wilson ◽  
Lam Leduy ◽  
...  

ABSTRACT The CDP/Cux transcription factor was previously found to acquire distinct DNA binding and transcriptional properties following a proteolytic processing event that takes place at the G1/S transition of the cell cycle. In the present study, we have investigated the role of the CDP/Cux processed isoform, p110, in cell cycle progression. Populations of cells stably expressing p110 CDP/Cux displayed a faster division rate and reached higher saturation density than control cells carrying the empty vector. p110 CDP/Cux cells reached the next S phase faster than control cells under various experimental conditions: following cell synchronization in G0 by growth factor deprivation, synchronization in S phase by double thymidine block treatment, or enrichment in G2 by centrifugal elutriation. In each case, duration of the G1 phase was shortened by 2 to 4 h. Gene inactivation confirmed the role of CDP/Cux as an accelerator of cell cycle progression, since mouse embryo fibroblasts obtained from Cutl1z/z mutant mice displayed a longer G1 phase and proliferated more slowly than their wild-type counterparts. The delay to enter S phase persisted following immortalization by the 3T3 protocol and transformation with H-RasV12. Moreover, CDP/Cux inactivation hindered both the formation of foci on a monolayer and tumor growth in mice. At the molecular level, expression of both cyclin E2 and A2 was increased in the presence of p110 CDP/Cux and decreased in its absence. Overall, these results establish that p110 CDP/Cux functions as a cell cycle regulator that accelerates entry into S phase.


2006 ◽  
Vol 189 (3) ◽  
pp. 441-453 ◽  
Author(s):  
Susan M Quirk ◽  
Robert G Cowan ◽  
Rebecca M Harman

Experiments were conducted to test whether oestradiol (E2) protects granulosa cells from Fas ligand (FasL)-induced apoptosis and whether protection involves modulation of the cell cycle of proliferation. Treatment of cultured bovine granulosa cells with E2 decreased susceptibility to FasL-induced apoptosis. The effects of E2 were mediated through oestrogen receptor and were not mediated by stimulation of IGF production. E2 also increased the percentage of cells progressing from G1 to S phase of the cell cycle, and increased expression of cyclin D2 protein and the cell proliferation marker Ki67. Progression from G1 to S phase of the cell cycle was necessary for the protective effect of E2; blocking progression from G1 to S phase with the cdk2 inhibitor roscovitine, or blocking cells in S phase with hydroxyurea, prevented protection by E2. The stages of the cell cycle during which granulosa cells are susceptible to apoptosis were assessed. First, treatment with the G1 phase blocker, mimosine, protected cells from FasL-induced apoptosis, indicating that cells in G0 or early- to mid-G1 phase are relatively resistant to apoptosis. Secondly, examination of recent DNA synthesis by cells that became apoptotic indicated that apoptosis did not occur in S, G2 or M phases. Taken together, the experiments indicate that cells may be most susceptible to apoptosis at the transition from G1 to S phase. E2 stimulates transition from G1 to S phase and protects against apoptosis only when cell cycle progression is unperturbed.


2008 ◽  
Vol 415 (3) ◽  
pp. 439-448 ◽  
Author(s):  
Katherine A. Kaproth-Joslin ◽  
Xiangquan Li ◽  
Sarah E. Reks ◽  
Grant G. Kelley

In the present study, we examined the role of PLCδ1 (phospholipase C δ1) in the regulation of cellular proliferation. We demonstrate that RNAi (RNA interference)-mediated knockdown of endogenous PLCδ1, but not PLCβ3 or PLCϵ, induces a proliferation defect in Rat-1 and NIH 3T3 fibroblasts. The decreased proliferation was not due to an induction of apoptosis or senescence, but was associated with an approx. 60% inhibition of [3H]thymidine incorporation. Analysis of the cell cycle with BrdU (bromodeoxyuridine)/propidium iodide-labelled FACS (fluorescence-activated cell sorting) demonstrated an accumulation of cells in G0/G1-phase and a corresponding decrease in cells in S-phase. Further examination of the cell cycle after synchronization by serum-starvation demonstrated normal movement through G1-phase but delayed entry into S-phase. Consistent with these findings, G1 cyclin (D2 and D3) and CDK4 (cyclin-dependent kinase 4) levels and associated kinase activity were not affected. However, cyclin E-associated CDK2 activity, responsible for G1-to-S-phase progression, was inhibited. This decreased activity was accompanied by unchanged CDK2 protein levels and paradoxically elevated cyclin E and cyclin E-associated CDK2 levels, suggesting inhibition of the cyclin E–CDK2 complex. This inhibition was not due to altered stimulatory or inhibitory phosphorylation of CDK2. However, p27, a Cip/Kip family CKI (CDK inhibitor)-binding partner, was elevated and showed increased association with CDK2 in PLCδ1-knockdown cells. The result of the present study demonstrate a novel and critical role for PLCδ1 in cell-cycle progression from G1-to-S-phase through regulation of cyclin E–CDK2 activity and p27 levels.


1993 ◽  
Vol 13 (6) ◽  
pp. 3577-3587
Author(s):  
E A Musgrove ◽  
J A Hamilton ◽  
C S Lee ◽  
K J Sweeney ◽  
C K Watts ◽  
...  

Cyclins and proto-oncogenes including c-myc have been implicated in eukaryotic cell cycle control. The role of cyclins in steroidal regulation of cell proliferation is unknown, but a role for c-myc has been suggested. This study investigated the relationship between regulation of T-47D breast cancer cell cycle progression, particularly by steroids and their antagonists, and changes in the levels of expression of these genes. Sequential induction of cyclins D1 (early G1 phase), D3, E, A (late G1-early S phase), and B1 (G2 phase) was observed following insulin stimulation of cell cycle progression in serum-free medium. Transient acceleration of G1-phase cells by progestin was also accompanied by rapid induction of cyclin D1, apparent within 2 h. This early induction of cyclin D1 and the ability of delayed administration of antiprogestin to antagonize progestin-induced increases in both cyclin D1 mRNA and the proportion of cells in S phase support a central role for cyclin D1 in mediating the mitogenic response in T-47D cells. Compatible with this hypothesis, antiestrogen treatment reduced the expression of cyclin D1 approximately 8 h before changes in cell cycle phase distribution accompanying growth inhibition. In the absence of progestin, antiprogestin treatment inhibited T-47D cell cycle progression but in contrast did not decrease cyclin D1 expression. Thus, changes in cyclin D1 gene expression are often, but not invariably, associated with changes in the rate of T-47D breast cancer cell cycle progression. However, both antiestrogen and antiprogestin depleted c-myc mRNA by > 80% within 2 h. These data suggest the involvement of both cyclin D1 and c-myc in the steroidal control of breast cancer cell cycle progression.


1994 ◽  
Vol 14 (5) ◽  
pp. 3022-3029 ◽  
Author(s):  
M G Goebl ◽  
L Goetsch ◽  
B Byers

The transition from G1 to S phase of the cell cycle in Saccharomyces cerevisiae requires the activity of the Ubc3 (Cdc34) ubiquitin-conjugating enzyme. S. cerevisiae cells lacking a functional UBC3 (CDC34) gene are able to execute the Start function that initiates the cell cycle but fail to form a mitotic spindle or enter S phase. The Ubc3 (Cdc34) enzyme has previously been shown to catalyze the attachment of multiple ubiquitin molecules to model substrates, suggesting that the role of this enzyme in cell cycle progression depends on its targeting an endogenous protein(s) for degradation. In this report, we demonstrate that the Ubc3 (Cdc34) protein is itself a substrate for both ubiquitination and phosphorylation. Immunochemical localization of the gene product to the nucleus renders it likely that the relevant substrates similarly reside within the nucleus.


2012 ◽  
Vol 303 (6) ◽  
pp. C625-C634 ◽  
Author(s):  
C. P. Madsen ◽  
T. K. Klausen ◽  
A. Fabian ◽  
B. J. Hansen ◽  
S. F. Pedersen ◽  
...  

Ca+ signaling plays a crucial role in control of cell cycle progression, but the understanding of the dynamics of Ca2+ influx and release of Ca2+ from intracellular stores during the cell cycle is far from complete. The aim of the present study was to investigate the role of the free extracellular Ca2+ concentration ([Ca2+]o) in cell proliferation, the pattern of changes in the free intracellular Ca2+ concentration ([Ca2+]i) during cell cycle progression, and the role of the transient receptor potential (TRP)C1 in these changes as well as in cell cycle progression and cell volume regulation. In Ehrlich Lettré Ascites (ELA) cells, [Ca2+]i decreased significantly, and the thapsigargin-releasable Ca2+ pool in the intracellular stores increased in G1 as compared with G0. Store-depletion-operated Ca2+ entry (SOCE) and TRPC1 protein expression level were both higher in G1 than in G0 and S phase, in parallel with a more effective volume regulation after swelling [regulatory volume decrease (RVD)] in G1 as compared with S phase. Furthermore, reduction of [Ca2+]o, as well as two unspecific SOCE inhibitors, 2-APB (2-aminoethyldiphenyl borinate) and SKF96365 (1-(β-[3-(4-methoxy-phenyl)propoxyl-4-methoxyphenethyl)1H-imidazole-hydrochloride), inhibited ELA cell proliferation. Finally, Madin-Darby canine kidney cells in which TRPC1 was stably silenced [TRPC1 knockdown (TRPC1-KD) MDCK] exhibited reduced SOCE, slower RVD, and reduced cell proliferation compared with mock controls. In conclusion, in ELA cells, SOCE and TRPC1 both seem to be upregulated in G1 as compared with S phase, concomitant with an increased rate of RVD. Furthermore, TRPC1-KD MDCK cells exhibit decreased SOCE, decreased RVD, and decreased proliferation, suggesting that, at least in certain cell types, TRPC1 is regulated during cell cycle progression and is involved in SOCE, RVD, and cell proliferation.


1983 ◽  
Vol 77 (2) ◽  
pp. 233-241 ◽  
Author(s):  
Thomas A. Hamilton ◽  
Marvin Fishman ◽  
Gail Crawford ◽  
A.Thomas Look

2006 ◽  
Vol 26 (2) ◽  
pp. 489-501 ◽  
Author(s):  
Namrita Dhillon ◽  
Masaya Oki ◽  
Shawn J. Szyjka ◽  
Oscar M. Aparicio ◽  
Rohinton T. Kamakaka

ABSTRACT Histone H2A variants are highly conserved proteins found ubiquitously in nature and thought to perform specialized functions in the cell. Studies in yeast on the histone H2A variant H2A.Z have shown a role for this protein in transcription as well as chromosome segregation. Our studies have focused on understanding the role of H2A.Z during cell cycle progression. We found that htz1Δ cells were delayed in DNA replication and progression through the cell cycle. Furthermore, cells lacking H2A.Z required the S-phase checkpoint pathway for survival. We also found that H2A.Z localized to the promoters of cyclin genes, and cells lacking H2A.Z were delayed in the induction of these cyclin genes. Several different models are proposed to explain these observations.


Sign in / Sign up

Export Citation Format

Share Document