Effective Elimination of CML Progenitor and Stem Cells Through Combination of α-CD123 Antibody-Dependent Cell-Mediated Cytotoxicity and Tyrosine Kinase Inhibitor Treatment

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 32-32
Author(s):  
Eva Nievergall ◽  
Deborah L. White ◽  
Agnes S.M. Yong ◽  
Hayley S. Ramshaw ◽  
Samantha J. Busfield ◽  
...  

Abstract Abstract 32 Since the introduction of tyrosine kinase inhibitor (TKI) therapy overall survival and complete molecular response rates in chronic phase chronic myeloid leukemia (CP-CML) patients have significantly improved. However, leukemic stem cells (LSCs) and progenitor cells persist and are thought to be responsible for disease progression, development of TKI resistance and disease recurrence after stopping TKI therapy. Protection by cytokines, such as IL-3 and GM-CSF, provides a potential mechanism of LSC resistance. While in acute myeloid leukemia (AML) monoclonal antibody (mAb) targeting of IL-3 receptor α (CD123), a recognized marker for AML LSCs, has been studied in vitro and in vivo, similar investigations have not been undertaken in CML to date. CSL362 is a genetically-engineered form of the specific blocking mAb 7G3 optimized for Fc receptor binding to achieve maximal antibody-dependent cell-mediated cytotoxicity (ADCC) capacity. Here we investigate the expression of CD123 in CD34+ progenitors and CD34+CD38− LSCs, isolated from CP- and blast crisis (BC) - CML patients, and study the benefits of targeting those cells by CSL362 alone and in combination with TKIs. Flow cytometry analysis established significantly elevated expression of CD123 on CD34+CD38− cells from CP-CML (53.0 ± 5.8 %, n=16, p=0.003) and BC-CML (73.2 ± 6.7 %, n=18, p<0.001) patients compared to normal donors (20.3 ± 4.2 %, n=8), with clear increases in CD123 expression with disease progression in matched samples (n=2). Subsequent assessment of apoptosis, colony forming unit (CFU-GM) and long-term culture-initiating cell (LTC-IC) potential confirmed the ability of CSL362 to block IL-3-mediated rescue of TKI-induced cell death. However, in the presence of other cytokines, likely found in the physiological bone marrow microenvironment, this effect was lost. We also demonstrate by lactate dehyrogenase release and clonogenic assays that CML CD34+ cell numbers are significantly reduced, in a dose-dependent manner, by CSL362-induced ADCC employing NK cells from healthy donors (42.4 ± 8.1 % lysis, n=3, and CFU-GM decreased to 30 ± 10.8 % of controls, n=5, p=0.003). In keeping with this, flow cytometry analysis revealed specific elimination of CP- and BC-CML CD123+ CD34+CD38− cells (from 42.9 % to 18.6 %, n=5, p=0.004, and from 71 % to 35.3 %, n=3, p=0.044, respectively). Importantly, autologous CML patient NK cells, collected after achievement of major molecular response, also mediate CSL362-dependent cytotoxicity similar to allogeneic healthy donor NK cells as indicated by equivalent numbers of remaining CFUs (28 ± 6.7 % vs. 34.9 ± 3.4 %, n=5, Fig. A). We further have evidence to suggest preferential elimination of CML over normal LTC-ICs (30.3 ± 9.9 % vs. 62.6 ± 11.2 % remaining, n=3, p=0.096) in the autologous setting. Of clinical importance, the combination of Nilotinib and CSL362 resulted in a significantly greater reduction in CFUs (additive effect) when compared to either agent alone (Fig. B). Taken together these data suggest that selective ADCC-mediated lysis, likely the major mode of action of CSL362 in vivo, efficiently eliminates CML progenitor and stem cells. Promising results evaluating CSL362/TKI combination treatments, with the expectation to further enhance specificity for leukemic while sparing normal progenitor and stem cells as indicated from preliminary experiments, warrant further studies. A: Autologous NK cells are able to confer CSL362-induced ADCC against CML CD34+ cells. Cells were co-cultured at an effector to target cell ratio (E:T) of 10:1 in the absence and presence of CSL362 as indicated for 4 h and remaining CFU-GM were enumerated. Data is normalized to target cells alone (*** p<0.001). B: CSL362-mediated ADCC and TKI treatment show additive effects. CP-CML CD34+ cells were cultured with nilotinib at varying concentrations as indicated for 48 h before overnight exposure to CSL362 (1 μg/ml) with or without allogeneic NK cells (E:T 1:1). Mean ± SE of CFU-GM colony numbers is shown (n=3, * p<0.05, ** p<0.01). A: Autologous NK cells are able to confer CSL362-induced ADCC against CML CD34+ cells. Cells were co-cultured at an effector to target cell ratio (E:T) of 10:1 in the absence and presence of CSL362 as indicated for 4 h and remaining CFU-GM were enumerated. Data is normalized to target cells alone (*** p<0.001). . / B: CSL362-mediated ADCC and TKI treatment show additive effects. CP-CML CD34+ cells were cultured with nilotinib at varying concentrations as indicated for 48 h before overnight exposure to CSL362 (1 μg/ml) with or without allogeneic NK cells (E:T 1:1). Mean ± SE of CFU-GM colony numbers is shown (n=3, * p<0.05, ** p<0.01). Disclosures: Nievergall: CSL Ltd: Research Funding. White:BMS: Research Funding; CSL Ltd: Research Funding; Novartis Oncology: Honoraria, Research Funding. Ramshaw:CSL Ltd: Research Funding. Busfield:CSL Ltd: Employment. Vairo:CSL Ltd: Employment. Lopez:CSL Ltd: Research Funding. Hughes:Ariad: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; BMS: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis Oncology: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; CSL Ltd: Research Funding. Hiwase:CSL Ltd: Research Funding.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 514-514 ◽  
Author(s):  
Bin Zhang ◽  
David Irvine ◽  
Yin Wei Ho ◽  
Silvia Buonamici ◽  
Paul Manley ◽  
...  

Abstract Abstract 514 Background: Tyrosine kinase inhibitors (TKI), although effective in inducing remissions and improving survival in CML patients, fail to eliminate leukemia stem cells (LSC), which remain a potential source of relapse on stopping treatment. Additional strategies to enhance elimination of LSC in TKI-treated CML patients are required. The Hedgehog (Hh) pathway, important for developmental hematopoiesis, has been shown to be activated in BCR-ABL-expressing LSC, in association with upregulation of Smoothened (SMO), and contributes to maintenance of BCR-ABL+ LSC. However the role of Hh signaling in chronic phase (CP) CML LSC is not clear. LDE225 (LDE, Novartis Pharma) is a small molecule SMO antagonist which is being clinically evaluated in patients with solid tumors. We have reported that LDE does not significantly affect proliferation and apoptosis of primary CP CML CD34+ cells, or reduce colony growth in CFC assays, but results in significant reduction in CML CFC replating efficiency and secondary colony formation. Treatment with LDE + Nilotinib resulted in significant reduction in colony formation from CD34+ CML cells in LTCIC assays compared to Nilotinib alone or untreated controls. These observations suggest that LDE may preferentially inhibit growth of primitive CML progenitors and progenitor self-renewal. We therefore further investigated the effect of LDE on growth of primitive CML LSC in vivo. Methods and Results: 1) CP CML CD34+ cells were treated with LDE (10nM), Nilotinib (5μ M) or LDE + Nilotinib for 72 hours followed by transplantation into NOD-SCID γ-chain- (NSG) mice. Treatment with LDE + Nilotinib resulted in reduced engraftment of CML CD45+ cells (p=0.06) and CD34+ cells (p=0.02) compared with controls, and significantly reduced engraftment of CML cells with CFC capacity (p=0.005). In contrast LDE or Nilotinib alone did not reduce CML cell engraftment in the bone marrow (BM) compared with untreated controls. LDE, Nilotinib, or LDE + Nilotinib treatment did not significantly inhibit engraftment of normal human CD34+ cells in NSG mice compared to controls. 2) We also used the transgenic Scl-tTa-BCR-ABL mouse model of CP CML to investigate the effect of in vivo treatment with LDE on CML LSC. BM cells from GFP-SCL-tTA/BCR-ABL mice were transplanted into wild type congenic recipients to establish a cohort of mice with CML-like disease. Recipient mice developed CML-like disease 3–4 weeks after transplantation. Transplanted CML cells were identifiable through GFP expression. Mice were treated with LDE225 (80mg/kg/d by gavage), Nilotinib (50 mg/kg/d by gavage), LDE + Nilotinib, or vehicle alone (control) for 3 weeks. Treatment with Nilotinib, LDE, and LDE + Nilotinib resulted in normalization of WBC and neutrophil counts in peripheral blood. LDE + Nilotinib treatment significantly reduced the number of splenic long term hematopoietic stem cells (LT-HSC, Lin-Sca-1+Kit+Flt3-CD150+CD48-, p<0.01) and granulocyte-macrophage progenitors (GMP) compared to controls, but did not significantly alter LT-HSC numbers in the BM. LDE alone reduced splenic LT-HSC but not GMP, whereas Nilotinib alone did not reduce LT-HSC numbers in spleen or BM but significantly reduced splenic GMP numbers. The mechanisms underlying enhanced targeting of LSC in the spleen compared to the BM are not clear but could reflect greater dependence on Hh signaling in the context of the splenic microenvironment and/or relocalization of LDE treated LT-HSC to BM. Experiments in which BM and spleen cells from treated mice were transplanted into secondary recipients to determine functional stem cell capacity of remaining LT-HSC are ongoing. Importantly mice treated with LDE + Nilotinib demonstrated enhanced survival on follow up after discontinuation of treatment compared with control mice or mice treated with LDE or Nilotinib alone. Conclusions: We conclude that LDE225 can target LSC from CP CML patients and in a transgenic BCR-ABL model of CP CML, and that LDE + Nilotinib treatment may represent a promising strategy to enhance elimination of residual LSC in TKI-treated CML patients. Disclosures: Buonamici: Novartis: Employment. Manley:Novartis: Employment. Holyoake:Novartis: Consultancy, Research Funding. Copland:Novartis Pharma: Honoraria, Research Funding; Bristol-Myers Squibb: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Pfizer: Honoraria, Membership on an entity's Board of Directors or advisory committees. Bhatia:Novartis: Consultancy, Honoraria.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 51-52
Author(s):  
Sung-Eun Lee ◽  
Joon Seong Park ◽  
Young Rok Do ◽  
Sung-Hyun Kim ◽  
Dae Young Zang ◽  
...  

Backgroud: Although multiple trials have shown that stopping tyrosine kinase inhibitor (TKI) treatment can be employed in CP CML patients with sustained deep molecular response (DMR) after enough TKI therapy, they emphasized the need for close monitoring because about 50-70% of patients experienced molecular relapse. However, most patients with molecular recurrence regain their initial molecular level after restarting TKI therapy. Aims: In this study, we analyzed second imatinib (IM) discontinuation outcomes in patients regaining durable DMR in the Korean multicenter prospective study (Korean Imatinib Discontinuation Study; KID Study) Methods: CP CML patients who were treated with IM for more than 3 years and maintained DMR for at least 2 years were eligible for the Korean multicenter prospective study and in cases of MMR loss on 2 consecutive assessments, IM treatment was re-introduced. After IM resumption, the molecular response was evaluated every month until re-achievement of MMR and every 3 months thereafter. The second stop was permitted in the patients who were in second DMR for at least 2 years. Results: Among the patients who maintained a second DMR for at least 2 years after IM resumption, 23 patients entered into a second IM stop. Prior to first discontinuation, the median duration of IM therapy was 73.2 months (range, 38.4-133.2 months) and the duration of sustained UMRD was 38.4 months (range, 24-102 months). After first attempt of IM discontinuation, they relapsed after a median duration of 3.7 months (range, 1.8-20.8 months) and re-achieved UMRD at a median of 5.8 months (range, 1.7-12.1 months) after IM resumption. After sustaining a second DMR for a median of 26.3 months, IM therapy discontinued for a second time. With a median follow-up of 29.5 months (range, 9-63 months) since second IM stop, 15/23 patients (65%) lost MMR after a median 2.9 months (range, 1.8-30.7 months), which was similar to those of the first IM discontinuation [median 3.7 (range, 1.8-20.8 months)]. The patients who lost MMR were retreated with IM for a median of 24.5 months (range, 1.2-49.7 months); 14 patients re-achieved MMR and one patient was in therapy for 1.2 months. Conclusion: Our data demonstrated that a second attempt might be possible and the median time to MMR loss after second discontinuation was similar to those of the first discontinuation. Further studies on the predictors to select patients for a trial of second TFR and novel strategies will be warranted. Disclosures Kim: Takeda: Research Funding; Novartis: Consultancy, Honoraria, Research Funding, Speakers Bureau; ILYANG: Consultancy, Honoraria, Research Funding; Pfizer: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; BMS: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Sun Pharma.: Research Funding.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2258-2258
Author(s):  
Tomer M Mark ◽  
Adriana C Rossi ◽  
Roger N Pearse ◽  
Morton Coleman ◽  
David Bernstein ◽  
...  

Abstract Abstract 2258 Background: Prior use of lenalidomide beyond 6 cycles of therapy in the treatment of multiple myeloma (MM) has been shown to negatively impact stem cell yield, but this phenomenon can be overcome with the addition of high-dose cyclophosphamide to standard G-CSF mobilization. We hypothesized that the use of plerixafor (Mozobil®) would compare similarly to chemotherapy in rescuing the ability to collect stem cells in lenalidomide-treated myeloma. Methods: We performed a retrospective study comparing the efficacy of plerixafor + G-CSF mobilization (PG) to chemotherapy + G-CSF (CG) (either high-dose cyclophosphamide at 3g/m2 or DCEP [4-day infusional dexamethasone/ cyclophosphamide/ etoposide/cisplatin]) in 49 consecutive stem cell collection attempts in patients with MM exposed to prior lenalidomide. The primary endpoint was the ability to collect sufficient stem cells for at least two transplants (minimum 5×106 CD34+ cells/kg), comparing results in terms of total exposure to lenalidomide and time elapsed from lenalidomide exposure until the mobilization attempt. The secondary endpoint was number of apheresis days required to meet collection goal. Resilts: Twenty-four patients underwent PG mobilization and twenty-five with CG (21 with G-CSF + cyclophosphamide, 4 with G-CSF+DCEP). The two groups did not differ in terms of total amount of lenalidomide exposure: median number of lenalidomide cycles for patients mobilized with PG was 6.5 (range 1.2–86.6), vs. 6 (range 2–21.6), for patients mobilized with CG (P = 0.663). The median time between mobilization and last lenalidomide dose was also similar between the two groups: 57.5 (range 12–462) days for PG vs. 154 (range 27–805) days for CG (P = 0.101). There was an equivalent rate of successful collection of 100% for PG and 96% for CG, P = 0.322. One patient failed collection in the CG group due to emergent hospitalization for septic shock during a period of neutropenia; no patient collected with PG had a serious adverse event that interrupted the collection process. Stem cell yield did not differ between the two arms (13.9 vs. 18.8 × 106 million CD34+ cells/kg for PG vs. CG respectively, P = 0.083). Average time to collection goal was also equal, with a median of time of 1 day required in both groups, (range 1–2 days for PG, 1–5 days for CG, P = 0.073). There was no relationship between amount of lenalidomide exposure and stem cell yield with either PG (P = 0.243) or CG (P = 0.867). Conclusion: A plerixafor + G-CSF mobilization schedule is equivalent in efficacy to chemotherapy + G-CSF in obtaining adequate numbers of stem cells for two autologous stem cell transplants in patients with MM exposed to lenalidomide; however, PG may be a less toxic approach than chemomobilization. Number of lenalidomide cycles has no impact on chances of stem cell collection success using either method. Disclosures: Mark: Celgene Corp: Speakers Bureau; Millenium Corp: Speakers Bureau. Zafar: Celgene Corp: Speakers Bureau. Niesvizky: Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Millenium: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Onyx: Consultancy, Research Funding.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 297-297 ◽  
Author(s):  
Colleen Delaney ◽  
Filippo Milano ◽  
Ian Nicoud ◽  
Shelly Heimfeld ◽  
Chatchada Karanes ◽  
...  

Abstract Introduction There is a strong clinical need to overcome the increased early non relapse mortality (NRM) associated with delayed neutrophil recovery following cord blood transplant (CBT). Therefore we established a methodology using Notch ligand (Delta1) as a strategy for increasing the absolute number of marrow repopulating CB hematopoietic stem/progenitor cells (HSPC). We previously reported preliminary results of the first 10 patients in 2010 demonstrating the ability of Notch-expanded CB HSPC to provide rapid myeloid recovery post-CBT.1 Herein we present the updated results on 23 patients accrued to this trial aimed at assessment of efficacy as well as the feasibility of overnight shipment of the expanded cell product to three outside institutions. Methods Between July 2006 and March 2013, 23 patients with hematologic malignancies were enrolled in this prospective multi-center Phase I trial coordinated by the Fred Hutchinson Cancer Research Center in which one CB unit was ex vivo expanded prior to infusion. Conditioning consisted of Fludarabine (75mg/m2), Cyclophosphamide (120mg/kg) and TBI (13.2 Gy) over 8 days. On day 0, the unmanipulated CB unit was infused first followed 4 hours later by infusion of the freshly harvested expanded CB cells. Graft versus host disease (GVHD) prophylaxis consisted of cyclosporine and MMF beginning on day -3. All CB grafts were 4-6/6 HLA-matched (A/B antigen level, DRB1 allele level) to the recipient. Engraftment, NRM, relapse and GVHD were calculated using cumulative incidence rates to accommodate competing risks. Overall survival was analyzed using Kaplan-Meier estimates. Results Patient diagnosis was AML (n=16), ALL (n=5) and biphenotypic leukemia (n=2). Nine patients (39%) were ≥CR2 and 5 were MRD+ at the time of transplant. Median age was 28 years (range, 4-43) and weight 70 kg (range, 16-91) with a median follow-up of 614 days (range, 271-2443). 22 patients received the expanded graft with one product not meeting release criteria. The cell doses infused were significantly higher in the expanded CB graft: 2.7 (1.5-6.3) vs 6.9 (0.4-27.6) x107 TNC/kg, p<0.0008; 0.15 (0.02-0.57) vs 7.7 (0.62-49.5) x106 CD34/kg, p<0.0001. HLA-matching and ABO incompatibility of the expanded and unmanipulated products were similar. The incidence of neutrophil recovery was 95% (95% CI, 71-100) at a median of 13 days (range, 6-41 days) among the 22 patients receiving expanded CB cells which is significantly faster than that observed in 40 recipients of two unmanipulated units otherwise treated identically at a median time of 25 days (range, 14 to 45; p<0.0001). The incidence of platelet recovery (>20 x 10^9/L) was 77% (CI 95%: 53- 89) by day 100 at a median of 38 days (range, 19 – 134). There was one case of primary graft failure. Importantly, rate of neutrophil recovery correlated with CD34+ cell dose/kg with 8 out of 11 patients receiving greater than 8x106 CD34+cells/kg achieved an ANC ≥ 500/µl within 10 days. 21 patients were evaluable for in vivo persistence of the expanded cells. Ten (48%) demonstrated in vivo persistence beyond one month post infusion. The expanded cell graft was persistent at day 180 in 7 patients, and in those that survived to one year, dominance of the expanded cell graft persisted in one patient. The incidences of grade II-IV and III-IV acute GVHD was 77% (95% CI, 53-89) and 18% (95% CI, 5-36%), respectively; mild chronic GVHD was observed in 4 patients and severe chronic GVHD in one. Probability of OS was 62% (95% CI, 37-79%) at 4 years. Notably, the cumulative incidence of NRM at day 100 was 8% (95% CI, 14-24%) and at 4 years was 32% (95% CI, 8-40%). Nine patients died at a median time of 216 days (range, 31-1578 days) with respiratory failure/infection the most common cause (n=6). There were two relapses at day 156 and 365 post-transplant, with one death due to relapse. Secondary malignancy and primary graft failure were the other 2 causes of death. Conclusions Infusion of Notch-expanded CB progenitors is safe and effective, significantly reducing the time to neutrophil recovery and risks of NRM during the first 100 days. An advantage for infusion of higher numbers of CD34+ cells/kg further demonstrates the need to develop methods that reproducibly provide even greater expansion of repopulating cells than currently achieved to improve efficacy and potentially cost effectiveness. 1. Delaney C, et al, Nat Med. 2010 Feb;16(2):232-6. Disclosures: Delaney: Novartis: DSMB, DSMB Other; Biolife: Membership on an entity’s Board of Directors or advisory committees; medac: Research Funding. Wagner:Novartis: Research Funding; cord use: Membership on an entity’s Board of Directors or advisory committees.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 901-901
Author(s):  
Claudia Manriquez Roman ◽  
Michelle J. Cox ◽  
Reona Sakemura ◽  
Kun Yun ◽  
Mohamad M. Adada ◽  
...  

Abstract Introduction: It has become increasingly apparent that chimeric antigen receptor T (CART) cell activation and differentiation level is an important determinant of CART cell fate and response to therapy. In this study, we aimed to 1) measure levels of activation-induced surface death receptors and ligands on CART cells; 2) investigate how CART cell activation could impact their fitness and clinical responses, and 3) identify cell-based targets to modulate CART cell activation, apoptosis, and cytotoxicity to improve anti-tumor activity. Methods: We performed flow cytometric studies on ex-vivo stimulated, clinically annotated CART products of patients with large B cell lymphoma from the pivotal ZUMA-1 clinical trial that led to FDA-approved Axicabtagene ciloleucel (Axi-Cel). We investigated possible correlations of a number of surface death receptors and ligands with T cell differentiation status and post-infusion CART cell expansion, utilizing samples from ZUMA-1 patients who achieved a complete response as a best outcome ('responders') vs patients who achieved stable or progressive disease('non-responders'). CART cell effector functions in vitro were measured, and CART apoptosis was assessed using Annexin V. For in vitro and in vivo functional studies, we used CART19 generated from healthy donors (HD CART19) as indicated in the specific experiment. CRISPR/Cas9 was employed during CART cell production to disrupt specific genes. A xenograft model of lymphoma was used to investigate the in vivo antitumor activity of CART19. Results: Following an ex vivo stimulation of Axi-Cel products with CD19 + target cells, we observed upregulation of death receptors and ligands in CART19 from non-responders, compared to responders. We also observed a possible association between such upregulated surface markers with CART cell differentiation as measured by CCR7 expression. In an extended in vitro co-culture assay, where HD CART19 cells were repeatedly stimulated through the CAR, we found that tumor necrosis factor α receptor 2 (TNFR2), unlike other death receptors and ligands, was persistently elevated, suggesting a possible role for TNFR2 in long-term antigen-dependent CART19 dysfunction (Figure 1A). We further found that HD CART19 upregulate TNFR2, but not TNFR1, upon CAR stimulation (Figure 1B). While non-specific TCR activation (CD3 stimulation) of HD CART19 cells protected them from activation-induced apoptosis, antigen-specific activation through the CAR resulted in significant initiation of apoptosis within 2 hours of stimulation (Figure 1C). Having identified a possible association between TNFR2 and CART19 dysfunction, we aimed to study the impact of TNFR2 knockout on HD CART19 functions. Using CRISPR/Cas9 during CART cell manufacturing, we generated TNFR2 k/o HD CART19 cells with a knockout efficiency of around 50%, where the expression levels of TNFR2 in activated CART19 cells were reduced, compared to control CART19 cells (with non-targeting gRNA CRISPR/Cas9, Figure 1D). TNFR2 k/o CART19 cells demonstrated reduced early activation surface markers compared to control CART19, as measured by CD25 and CD69 surface expression (Figure 1E), reduced apoptosis initiation as measured by the Annexin V assay (Figure 1F), and enhanced antigen-specific proliferation and cytotoxicity (Figure 1G). Finally, in an in vivo xenograft model of CD19 + lymphoma, TNFR2 k/o CART19 resulted in enhanced CART cell expansion and anti-tumor activity (Figure 1H). Conclusions: Our results indicate that TNFR2 plays a role in early activation and apoptosis initiation of CART19 following CAR stimulation with CD19 + target cells and present TNFR2 knockout as a strategy to enhance CART19 anti-tumor activity. Figure 1 Figure 1. Disclosures Cox: Humanigen: Patents & Royalties. Sakemura: Humanigen: Patents & Royalties. Ding: Merck: Membership on an entity's Board of Directors or advisory committees, Research Funding; DTRM: Research Funding; Octapharma: Membership on an entity's Board of Directors or advisory committees. Parikh: Pharmacyclics, MorphoSys, Janssen, AstraZeneca, TG Therapeutics, Bristol Myers Squibb, Merck, AbbVie, and Ascentage Pharma: Research Funding; Pharmacyclics, AstraZeneca, Genentech, Gilead, GlaxoSmithKline, Verastem Oncology, and AbbVie: Membership on an entity's Board of Directors or advisory committees. Kay: Juno Therapeutics: Membership on an entity's Board of Directors or advisory committees; Pharmacyclics: Membership on an entity's Board of Directors or advisory committees, Research Funding; MEI Pharma: Research Funding; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Dava Oncology: Membership on an entity's Board of Directors or advisory committees; Agios Pharm: Membership on an entity's Board of Directors or advisory committees; Targeted Oncology: Membership on an entity's Board of Directors or advisory committees; AstraZeneca: Membership on an entity's Board of Directors or advisory committees; Acerta Pharma: Research Funding; Genentech: Research Funding; Behring: Membership on an entity's Board of Directors or advisory committees; CytomX Therapeutics: Membership on an entity's Board of Directors or advisory committees; Sunesis: Research Funding; TG Therapeutics: Research Funding; Tolero Pharmaceuticals: Research Funding; Abbvie: Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol Meyer Squib: Membership on an entity's Board of Directors or advisory committees, Research Funding; Morpho-sys: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees; Oncotracker: Membership on an entity's Board of Directors or advisory committees; Rigel: Membership on an entity's Board of Directors or advisory committees. Scholler: Kite: Current Employment. Bot: Kite, a Gilead Company: Current Employment; Gilead Sciences: Consultancy, Current equity holder in publicly-traded company, Other: Travel support. Mattie: Kite: Current Employment. Kim: Gilead Sciences: Current equity holder in publicly-traded company; Kite, a Gilead Company: Current Employment. Filosto: Kite, a Gilead Company: Current Employment; Tusk Therapeutics: Patents & Royalties: or other intellecular property; Gilead Sciences: Other: stock or other ownership . Kenderian: Humanigen, Inc.: Consultancy, Honoraria, Research Funding.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 407-407
Author(s):  
Frank Cichocki ◽  
Jode P Goodridge ◽  
Ryan Bjordahl ◽  
Svetlana Gaidarova ◽  
Sajid Mahmood ◽  
...  

Abstract Treatments for B-cell malignancies have improved over the past several decades with clinical application of the CD20-specific antibody rituximab and chimeric antigen receptor (CAR) T cells targeting CD19. Despite the success of these therapies, loss of CD20 after rituximab treatment has been reported in leukemia and lymphoma patients. Additionally, up to 50% of all patients receiving anti-CD19 CAR T-cell therapy relapse within the first year with many of those patients exhibiting CD19 loss. Thus, new therapeutic approaches are needed to address tumor antigen escape. Accordingly, we generated triple gene-modified iPSC-derived NK (iNK) cells, termed "iDuo" NK cells, tailored to facilitate multi-antigen targeting. The iPSC line was clonally engineered to express high-affinity, non-cleavable CD16a (hnCD16), an anti-CD19 CAR optimized for NK cell signaling, and a membrane-bound IL-15/IL-15R fusion (IL-15RF) molecule to enhance NK cell persistence (Fig. 1A). To model antigen escape, we generated CD19 knockout AHR77 lymphoma cells alongside wild type AHR77 cells (both CD20 +) as targets in cytotoxicity assays. Activated peripheral blood NK (PBNK) cells, non-transduced iNK cells, and iDuo NK cells were tested as effectors. Unlike PBNK cells or non-transduced iNK cells, iDuo NK cells efficiently eliminated wild type AHR77 cells with or without the addition of rituximab at all tested E:T ratios. Similarly, iDuo NK cells in combination with rituximab were uniquely able to efficiently eliminate CD19 KO AHR77 cells due to enhanced antibody-dependent cellular cytotoxicity (ADCC) driven by hnCD16 (Fig. 1B-E). Cytotoxicity mediated by iDuo NK cells was also evaluated using primary chronic lymphocytic leukemia (CLL) cells. Compared to expanded PBNK cells and non-transduced iNK cells, only iDuo NK cells (in the absence of rituximab) were able to kill primary CLL cells (Fig. 1F). Expression of IL-15RF by iDuo NK cells uniquely supports in vitro expansion without the need for cytokine supplementation. To determine whether IL-15RF supports in vivo persistence of iDuo NK cells, CD19 CAR iNK cells (lacking IL-15RF) and iDuo NK cells were injected into NSG mice without the addition of cytokines or CD19 antigen availability. iDuo NK cell numbers peaked within a week after injection and persisted at measurable levels for ~5 weeks, in marked contrast to CD19 CAR iNK cell numbers that were undetectable throughout (Fig. 1G). To evaluate the in vivo function of iDuo NK cells, NALM6 leukemia cells were engrafted into NSG mice. Groups of mice received tumor alone or were treated with 3 doses of thawed iDuo NK cells. iDuo NK cells alone were highly effective in this model as evidenced by complete survival of mice in the treatment group (Fig. 1H). To assess iDuo NK cells in a more aggressive model, Raji lymphoma cells were engrafted, and groups of mice received rituximab alone, iDuo NK cells alone, or iDuo NK cells plus rituximab. Mice given the combination of iDuo NK cells and rituximab provided extended survival compared to all other arms in the aggressive disseminated Raji lymphoma xenograft model (Fig. 1I). One disadvantage of anti-CD19 CAR T cells is their inability to discriminate between healthy and malignant B cells. Because NK cells express inhibitory receptors that enable "self" versus "non-self" discrimination, we reasoned that iDuo NK cells could have higher cytotoxicity against tumor cells relative to healthy B cells. To address this, we labeled Raji cells, CD19 + B cells from healthy donor peripheral blood mononuclear cells (PBMCs) and CD19 - PBMCs. Labeled populations of cells were co-cultured with iDuo NK cells, and specific killing was analyzed. As expected, iDuo NK cells did not target CD19 - PBMCs. Intriguingly, iDuo NK cells had much higher cytotoxic activity against Raji cells compared to primary CD19 + B cells, suggesting a preferential targeting of malignant B cells compared to healthy B cells. Together, these results demonstrate the potent multi-antigen targeting capability and in vivo antitumor function of iDuo NK cells. Further, these data suggest that iDuo NK cells may have an additional advantage over anti-CD19 CAR T cells by discriminating between healthy and malignant B cells. The first iDuo NK cell, FT596, is currently being tested in a Phase I clinical trial (NCT04245722) for the treatment of B-cell lymphoma. Figure 1 Figure 1. Disclosures Cichocki: Gamida Cell: Research Funding; Fate Therapeutics, Inc: Patents & Royalties, Research Funding. Bjordahl: Fate Therapeutics: Current Employment. Gaidarova: Fate Therapeutics, Inc: Current Employment. Abujarour: Fate Therapeutics, Inc.: Current Employment. Rogers: Fate Therapeutics, Inc: Current Employment. Huffman: Fate Therapeutics, Inc: Current Employment. Lee: Fate Therapeutics, Inc: Current Employment. Szabo: Fate Therapeutics, Inc: Current Employment. Wong: BMS: Current equity holder in publicly-traded company; Fate Therapeutics, Inc: Current Employment. Cooley: Fate Therapeutics, Inc: Current Employment. Valamehr: Fate Therapeutics, Inc.: Current Employment. Miller: Magenta: Membership on an entity's Board of Directors or advisory committees; ONK Therapeutics: Honoraria, Membership on an entity's Board of Directors or advisory committees; Vycellix: Consultancy; GT Biopharma: Consultancy, Patents & Royalties, Research Funding; Fate Therapeutics, Inc: Consultancy, Patents & Royalties, Research Funding; Sanofi: Membership on an entity's Board of Directors or advisory committees; Wugen: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1890-1890
Author(s):  
Naranie Shanmuganathan ◽  
Susan Branford ◽  
Jodi Braley ◽  
Devendra Hiwase ◽  
David T. Yeung ◽  
...  

Abstract Background: Discontinuation of tyrosine kinase inhibitor (TKI) treatment for chronic myeloid leukaemia (CML) patients in stable deep molecular response leads to treatment-free remission (TFR) in approximately 50% of cases. In most studies, monthly PCRs was performed for 12 months followed by 2-3 monthly testing thereafter. Around 80% of molecular relapses occur within the first 6 months after TKI cessation. The current recommendation for TKI recommencement is a single BCR-ABL1 value ≥0.1% IS (International scale), indicating loss of major molecular response (MMR). Not all institutions can offer monthly PCR monitoring due to financial constraints, particularly relevant in developing countries. For some patients, remaining on TKI is a cheaper alternative. Aim: To assess the safety of less frequent BCR-ABL1 monitoring for detection of loss of MMR for CML patients attempting TFR. Methods: We monitored 85 patients who ceased TKI with the aim of achieving TFR. Patients had a minimum of 24 months of sustained MR4 (n=3) or MR4.5 (n=82) prior to TKI cessation. At the time of TKI cessation, 64 patients were on imatinib (75%), 17 on nilotinib (20%) and 4 on dasatinib (5%). Forty of the patients were enrolled in the TWISTER study where the criteria for TKI recommencement was loss of MMR or 2 consecutively rising BCR-ABL1 positive values. The remaining patients were on a registry study and the trigger for TKI recommencement was loss of MMR. Results: TKI recommencement occurred in 49 of 85 patients. Median time to TKI recommencement was 4 months (range 2-28 months) at a median BCR-ABL1 value of 0.27% on the International Scale (IS), range 0.002-24% IS. Thirty-six of the 49 patients (73%) lost MMR prior to TKI recommencement; the median time to loss of MMR was 3 months (range 1 to 10 months). One patient lost MMR within the first month. Figure A demonstrates the time to loss of MMR in the 36 patients with PCR values ≥ 0.1%. Eighteen of the 36 patients (50%) lost MMR by the 3 month BCR-ABL1 assessment and 35 of 36 patients (97%) lost MMR by 6 months. The latest loss of MMR was at 10 months. Fourteen patients recommenced TKI at a BCR-ABL1 value of >1% and 1 recommenced at a value >10%. Clinician delay in TKI recommencement of 1 month resulted in a BCR-ABL1 rise from 0.84% to 24% with associated loss of complete hematological response. We propose monthly BCR-ABL1 testing between 2 and 6 months post TKI cessation followed by 2 monthly testing. Detection of a BCR-ABL1 value of ≥0.1% would trigger TKI recommencement. In the presence of a rising BCR-ABL1, which remains ≤0.1%, monthly monitoring should ensue in order to avoid hematological relapse. If this strategy were employed in this cohort of patients, only 1 patient would have had the trigger for TKI recommencement delayed by 1 month (estimated BCR-ABL1 at recommencement ~2.5%). This patient had loss of MMR in the first month post TKI cessation. If this molecular monitoring strategy was applied to patients in our cohort who had not lost MMR at TKI recommencement, we estimate that 1 other patient would have had TKI recommencement delayed by 1 month based on the average BCR-ABL1 doubling time of 1 log per month. A proportion of patients maintain low levels of BCR-ABL1 after TKI cessation and do not lose MMR. There were 2 such patients in our cohort. Conclusion: The critical time for molecular monitoring to trigger TKI recommencement is the first 6 months. A monthly monitoring strategy beginning 2 months after cessation would capture the majority of patients at loss of MMR. The data suggest that after 6 months, 2-monthly monitoring could follow. Monthly BCR-ABL1 testing can be re-introduced in the event of a positive result in those that ceased TKI with undetectable BCR-ABL1 or if there is a BCR-ABL1 result higher than the cessation value. This approach would reduce BCR-ABL1 testing by approximately 33% in the majority of cases while minimizing hematological relapse. Therefore this strategy would reduce the cost and inconvenience of molecular monitoring for a trial of TKI cessation, making the option of TFR available to some patients for whom it is otherwise not feasible. Disclosures Branford: Qiagen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Cepheid: Consultancy; Ariad: Research Funding; Bristol Myers Squibb: Research Funding; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Yeung:BMS: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Ariad: Research Funding. Ross:Novartis Pharmaceuticals: Honoraria, Research Funding; BMS: Honoraria. Hughes:Bristol-Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Ariad: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Australasian Leukaemia and Lymphoma Group (ALLG): Other: Chair of the CML/MPN Disease Group.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 6-6 ◽  
Author(s):  
Veronika Bachanova ◽  
Joseph Maakaron ◽  
David H. McKenna ◽  
Qing Cao ◽  
Todd E. DeFor ◽  
...  

Background: The innate capacity of natural killer (NK) cells to kill tumor targets has been translated into cancer immunotherapy. GDA-201 is a novel allogeneic NK cell product derived from NK cells from healthy donors, expanded ex-vivo with nicotinamide (NAM) and IL-15. We previously reported improved killing function, in vivo proliferation, organ trafficking, and augmented resistance against exhaustion in pre-clinical models. We conducted a phase 1 study of GDA-201 in combination with monoclonal antibodies to enhance NK cell targeting through antibody-dependent cellular cytotoxicity (ADCC). We now report safety data in patients (pts) with relapsed or refractory (R/R) non-Hodgkin lymphoma (NHL) and multiple myeloma (MM), and report efficacy outcomes in pts with NHL. Methods: Following donor apheresis, CD3-depleted mononuclear cells were cultured for 14-16 days with NAM (5mM) and IL-15 (20ng/ml), resulting in a 40-fold increase in NK cells and increased expression of CD62L from 2.9% to 21%. GDA-201 contained ~98% NK cells, and CD3 content was maintained at &lt;0.5% (&lt;5x105/kg/dose). Pts with R/R B-cell NHL or MM received lymphodepleting (LD) therapy with cyclophosphamide (400mg/m2 IV x 3d) and fludarabine (30 mg/m2 /d IV x 3d), followed by GDA-201 (days 0 and 2) and low-dose IL-2 (6 million units sc x 3 doses). Pts with NHL or MM received rituximab (375 mg/m2) or elotuzumab (10 mg/kg), respectively, x 3 weekly infusions. Results: 30 pts were enrolled:15 with NHL and 15 with MM, in 3 cohorts of escalating GDA-201 dose; 15 pts received the maximum target dose (median dose 12.4 [range 2.0-26.0] x 107 cells/kg). There were no dose limiting toxicities. The most common grade 3/4 adverse events were thrombocytopenia (n=9), hypertension (n=5), neutropenia (n=4), febrile neutropenia (n=4), and anemia (n=3). There were no neurotoxic events, confirmed cytokine release syndrome, graft versus host disease, or marrow aplasia. One patient died of E-coli sepsis. In pts with NHL, histologies included diffuse large B cell lymphoma (DLBCL) (de novo n=5, transformed n=3), follicular lymphoma (FL) (n=6), and mantle cell lymphoma (n=1). Median age was 64 (range 48-83 years). Pts had a median of 3 lines of prior therapy (range 1-8); most were multiply relapsed or refractory (n=2), and 87% had advanced stage. Median follow-up was 10.8 months (range 4.3-27.5 months). Ten pts had complete response (CR): 6/6 pts with FL and 4/8 with DLBCL; 1 pt had partial response (PR), and overall response rate in pts with NHL was 73.3%. Median duration of response was 8.7 months (range 4.3-25 months). Flow cytometry confirmed the persistence of GDA-201 in peripheral blood for 7-10 days (range 2-92% donor NK cells on day 7), as well as enhanced in vivo proliferation (median Ki 67 99%). Flow cytometry of biopsied tissues at day 4 demonstrated trafficking to bone marrow and lymph nodes. Four pts underwent re-treatment with GDA-201 without LD chemotherapy; GDA-201 cells were detectable in blood after the re-treatment and likely contributed to deepening of response in 2 patients. Post-GDA-201 therapy included allogeneic (n=2) and autologous (n=1) hematopoietic stem cell transplantation. One-year estimates of progression-free survival and overall survival were 66% (95% CI 36-84%) and 82% (95% CI 42-95%), respectively. Conclusions: Cellular therapy using GDA-201 with monoclonal antibodies to enhance ADCC was well-tolerated, and demonstrated significant clinical activity in heavily pretreated pts with advanced NHL. Data support the future testing of multiple infusions to potentially enhance anti-tumor effect. The omission of lymphodepleting chemotherapy is feasible and contributes to safety of this approach. Phase II studies in aggressive and indolent NHL cohorts are planned. Disclosures Bachanova: Incyte: Research Funding; FATE: Research Funding; Kite: Membership on an entity's Board of Directors or advisory committees; Karyopharma: Membership on an entity's Board of Directors or advisory committees; BMS: Research Funding; Gamida Cell: Membership on an entity's Board of Directors or advisory committees, Research Funding. McKenna:Gamida: Other: Cell Manufacturing; Fate Therapeutics: Other: Cell Manufacturing; Intima: Other: Cell Manufacturing; Magenta: Other: Cell Manufacturing. Janakiram:Takeda, Fate, Nektar: Research Funding. Simantov:Gamida Cell: Current Employment. Lodie:Gamida Cell: Current Employment. Miller:Vycellix: Consultancy; Nektar: Honoraria, Membership on an entity's Board of Directors or advisory committees; Onkimmune: Honoraria, Membership on an entity's Board of Directors or advisory committees; GT Biopharma: Consultancy, Patents & Royalties, Research Funding; Fate Therapeutics, Inc: Consultancy, Patents & Royalties, Research Funding.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3745-3745
Author(s):  
Eva Nievergall ◽  
Deborah L. White ◽  
Hayley Ramshaw ◽  
Angel F. Lopez ◽  
Timothy P. Hughes ◽  
...  

Abstract Abstract 3745 Despite the remarkable efficacy of tyrosine kinase inhibitors (TKIs) in the treatment of chronic myeloid leukemia (CML), Ph+ CD34+ progenitor cells remain detectable even in patients with stable complete cytogenetic response. Over 40% of patients in stable complete molecular remission will develop molecular relapse within 6 months of stopping imatinib. While the exact causes are largely unknown, one of the proposed mechanisms is the protection of leukemic stem and early progenitor cells by the paracrine or autocrine production of cytokines, such as IL-3, GM-CSF and G-CSF, which activate survival pathways that bypass TKI-induced cytocidal effects. In acute myeloid leukemia (AML), the IL-3 receptor α chain (CD123) is recognized as a specific marker for CD34+/CD38− stem cells and therefore is attracting increasing interest as a therapeutic target. However, the function of CD123 in CML remains to date mostly unexplored. The aim of this study is to investigate potential synergy between TKIs and CSL362 (a humanized antibody version of 7G3 against CD123) in targeting CML progenitor and stem cells. CD34+ and CD34+/CD38− cells were isolated from mononuclear cells of newly diagnosed CML chronic phase and blast crisis patients. Flow cytometry studies indicated significantly increased CD123 expression on CD34+/CD38− cells of CML patients in both chronic phase and blast crisis when compared to normal hematopoietic stem cells (p<0.01 and p<0.001 for chronic phase and blast crisis, respectively; Figure A). A functional relevance of increased CD123 expression was demonstrated by IL-3-dependent increase in STAT5 phosphorylation (260.5% of baseline with 20 ng/ml IL-3; n=12; p<0.001) in CML CD34+ cells. Dasatinib inhibits STAT5 phosphorylation by blocking BCR-ABL signaling but only in the absence of IL-3 (62.5% of baseline for dasatinib alone vs. 130.8% for dasatinib + IL-3; n=3; p<0.01). In agreement, IL-3 effectively rescues dasatinib-induced cell death, as evaluated by AnnexinV/7-AAD staining (103.3% vs. 72.45%, n=5; p<0.01) and CFU-GM colony forming assays (69.39% vs. 46.13% relative to no treatment control; n=4; p<0.05). CSL362, in turn, revokes IL-3-mediated STAT5 phosphorylation (37.12% vs. 130.8%; n=3; p<0.001) and cytoprotection (45.05% vs. 69.39% CFC; n=4; p<0.01). In order to further elucidate the role of CSL362, CML CD34+ cells were cultured with increasing concentrations of dasatinib in the presence of IL-3 and CSL362 or BM4 isotype-matched control antibody. Even at very low dasatinib concentrations, CSL362 significantly reduces CML CD34+ colony forming cells (p<0.05; Figure B). Together these results substantiate a relevant role for IL-3-mediated resistance in CML progenitor cells and additionally confirming the ability of CSL362 to effectively bind to CD123 and impede IL-3 function. CSL362 furthermore has been optimized to mediate antibody dependent cell cytotoxicity (ADCC). CSL362 causes specific cell lysis of CML CD34+ progenitor cells in co-culture with allogeneic Natural killer cells as determined by increased lactate dehydrogenase release (ADCC activity of 42.4% ± 8.1%; n=3) and a decrease in the number of CFU-GM colonies by 74.1 % ± 12.2% (n=3). Collectively, our results indicate that a combination of dasatinib and CSL362 inhibits CML progenitor cell survival more effectively in vitro. Therefore, targeting IL-3 receptor α with CSL362 in chronic phase and blast crisis CML patients might provide a novel specific treatment approach aiding the elimination of refractory chronic myeloid leukemic stem and progenitor cells. A: Flow cytometry analysis reveals that CD123 expression is significantly higher in CD34+/CD38− cells of CML patients in chronic phase (CML-CP) and blast crisis (BC-CML) as compared to normal patients (NP), as previously documented for AML patients. ** p<0.01, *** p<0.001 by unpaired, two-tailed Student's t-test. B: In the presence of IL-3, CSL362 significantly reduces the number of colony forming cells. CD34+ cells of de novo CML-CP patients were cultured with dasatinib (0 to 10 nM) +IL-3 (1 ng/ml) ± CSL362 or BM4 (isotype control for CSL362). After 72 hours of culture live cells were plated for CFU-GM assay and colonies were counted after 2 weeks. Mean ± SE of three independent experiments is shown, n=4, p<0.05 by two-way ANOVA. Disclosures: Nievergall: CSL: Research Funding. White:CSL: Research Funding. Lopez:CSL: Research Funding. Hughes:Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; BMS: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Ariad: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Hiwase:CSL: Research Funding.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 256-256
Author(s):  
Deborah White ◽  
Verity Saunders ◽  
Laura Eadie ◽  
Yeung David ◽  
Timothy P. Hughes

Abstract We have previously demonstrated that the degree of in vivo kinase inhibition achieved over the first month of imatinib therapy in newly diagnosed, chronic phase chronic myeloid leukaemia (CP-CML) patients, is an excellent predictor of subsequent molecular response. Patients achieving >50% in vivo kinase inhibition all achieved major molecular response (MMR; ≤0.1% BCR-ABL1 (IS)) by 24 months compared to 56% of patients with <50% in vivo kinase inhibition (p<0.001). (White et alJCO 2007). To date, no biomarker which accurately predicts response to nilotinib has been reported. Achievement of <10% BCR-ABL1 by 3 months (EMR) is predictive of subsequent molecular outcome in imatinib treated patients. Only 1 of the 70 CP-CML recipients of first-line nilotinib (300mg bid) monitored in Adelaide failed to achieve <10% by 3 months, and this patient withdrew from treatment due to toxicity 7 months after the start of nilotinib therapy. Failure to achieve <1% BCR-ABL1 (EMR 1%) by 3 months was strongly associated with a significantly lower rate of MMR by 12 months when compared to patients achieving <1% BCR-ABL in the 65 of 70 patients with molecular response data examinable at 12 months. (55% MMR (n=11) vs 93% MMR (n=54) p=0.002). The degree of in vivo kinase inhibition was measured by calculating the % reduction in the p-Crkl level of mononuclear cells collected at days 7 and 29 after the start of nilotinib therapy. A significantly higher proportion of nilotinib treated patients achieved 50% or greater in vivo kinase inhibition over the first month of treatment compared to our historical cohort of imatinib treated patients (75% vs 45% of patients. p<0.001). Dividing patients into those with low and those with high in vivo kinase inhibition revealed a significantly higher proportion of nilotinib treated patients with high in vivo kinase inhibition achieved EMR1% (p=0.012) and MMR by 12 months when compared to patients with low in vivo kinase inhibition (p<0.001)Table 1.Table 1The predictive value of in vivo kinase inhibition in nilotinib treated patients.The % of patients achievingEMR1%MMR by 12 monthslow in vivo kinase inhibition7171high in vivo kinase inhibition8994P  value0.012<0.001 Correlating drug levels achieved over the first month of therapy, with in vivo kinase inhibition revealed a strong correlation for nilotinib (p<0.001), but not imatinib (p>0.05), suggesting that early dose intensity may be the key factor for nilotinib response. In contrast, while dose is clearly important for imatinib other factors, such as variable drug influx also play a pivotal role. Previous studies have demonstrated that the pharmacokinetics of nilotinib are similar to that of imatinib, and that trough plasma levels of imatinib >1000ng/ml are associated with a higher rate of MMR. Grouping patients into those <1000ng/ml by day 29 and those >1000ng/ml revealed that early trough nilotinib plasma levels were also strongly predictive of the achievement of MMR by 12 mo (<1000ng/ml – 79% (n=38) versus >1000ng/ml – 96% (n=25). p=0.009). Of note two patients have developed kinase domain mutations and both patients failed to achieve high in vivo kinase inhibition or drug levels >1000ng/ml. Preliminary analysis of this cohort of nilotinib treated patients strongly suggests that the in vivo kinase inhibition achieved is significantly higher than observed with imatinib at equivalent timepoints, and is a significant factor for subsequent molecular response. Importantly the plasma levels achieved over the first month of nilotinib therapy appear to be a key factor in the achievement of both early in vivo kinase inhibition and subsequent molecular response. Disclosures: White: Novartis: Honoraria, Research Funding; BMS: Honoraria, Research Funding; CSL: Research Funding. David:Novartis: Honoraria, Research Funding; BMS: Research Funding. Hughes:Novartis: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; BMS: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; Ariad: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; CSL: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document