Role of Selective HDAC6 Inhibition On Multiple Myeloma Bone Disease

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 328-328
Author(s):  
Loredana Santo ◽  
Diana Cirstea ◽  
Bin Wang ◽  
Tso-Pang Yao ◽  
Joy Y. Wu ◽  
...  

Abstract Abstract 328 In multiple myeloma (MM), deregulated osteoclast (OC)/osteoblast (OB) cross-talk induces osteolytic bone lesions. The HDAC6 selective inhibitor, rocilinostat (ACY-1215), in combination with bortezomib has shown potent anti myeloma activity in preclinical studies, which provided the rationale for a clinical trial that is currently recruiting relapsed/refractory MM patients (NCT01323751). However, while the beneficial role of bortezomib in tumor-related bone disease has been previously described, the effect of HDAC6 inhibition is not known. Evidence suggests a positive effect on bone turnover as pan HDAC inhibitors accelerate OB maturation and suppress OC maturation in vitro. Here, we evaluated effects of the selective HDAC6 inhibitor rocilinostat (Acetylon Pharmaceuticals, Inc), alone and in combination with bortezomib in MM bone disease. Rocilinostat (1 μM) alone and in combination with bortezomib (2.5 nM) inhibited OC differentiation, evidenced by a decreased number of TRAP positive multinucleated cells and bone-resorbing activity. In addition, rocilinostat (1 μM) significantly decreased cell growth of mature OC in co-culture with MM cell lines and in combination with bortezomib inhibited transcription factors implicated in OC differentiation including p-ERK, p-AKT, c-FOS, and NFATC1. Importantly, such an effect was cytokine (RANKL and M-CSF) dependent. Further, rocilinostat, alone and in combination, enhanced OB differentiation, evidenced by increased alkaline phosphatase (ALP) enzyme activity and alizarin red staining. In addition, we found increased mRNA expression of beta-catenin, osteocalcin, ALP, and RUNX2. Based on this promising in vitro data, we used the xenograft model of disseminated human MM in SCID mice to study the effect of rocilinostat, alone and in combination with bortezomib, on MM bone disease. MM.1S-GFP-Luc cells were injected intravenously, and MM disease progression was followed by bioluminescence imaging. A significant decrease in tumor burden was observed in mice following three weeks of treatment with rocilinostat, alone or in combination with bortezomib. Isolating serum from control and treated mice, we also observed a significant decrease of TRAPc5b levels, a marker of bone resorption, as well as a significant increase in osteocalcin levels, a marker of bone formation, in the serum of the combination treated cohort. Cells isolated from the calvaria from the combination treated group compared to the control group showed a significant increase in the mRNA expression of ALP, RUNX2, and osterix, as well as a significant decrease in the mRNA expression ratio of RANKL/OPG. To elucidate the role of HDAC6 inhibition on bone turnover, we used HDAC6 knockout mice. Cells were isolated from femurs, tibia, and spine of 2 month-old wild type (WT) and HDAC6 knockout (KO) mice and mRNA expression for osteocalcin, ALP, RUNX2 and osterix was assessed by qPCR. We observed a significant increase in osteocalcin mRNA expression without significant changes in the mRNA expression of ALP, RUNX2 and osterix. Bone marrow stromal cells (BMSCs) differentiated from WT and KO mice were co-cultured with MM murine cell lines and, notably, the proliferative advantage conferred by BMSC isolated from HDAC6 KO mice to MM cell lines was significantly decreased compared to WT BMSCs. These data suggest that a microenviroment lacking HDAC6 reduces MM cell proliferation. Moreover, treatment with rocilinostat (1mM) for 24 h inhibited proliferation of MM cells cocultured with WT BMSCs to levels observed in MM cells cultured with KO BMSC lacking endogenous HDAC6. Finally, the effect of co-treatment with rocilinostat (1μM) and bortezomib (2.5 nM) on proliferation of MM cells co-cultured with WT-BMSC was similar to that observed when bortezomib was added to MM cells in cocultures with KO BMSC. In conclusion, the in vitro data and the in vivo results from the xenograft models of human MM in SCID mice, as well as data in the HDAC6 KO mice, indicate a potential beneficial role of HDAC6 inhibition on MM-related bone disease. We are currently performing dynamic and static histomorphometric analysis to confirm this effect on bone remodeling at the tissue level. These effects on bone remodeling are an added benefit for MM patients and will be assessed prospectively in our ongoing clinical trial. Disclosures: Hideshima: Acetylon: Consultancy. Anderson:Onyx: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Millennium: Membership on an entity's Board of Directors or advisory committees. Jones:Acetylon Pharmaceuticals, Inc.: Employment. Raje:Onyx: Consultancy; Celgene: Consultancy; Millennium: Consultancy; Acetylon: Research Funding; Amgen: Research Funding; Eli-Lilly: Research Funding.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4237-4237
Author(s):  
Laura N Eadie ◽  
Jarrad M Goyne ◽  
Timothy P. Hughes ◽  
Deborah L White

Abstract Efflux transporters ABCB1 and ABCG2 interact with tyrosine kinase inhibitors (TKIs) and mediate drug resistance, however, evidence of the interaction of other potentially relevant drug transporters with TKIs is lacking. We investigated the involvement of the closely related transporter ABCC6, in imatinib (IM), nilotinib (NIL) and dasatinib (DAS) transport and also the role of ABCC6 in NIL resistance. The impact of short-term (overnight) exposure to NIL on mRNA expression of ABC transporters in three BCR-ABL1+ cell lines was assessed by Taqman transporter array: K562, K562-Dox and KU812 cells. Several transporters of interest were identified, including ABCC6, based on alterations in mRNA expression. In order to elucidate the importance of ABCC6 in the development of NIL resistance, ABCC6 mRNA levels were determined by RT-PCR in K562 and K562-Dox NIL-resistant lines generated in vitro and compared with ABCC6 mRNA levels in respective parental control cells. ABCC6 protein expression was confirmed by western blot. p-Crkl dependent IC50 experiments in the absence and presence of three ABCC6 inhibitors (indomethacin, INDO; probenecid, PRO; pantoprazole, PP) were performed in patient mononuclear cells (MNCs) and BCR-ABL1+ cell lines to assess the role of ABCC6 in NIL, IM and DAS transport. A marked increase in ABCC6 mRNA expression in response to short-term in vitro NIL exposure occurred: in K562 and KU812 cells ABCC6 mRNA levels increased 9.5- and 9.7-fold in response to overnight NIL exposure respectively. Increased expression of ABCC6 was also observed in cells subjected to long-term NIL exposure during development of NIL resistance in vitro. NIL-resistant K562 cells demonstrated up to 57-fold higher levels of ABCC6 mRNA compared with control cells (p=0.002). Analogous results were observed in NIL-resistant K562-Dox cells (up to 33-fold higher levels of ABCC6 mRNA p=0.002). In order to determine the relevance of ABCC6 in patient cells, p-Crkl dependent IC50 experiments were performed in MNCs from de novo CML patients in the absence and presence of ABCC6 inhibition. Results demonstrated a significant reduction in IC50NIL in the presence of all three ABCC6 inhibitors compared with IC50NIL in the absence of inhibitors. Similar results were observed for IC50DAS but not IC50IM. Experiments in three parental BCR-ABL1+ cell lines confirmed these findings (Table 1). Notably, comparison of IC50 values in the absence of ABCC6 inhibition in KU812 vs. K562 cells revealed that KU812 cells demonstrated increased IC50NIL (307 vs. 257 nM, p=0.0493) and IC50DAS (14 vs 8 nM, p=0.0005). This was unexpected given both cell lines demonstrate negligible expression of ABCB1 (a transporter known to interact with both NIL and DAS). However, assessment of ABCC6 protein levels by western blotting revealed KU812 cells have greater levels of ABCC6 when compared with K562 cells: 53% in KU812 vs. 24% in K562 (ABCC6 normalised to β-actin). A greater %reduction in IC50NIL and IC50DAS in the presence of ABCC6 inhibition was also observed in KU812 cells compared with K562 cells confirming the role of ABCC6 in the transport of NIL and DAS. Combined, these studies highlight the importance of ABCC6 in the export of NIL and DAS from patient MNCs and BCR-ABL1+ cell lines. This is the first report of ABCC6 involvement in TKI transport and results suggest ABCC6 overexpression may also contribute to NIL resistance. The addition of ABCC6 inhibitors to NIL and DAS therapy may enhance the efficacy of these TKIs in the treatment of CML. Disclosures Hughes: Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; BMS: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Ariad: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Australasian Leukaemia and Lymphoma Group (ALLG): Other: Chair of the CML/MPN Disease Group. White:Ariad: Consultancy, Honoraria, Research Funding; Bristol-Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 42-42
Author(s):  
Pavel Klener ◽  
Marek Trněný ◽  
Ladislav Andera ◽  
Zuzana Nahacka ◽  
Magdalena Klanova ◽  
...  

Abstract Introduction Mantle cell lymphoma (MCL) is an aggressive subtype of B-cell non-Hodgkin lymphomas characterized by (over)expression of BCL2 and good sensitivity to a small molecule BCL2 inhibitor venetoclax. In the present study we analyzed molecular mechanisms of venetoclax resistance in MCL cells, and tested strategies to overcome it based on concurrent targeting of BCL2 a MCL1. Methods Cell death was determined by flow cytometry using Annexin-V/PI staining. Establishment of MCL cell clones with knock-down or transgenic overexpression of MCL1, BIM and NOXA, western blotting, immunohistochemistry of formalin-fixed paraffin-embedded tissue sections, and immunoprecipitation experiments were carried out as previously described (Klanova et al, Clin Cancer Res, 2016). All PDXs were derived in our laboratory from patients with relapsed MCL. All PDX were confirmed by NGS to keep majority of somatic mutations with the primary MCL cells from which they were derived. Samples were sequenced using SureSelectXT Human All Exon V6+UTR (Agilent Technologies, Santa Clara, CA) on the NextSeq 500 (Illumina, San Diego, CA) instrument according to manufacturer's protocols. Experimental therapies were implemented using NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice purchased from Jackson Laboratory (Bar Harbor, Maine, USA). Therapy was initiated when all mice developed palpable subcutaneous tumors (= day 1, D1). Venetoclax (VTX) and S63845 were from MedchemExpress, carfilzomib (CFZ) was from Charles University General hospital pharmacy. Carfilzomib (4 mg / kg) was administered intravenously (IV) on days 1 and 6. Venetoclax (40 mg / kg) was given by oral gavage on days 1, 2, 3, 6 and 7. S63845 (25 mg / kg) was administered IV on days 1, 2, 3, 6 and 7. Tumor volumes were calculated using the following formula: π / 6 × tumor length × width × height. Results By transgenic overexpression or shRNA-mediated knock-down we confirmed key roles of proapoptotic proteins BIM and NOXA in mediating venetoclax-induced cell death in MCL. We demonstrated that both BIM and NOXA are differentially expressed between MCL cell lines on one side, and primary MCL cells and patient-derived xenograft (PDX) cells on the other side. First, NOXA protein is significantly overexpressed in most MCL cell lines. Second, biallelic deletions of BIM harbored by three commonly used MCL cell lines (JEKO-1, MINO and Z138), and previously reported to be present in approx. 30% of MCL patients, were not found in primary MCL cells. As a consequence, vast majority of the in vitro data was implemented on venetoclax-sensitive cell lines HBL2 and MAVER-1, whose patterns of expression of BCL2, MCL1, BIM and NOXA are similar to primary MCL cells. We demonstrated that MCL1, another key anti-apoptotic protein, plays an essential role in mediating resistance to venetoclax. First, MCL1 functions as a buffer for BIM released from BCL2 upon binding of venetoclax thereby preventing activation of BAX and induction of apoptosis. Second, marked upregulation of MCL1 protein was associated with acquired resistance to venetoclax in two most sensitive MCL cell lines HBL2 and MAVER-1. Based on the in vitro data we proposed two experimental treatment strategies that co-targeted MCL1 (along with inhibition of BCL2 with venetoclax): a direct blockage with a highly specific small molecule MCL1 inhibitor S63845, and an indirect blockage achieved by proteasome inhibitor carfilzomib that upregulates the proapoptotic protein NOXA that specifically binds and blocks MCL1. The combination of venetoclax and S63845 demonstrated synthetic lethality in vivo inducing the longest "remissions" of MCL bearing mice (i.e. temporary disappearance of subcutaneous MCL tumors) using a panel of four different PDXs derived from patients with relapsed / refractory MCL with complex karyotype changes (Figure 1). The combination of carfilzomib and venetoclax was far less effective, and at the same time more toxic suggesting functional blockage of MCL1 induced by overexpressed NOXA is either incomplete or insufficient. Conclusions Our data strongly support investigation of venetoclax in combination with S63845 as an innovative proapoptotic treatment strategy for chemoresistant MCL patients with adverse cytogenetics in the clinical grounds. Figure 1 Figure 1. Disclosures Trněný: Janssen: Membership on an entity's Board of Directors or advisory committees, Other: Advisory board; Gilead: Honoraria; Morphosys: Membership on an entity's Board of Directors or advisory committees, Other: Advisory board; Abbvie: Honoraria, Research Funding; F. Hoffman-La Roche Ltd: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Advisory board, Research Funding; Takeda: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Advisory board; Sandoz: Honoraria; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Advisory board; Incyte: Membership on an entity's Board of Directors or advisory committees, Other: Advisory board.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3139-3139
Author(s):  
Anjan Thakurta ◽  
Anita K Gandhi ◽  
Michelle Waldman ◽  
Chad C. Bjorklund ◽  
Suzanne Lentzsch ◽  
...  

Abstract Background CRBN, a target of thalidomide and IMiDs® immunomodulatory agents lenalidomide (LEN) and pomalidomide (POM), is a component of the E3 ubiquitin cullin 4 ring ligase (CRL4) complex that also includes DDB1, Roc1, and Cul4. Two CRBN mutations have been reported in multiple myeloma (MM) patients: truncating mutation (Q99) and point mutation (R283K). One copy of the CRBN gene was shown to be deleted in the MM1S and MM1S.R cell lines. No DDB1 mutation has been described previously. Results We investigated the incidence of CRBN and DDB1 mutations by next-generation sequencing in 20 MM cell lines and MM subjects. Of 90 MM patients, 24 were newly diagnosed and 66 were relapsed and refractory of which 36 patients were LEN resistant. Out of the cell lines tested, 1 heterozygous CRBN mutation (D249Y) was found in the LEN-resistant ANBL6R cells, which is located in the putative DDB1 binding domain, and 2 single silent mutations were identified in the KMS-12-BM (rs17027638) and OPM-2 cells. One DDB1 heterozygous mutation (E303D) was identified in ANBL6 cells. In the cohort of patients assessed, no CRBN mutation was detected; however, 5 single nucleotide variations (SNV) were identified. Three of the 5 SNVs were at position 735 (Y245Y) and 1 each at position 219 (H73H) and 939 (C313C), respectively. The first 2 SNVs (rs17027638 and rs1045309) are described but not the last. We found a single SNV (P51P; rs2230356) in DDB1 gene the patient samples. Conclusion Mutations within the coding sequences of CRBN and DDB1 are rare in MM patients and cell lines. Most intrinsically LEN-resistant cells and cell lines made resistant to LEN or POM do not have CRBN or DDB1 mutations, suggesting the potential role of other sources, such as genetic or epigenetic pathways in developing resistance to IMiD drug–based therapy. Disclosures: Thakurta: Celgene: Employment, Equity Ownership. Gandhi:Celgene: Employment, Equity Ownership. Waldman:Celgene: Employment, Equity Ownership. Bjorklund:Celgene: Employment, Equity Ownership. Lentzsch:Celgene: Research Funding. Schey:Celgene: Consultancy, Honoraria, Membership on an entity’s Board of Directors or advisory committees, Speakers Bureau; NAPP: Consultancy, Honoraria, Membership on an entity’s Board of Directors or advisory committees, Speakers Bureau; BMS: Consultancy, Honoraria, Membership on an entity’s Board of Directors or advisory committees, Speakers Bureau. Orlowski:Bristol-Myers Squibb: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; Celgene: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; Millennium: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; Onyx: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; Resverlogix: Research Funding; Array: Honoraria, Membership on an entity’s Board of Directors or advisory committees; Genentech: Honoraria, Membership on an entity’s Board of Directors or advisory committees; Merck: Membership on an entity’s Board of Directors or advisory committees. Madan:Covance Genomics Lab: Employment. Ning:Celgene: Employment, Equity Ownership. Mendy:Celgene: Employment, Equity Ownership. Lopez-Girona:Celgene: Employment, Equity Ownership. Schafer:Celgene: Employment, Equity Ownership. Avet-Loiseau:Celgene: Research Funding. Chopra:Celgene: Employment, Equity Ownership.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 5157-5157
Author(s):  
Laura Eadie ◽  
Timothy P. Hughes ◽  
Deborah L. White

Abstract Tyrosine kinase inhibitors (TKIs) result in excellent responses in most Chronic Myeloid Leukemia (CML) patients. However, up to 35% of patients treated with imatinib (IM) exhibit resistance and more recently nilotinib (NIL) and dasatinib (DAS) resistance have also been observed. Mutations in the BCR-ABL kinase domain (KD) are the main cause of secondary TKI resistance. Other mechanisms include overexpression of BCR-ABL, LYN and ABCB1. Predicting patients with susceptibility to mutation development and disease progression is crucial, thus we investigated the kinetics of TKI resistance emergence in vitro and in vivo. ABCB1 is implicated in TKI efflux hence we postulated that overexpression of ABCB1 leads to reduced intracellular TKI concentrations, resulting in inferior inhibition of Bcr-Abl predisposing cells to resistance development. Accordingly, 3 CML blast crisis (BC) cell lines (K562, K562-Dox, KU812) were cultured in increasing concentrations of IM to 2 μM, NIL to 2 μM and DAS to 200 nM until we observed overt resistance defined as a significant increase in survival in cytotoxicity assays and p-Crkl dependent IC50. Mechanisms of resistance were investigated in cell line intermediates: BCR-ABL, ABCB1 and LYN mRNA expression levels were determined by RT-PCR and KD mutation sequencing was performed. In our TKI resistant cell lines (Table 1), an increase in ABCB1 mRNA was the initial change observed prior to the development of additional resistance mechanisms (KD mutations, ABCB1 BCR-ABL and LYN overexpression). Interestingly, in 4/6 cells lines ABCB1 mRNA reduced to basal levels or below following establishment of these additional resistance mechanisms. ABCB1 levels were assessed in 37 de novo CML patients treated with IM who achieved major molecular response (MMR) compared with patients who progressed to BC, lost MMR or developed KD mutations. ABCB1 levels were determined in blood at diagnosis and following therapy (selected patients summarized in Table 2). A sustained >2 fold rise in ABCB1 was observed prior to disease progression in 3/3 patients and in 13/16 patients who did not achieve MMR. Importantly, the same was not observed in patients who achieved MMR (1/6 patients). The fold change of ABCB1 mRNA at day 22 vs diagnosis in patients achieving MMR was significantly different to that in patients not achieving MMR (p=0.004). ABCB1 increased by >2 fold post therapy and decreased following mutation development in 3/12 patients, confirming observations made in vitro, while 6/12 patients demonstrated sustained increase in ABCB1 post mutation similar to results observed in progression patients. ABCB1 mRNA did not change during therapy in 3/12 patients with mutations. While we recognize the majority of cells present in patients who achieve MMR are normal rather than leukemic, it is important to note that in patients who do not achieve MMR, ABCB1 expression increases in the remaining leukemic cells. We conclude ABCB1 overexpression acts as an initial mediator of resistance, providing a favorable environment for development of further resistance. Sustained increased levels of ABCB1 may contribute to disease progression and lack of response to IM. Additionally, ABCB1 may serve as a prognostic indicator (eg: level at day 22) and potentially assist in development of treatment strategies using TKIs in combination with other medications to enhance intracellular TKI concentration. Disclosures: Hughes: Ariad: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; BMS: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; Novartis: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; CSL: Research Funding. White:Novartis: Research Funding; BMS: Research Funding, Speakers Bureau; Ariad: Research Funding; CSL: Research Funding.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3010-3010 ◽  
Author(s):  
Hans Lee ◽  
Hua Wang ◽  
Heather Lin ◽  
Veera Baladandayuthapani ◽  
Jin He ◽  
...  

Abstract Background: The role of dysregulation of the proto-oncogene MYC in both early and late myeloma progression events is well established. Among key MYC -downstream targets is upregulation of ribosomal biogenesis, resulting in increased protein translational capacity and biomass accumulation that is characteristic of neoplastic cells. Thus, given the relationship between myeloma pathobiology, MYC dysregulation, and ribosomal biogenesis, we hypothesized that selective targeting of ribosomal RNA (rRNA) transcription with the small molecule RNA polymerase (pol) I inhibitor CX-5461 (Senhwa Biosciences) may represent a novel therapeutic strategy in myeloma. Methods: Studies with CX-5461 were performed in human myeloma cell lines, isogenic p53 wild-type (wt) and knock-out (KO) p53 cells generated using sequence-specific zinc-finger nucleases, drug-resistant cell lines, primary patient samples, and myeloma murine xenograft models using NOD-SCID IL2Rgnull mice. Results: CX-5461 treatment of p53 wt (MM1.S, MOLP-8) and p53 mutant (U266, RPMI-8226) myeloma cell lines demonstrated a time- and dose-dependent decrease in cell proliferation with a median inhibitory concentration (IC50) at nM levels after 72 hours. A corresponding increase in cleaved-PARP, cleaved caspase-9, and cleaved caspase-3 expression was seen on Western blot as well as increased Annexin V staining on flow cytometry analysis, although this was more pronounced in p53 wt versus mutant cell lines. CX-5461 also retained activity in a panel of cell lines resistant to standard myeloma therapeutic agents (bortezomib, carfilzomib, lenalidomide, and doxorubicin) and in primary patient samples, including a heavily pretreated relapsed/refractory patient and a de novo plasma cell leukemia patient with del 17p. In vivo studies using a systemic isogenic MM1.S p53 wt and KO myeloma murine xenograft model demonstrated significant improvement in median overall survival in the CX-5461-treated p53 wt cohort (41 days vs. not reached, P .05), although outcomes were more modest in the p53 KO cohort with only a trend towards improved survival (P.1) in the drug-treated mice. To probe the p53-independent effects of CX-5461, gene expression profiling and gene set enrichment analysis was performed on isogenic MM1.S and MOLP-8 p53 wt and KO myeloma cell lines treated with CX-5461 or vehicle. These results suggested downregulation of MYC downstream targets as one p53-independent effect of RNA pol I inhibition. qPCR and Western blot studies revealed rapid downregulation of MYC at the transcript level within 1-hour of CX-5461 treatment followed by decreases in MYC protein levels. Previous studies have suggested ribosomal biogenesis is tightly controlled by an auto-regulatory feedback mechanism in which ribosomal proteins such as RPL5 and RPL11 can bind to the 3'UTR of MYC mRNA and facilitate its degradation through the RNA-induced silencing complex (RISC). Because RNA pol I inhibition is known to induce a nucleolar stress response and increase the availability of free ribosomal proteins, RISC-mediated degradation of MYC mRNA was explored as one possible mechanism of CX-5461-mediated MYC downregulation. Indeed, treatment with CX-5461 led to increased pull-down of RPL5 when immunoprecipitated with the RISC subunit TAR (HIV-1) RNA Binding Protein 2 (TARBP2) compared to vehicle-treated controls, and RNA immunoprecipitation assays with the catalytic RISC subunit, Argonaute 2 (AGO2), demonstrated enrichment of MYC mRNA with CX-5461 treatment. These results suggest that CX-5461 may induce degradation of MYC through the cooperative binding of ribosomal proteins, RISC subunits, and MYC mRNA. Finally, to evaluate the role of MYC expression and ribosomal biogenesis in relation to CX-5461 sensitivity, MYC was overexpressed in the H1112 myeloma cell line, which at baseline does not harbor a MYC translocation. MYC overexpression in H1112pCDH-myc cells led to increased basal pre-rRNA transcript levels compared to H1112pCDH cells, and furthermore, led to enhanced sensitivity to CX-5461. Conclusion: RNA pol I inhibition by CX-5461 is a promising target in myeloma therapy, with downregulation of MYC representing one mechanism of action. Moreover, increased MYC expression enhances sensitivity to CX-5461, providing rationale for the clinical translation of CX-5461 for the treatment of myeloma and other MYC-driven cancers. Disclosures O'Brien: Senhwa Biosciences, Inc.: Employment. Keats:Translational Genomic Research Institute: Employment. Orlowski:Bristol-Myers Squibb: Consultancy, Research Funding; Celgene: Consultancy, Research Funding; Spectrum Pharmaceuticals: Research Funding; Janssen Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees; Acetylon: Membership on an entity's Board of Directors or advisory committees; Onyx Pharmaceuticals: Consultancy, Research Funding; Millennium Pharmaceuticals: Consultancy, Research Funding; Forma Therapeutics: Consultancy; Genentech: Consultancy; BioTheryX, Inc.: Membership on an entity's Board of Directors or advisory committees; Array BioPharma: Consultancy, Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4044-4044
Author(s):  
Blake S Moses ◽  
Jennifer Fox ◽  
Xiaochun Chen ◽  
Samantha McCullough ◽  
Sang Ngoc Tran ◽  
...  

Abstract Antimalarial artemisinins have broad antineoplastic activity in vitro, are well tolerated and inexpensive, and can be parenterally or orally administered in humans. Artemisinin-derived trioxane diphenylphosphate dimer 838 (ART838; a potent artemisinin-derivative) inhibited acute leukemia growth in vivo and in vitro, at doses where normal human CD34+ hematopoietic stem-progenitor cell clonogenicity was essentially unaffected (Fox et al, Oncotarget 2016, PMID: 26771236). In our focused drug combination screen for drugs that synergize with ART838, the only BCL2 inhibitors in the screen library of 111 emerging antineoplastic compounds, navitoclax (ABT737) and venetoclax (ABT199; FDA-approved), were identified as 2 of the top 3 candidates. Synergies between ART838 and BCL2 inhibitors were validated in multiple acute leukemia cell lines and primary cases. This ART838-BCL2 inhibitor synergy may be due to reduced levels of MCL1 protein that we and others have observed in multiple acute leukemia cell lines and primary cases treated with artemisinins (Budhraja et al, Clin Cancer Res 2017, PMID: 28974549). Treatment of acute leukemia xenografts with the ART838 plus ABT199 combination reduced leukemia growth rates and prolonged survivals, compared to vehicle or either ART838 or ABT199 alone. To add to the efficacy of this ART838 plus ABT199 treatment regimen, we sought to rationally add a third low-toxicity active antileukemic agent. Sorafenib (SOR; FDA-approved) inhibits multiple kinases which may mediate its antileukemic activity, with the importance of the targets varying from case to case; e.g. FLT3 is an important target in many AMLs. In addition, several reports have found that SOR reduces MCL1 protein stability and translation through inhibition of the ERK and PI3K pathways (Wang et al, Clin Cancer Res 2016, PMID: 26459180; Huber et al, Leukemia 2011, PMID: 21293487). In all acute leukemia cell lines tested, we observed large reductions in MCL1 protein levels with SOR treatment, which may further rationalize the addition of SOR to our ART838 plus ABT199 antileukemic regimen. We had previously observed strong in vitro synergy between ART838 and SOR (PMID: 26771236). Treatment of acute leukemia xenografts with the ART838 plus SOR combination reduced leukemia xenograft growth rates and prolonged survivals, compared to single drugs. Mice bearing luciferase-labelled acute leukemia xenografts were treated (PO daily x5) with single drug or 2-drug or 3-drug combinations of ART838, ABT199, and SOR, each at their individual maximally tolerated doses. Treatment with this 3-drug combination caused rapid regression of luciferase-labelled MV4;11 AML xenografts (Fig 1A). The 5-day treatment cycles were repeated every other week, and mice receiving this 3-drug combination survived >4 times longer than vehicle-treated mice (Fig 1B). Mouse body weights were stable during treatment. Although myelosuppression is the human clinical dose-limiting toxicity of each of these 3 drugs, mouse blood cell counts during 3-drug combination treatment were in the normal range. Treatment of a luciferase-labelled primary AML leukemia xenograft with this 3-drug combination reduced leukemia growth more than the single drugs or 2-drug combinations (Fig 1C). Assessment of efficacy and pharmacokinetics-pharmacodynamics against diverse acute leukemia xenografts will test this combination of ART838, ABT199 plus SOR as a rational low-toxicity drug triad for treatment of acute leukemias and potentially other cancers. Disclosures Fox: Intrexon Corporation: Employment. Tyner:Genentech: Research Funding; Janssen: Research Funding; AstraZeneca: Research Funding; Gilead: Research Funding; Incyte: Research Funding; Constellation: Research Funding; Array: Research Funding; Takeda: Research Funding; Vivid Biosciences: Membership on an entity's Board of Directors or advisory committees; Aptose: Research Funding. Civin:ConverGene LLC: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Research Funding; GPB Scientific LLC: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; 3DBioWorks Inc: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; BD (Becton Dickinson): Honoraria.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4341-4341
Author(s):  
Fengjuan Fan ◽  
Stefano Malvestiti ◽  
Yujia Shen ◽  
Eugenio Morelli ◽  
Yuji Mishima ◽  
...  

A significant increase in bone marrow (BM) angiogenesis represents a key event in early, microenvironment-dependent, multiple myeloma (MM). Angiogenic growth factor- and cytokine- production and secretion is a complex process regulated by a plethora of transcription factors (TFs). Over the past years, members of the AP-1 family of TFs have emerged as potential new therapeutic targets. Our recent work demonstrated for the first time a pivotal role for the AP-1 family member JunB in MM pathogenesis (Fan et al., 2017). Whether JunB also contributes to MM BM angiogenesis is currently unknown. In silico and immunohistochemical analyses revealed a correlative increase of JunB and angiogenic growth factors in samples isolated from healthy donors to MGUS and MM patients; and a decrease in samples isolated from patients with plasma cell leukemia. These data were supported by the utilization of an innovative in vivo MM model of clonal evolution. Specifically, JunB as well as selected angiogenic factors were significantly increased in tumor cell clones at primary sites (bone chips) versus tumor cell clones at metastatic (distant BM) sites, as evidenced by whole exome and RNA sequencing. Functionally, doxycyclin- induced inhibition of stroma cell: MM cell co-culture- as well as of IL-6- mediated JunB upregulation in TetR-shJunB/ MM.1S cells significantly reduced production and secretion of angiogenic factors; and consequently inhibited in vitro angiogenesis. Conversely, 4-hydroxytamoxifen (4-OHT)-mediated upregulation of JUNB activity in JUNB-ER/MM cells strongly increased the expression and secretion of angiogenic factors and in vitro angiogenesis. The interaction of JunB with angiogenic factor- encoding DNA in MM cells was further confirmed utilizing chromatin immunoprecipitation (ChIP)- sequencing. Finally, treatment with doxycycline effectively inhibited JunB levels and consistently reduced microvessel density in immunodeficient NSG mice inoculated with TetR-shJUNB/ MM.1S, but not TetR-SCR/ MM.1S. In conclusion, our findings demonstrate a pivotal role of JUNB in MM BM angiogenesis; they thereby provide further evidence that JUNB is a promising therapeutic target particularly in early MM. Disclosures Vallet: Pfizer: Honoraria; Roche Pharmaceuticals: Consultancy; MSD: Honoraria. Roccaro:Associazione Italiana per al Ricerca sul Cancro (AIRC): Research Funding; Associazione Italiana per al Ricerca sul Cancro (AIRC): Research Funding; AstraZeneca: Research Funding; Transcan2-ERANET: Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Transcan2-ERANET: Research Funding; AstraZeneca: Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees; European Hematology Association: Research Funding; European Hematology Association: Research Funding. Goldschmidt:Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; John-Hopkins University: Research Funding; Bristol-Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; MSD: Research Funding; Sanofi: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Mundipharma: Research Funding; Takeda: Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding; Adaptive Biotechnology: Membership on an entity's Board of Directors or advisory committees; Janssen: Consultancy, Research Funding; Dietmar-Hopp-Stiftung: Research Funding; John-Hopkins University: Research Funding; Chugai: Honoraria, Research Funding; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Amgen: Consultancy, Research Funding; Molecular Partners: Research Funding. Podar:Takeda: Consultancy; Celgene: Consultancy, Honoraria; Amgen Inc.: Honoraria; Janssen Pharmaceuticals: Consultancy, Honoraria; Roche Pharmaceuticals: Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1442-1442
Author(s):  
Xiangmeng Wang ◽  
Po Yee Mak ◽  
Wencai Ma ◽  
Xiaoping Su ◽  
Hong Mu ◽  
...  

Abstract Wnt/β-catenin signaling regulates self-renewal and proliferation of AML cells and is critical in AML initiation and progression. Overexpression of β-catenin is associated with poor prognosis. We previously reported that inhibition of Wnt/β-catenin signaling by C-82, a selective inhibitor of β-catenin/CBP, exerts anti-leukemia activity and synergistically potentiates FLT3 inhibitors in FLT3-mutated AML cells and stem/progenitor cells in vitro and in vivo (Jiang X et al., Clin Cancer Res, 2018, 24:2417). BCL-2 is a critical survival factor for AML cells and stem/progenitor cells and ABT-199 (Venetoclax), a selective BCL-2 inhibitor, has shown clinical activity in various hematological malignancies. However, when used alone, its efficacy in AML is limited. We and others have reported that ABT-199 can induce drug resistance by upregulating MCL-1, another key survival protein for AML stem/progenitor cells (Pan R et al., Cancer Cell 2017, 32:748; Lin KH et al, Sci Rep. 2016, 6:27696). We performed RNA Microarrays in OCI-AML3 cells treated with C-82, ABT-199, or the combination and found that both C-82 and the combination downregulated multiple genes, including Rac1. It was recently reported that inhibition of Rac1 by the pharmacological Rac1 inhibitor ZINC69391 decreased MCL-1 expression in AML cell line HL-60 cells (Cabrera M et al, Oncotarget. 2017, 8:98509). We therefore hypothesized that inhibiting β-catenin by C-82 may potentiate BCL-2 inhibitor ABT-199 via downregulating Rac1/MCL-1. To investigate the effects of simultaneously targeting β-catenin and BCL-2, we treated AML cell lines and primary patient samples with C-82 and ABT-199 and found that inhibition of Wnt/β-catenin signaling significantly enhanced the potency of ABT-199 in AML cell lines, even when AML cells were co-cultured with mesenchymal stromal cells (MSCs). The combination of C-82 and ABT-199 also synergistically killed primary AML cells (P<0.001 vs control, C-82, and ABT-199) in 10 out of 11 samples (CI=0.394±0.063, n=10). This synergy was also shown when AML cells were co-cultured with MSCs (P<0.001 vs control, C-82, and ABT-199) in all 11 samples (CI=0.390±0.065, n=11). Importantly, the combination also synergistically killed CD34+ AML stem/progenitor cells cultured alone or co-cultured with MSCs. To examine the effect of C-82 and ABT-199 combination in vivo, we generated a patient-derived xenograft (PDX) model from an AML patient who had mutations in NPM1, FLT3 (FLT3-ITD), TET2, DNMT3A, and WT1 genes and a complex karyotype. The combination synergistically killed the PDX cells in vitro even under MSC co-culture conditions. After PDX cells had engrafted in NSG (NOD-SCID IL2Rgnull) mice, the mice were randomized into 4 groups (n=10/group) and treated with vehicle, C-82 (80 mg/kg, daily i.p injection), ABT-199 (100 mg/kg, daily oral gavage), or the combination for 30 days. Results showed that all treatments decreased circulating blasts (P=0.009 for C-82, P<0.0001 for ABT-199 and the combination) and that the combination was more effective than each single agent (P<0.001 vs C-82 or ABT-199) at 2 weeks of therapy. The combination also significantly decreased the leukemia burden in mouse spleens compared with controls (P=0.0046) and single agent treated groups (P=0.032 or P=0.020 vs C-82 or ABT-199, respectively) at the end of the treatment. However, the combination did not prolong survival time, likely in part due to toxicity. Dose modifications are ongoing. These results suggest that targeting Wnt/β-catenin and BCL-2, both essential for AML cell and stem cell survival, has synergistic activity via Rac1-mediated MCL-1 inhibition and could be developed into a novel combinatorial therapy for AML. Disclosures Andreeff: SentiBio: Equity Ownership; Oncolyze: Equity Ownership; Oncoceutics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Jazz Pharma: Consultancy; Amgen: Consultancy, Research Funding; Eutropics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Daiichi-Sankyo: Consultancy, Patents & Royalties: MDM2 inhibitor activity patent, Research Funding; Aptose: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Reata: Equity Ownership; Astra Zeneca: Research Funding; Celgene: Consultancy; United Therapeutics: Patents & Royalties: GD2 inhibition in breast cancer . Carter:novartis: Research Funding; AstraZeneca: Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 138-138
Author(s):  
John Daly ◽  
Subhashis Sarkar ◽  
Alessandro Natoni ◽  
Robert Henderson ◽  
Dawn Swan ◽  
...  

Introduction: Evading Natural Killer (NK) cell-mediated immunosurveillance is key to the development of Multiple Myeloma (MM). Recent attention has focused on the role of hypersialylation in facilitating immune-evasion of NK cells. Abnormal cell surface sialylation is considered a hallmark of cancer and we have implicated hypersialylation in MM disease progression. Certain sialylated glycans can act as ligands for the sialic acid-binding immunoglobulin-like lectin (Siglec) receptors expressed by NK cells (Siglec-7 and Siglec-9). These ITIM motif-containing inhibitory receptors transmit an inhibitory signal upon sialic acid engagement. We hypothesized that desialylation of MM cells or targeted interruption of Siglec expression could lead to enhanced NK cell mediated cytotoxicity of MM cells. Methodology: MM cells were treated with the sialidase neuraminidase prior to co-culture with primary NK (PNK) cells. MM cells were treated with 300µM 3Fax-Neu5Ac (sialyltransferase inhibitor) for 3 days prior to co-cultures with PNK cells. PNK cells were expanded, IL-2 activated (500U/ml) overnight, or naïve (resting). Primary MM samples/MM cell lines were screened with Siglec-7/9 chimeras (10µg/ml). PNK (IL-2 activated) cells were stained with anti-Siglec-7 and anti-Siglec-9 antibodies. Siglec-7 was targeted for knockout (KO) using the CRISPR/Cas9 system, a pre-designed guideRNA and the MaxCyteGT transfection system. MM cells were treated with 10µg/ml of Daratumumab prior to co-culture with expanded PNK cells. Results: Using recombinant Siglec-7/9 chimeras a panel of MM cell lines (MM1S, RPMI-8226, H929, JJN3 and U266) were shown to express ligands for Siglec-7 and Siglec-9 (&gt;85%, n=3). Primary MM cells isolated from BM of newly diagnosed (n=3) and relapsed patients (n=2) were also shown to express Siglec-7 ligands (72.5±17.5%, 36.5% respectively). PNK cells express Siglec-7 and Siglec-9 (94.3±3.3% and 61±8.8% respectively, n=6). Desialylation of the MM cell lines JJN3 and H929 using neuraminidase significantly enhanced killing of MM cells by healthy donor (HD) derived PNK cells (expanded, IL-2 activated and naïve, n=7) at multiple effector:target (E:T) cell ratios. Furthermore, de-sialylation of JJN3 and H929 using neuraminidase resulted in increased NK cell degranulation (CD107α expression), compared to a glycobuffer control (n=7). De-sialylation, using 300µM 3Fax-Neu5Ac, resulted in strongly enhanced killing of MM1S by expanded HD-derived PNK cells at multiple E:T ratios (n=5, p&lt;0.01 at 0.5:1, p&lt;0.001 at 1:1, p&lt;0.01 at 2.5:1). Furthermore, CD38 expression on H929 MM cells significantly increased after treatment with 300µM 3Fax-Neu5Ac for 3 days (p&lt;0.01, n=3). In a cytotoxicity assay, expanded PNK cell-mediated antibody dependent cellular cytotoxicity (ADCC) of H929 MM cells pre-treated with Daratumumab (anti-CD38 moAb) and 3Fax-Neu5Ac was significantly higher than H929 cells pre-treated with Dara (p&lt;0.05 at 0.5:1, p&lt;0.01 at 1:1) or 3Fax-Neu5Ac (p&lt;0.01 at 0.5:1, p&lt;0.01 at 1:1) alone (n=5). Using CRISPR/Cas9, over 50% complete KO of Siglec-7 was observed on expanded PNK cells, yet did not result in enhanced NK cell-mediated cytotoxicity against either H929 or JJN3 (n=7). Siglec-9 KO using CRISPR/Cas9 is ongoing. Discussion: Hypersialylation of MM cells facilitates immune evasion and targeted removal of sialic acid strongly enhances the cytotoxicity of NK cells against MM. However, to date the role of Siglecs remains inconclusive. Nevertheless, our data suggest that targeted desialylation is a novel therapeutic strategy worth exploring in MM. In particular, upregulation of CD38 provides a strong rationale for combinatory strategies employing targeted desialylation with CD38 moAbs such as Daratumumab, with the goal of maximizing ADCC. Disclosures Sarkar: Onkimmune: Research Funding. O'Dwyer:Onkimmune: Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding; BMS: Research Funding; GlycoMimetics Inc: Research Funding; AbbVie: Consultancy.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4440-4440
Author(s):  
Meral Beksac ◽  
Pinar Ataca ◽  
Berna Atesagaoglu ◽  
Klara Dalva ◽  
Andry Nur Hidayat ◽  
...  

Abstract Introduction and Aim: Myeloma plasma cells are dependent on stromal support which is mediated through cell adhesion. Heparanase activity has been shown to be associated with aggressive behavior or Bortezomib resistance and can lead to increased levels of proteases as well as shedding of heparan sulfate proteoglycan syndecan-1(CD138) from myeloma cells. We have recently published in vivo anti-myeloma effects of low molecular weight heparin (Beksac et al Acta Haematol 2015). Protease activated Receptor (PAR1) is a thrombin receptor. PAR1 gene and antigen expression on myeloma patient samples and cell lines (HMCL) has been recently reported by University of Arkansas (UAMS) group (Tian et al ASH 2011). They were able to find HMCLs H929, U266, JJN3 to express PAR1. Also expression was found to be highest among patients with 5q amplification where the PAR1 gene is located. Patients and Methods: We analyzed PAR1 expression (WEDE15 PE, Beckman Coulter) by flow cytometry, on CD38+CD138+/-CD27+/- cells obtained from fresh patient bone marrow samples obtained either at diagnosis (n: 84)(NDMM) or relapse (n: 54)(RRMM) and were compared with marrow samples taken from patients without MM (n: 43). Our group in Ankara University had previously synthesized and published novel benzamide and phenyl acetamide derivatives. We performed an in silico docking analysis on these molecules, and eleven (TD10,TD12,TD12A,TD12B,TD13,TD14,TD14B,XT2,XT2B,XT5,XT11) were found to bind to PAR1. These molecules were screened using 72 hour MTT assay on primary and refractory cell lines (U266BR ,U266, JJN3BR, JJN3, H929R, OPM2, OPM2R, KMS28PE). Results: PAR1 expression was highest on platelets followed by myeloma plasma cells (0-81.9%) and did not correlate with ISS. PAR1 expression (Threshold: >2.5 % or >5%) could be detected in NDMM (35 % or 14%) and RRMM (31% or 19%) of patients (Table1). PAR1+CD38+138+ cells were more frequent among patients with lower percentage of plasma cells in RRMM group (2,98 ± 4,5 vs 1,93 ± 3,96, P=0.028) but not NDMM. PAR1 was similarly highly expressed on HCML. Two of the novel PAR1 binding molecules (XT5 and XT2B) were found to have the lowest IC50. The IC50 were similar for all HMCLs, primary and refractory, with XT5. With XT2B the IC50 was less (U266) or higher (JJN3) or similar (OPM2) for refractory compared to the primary HMCL. PAR1 expression and anti-myeloma IC50 values of cell lines are summarized in Table 2. Conclusion: PAR1 expression is detectable at very low or very high percentages on CD138+plasma cells. Expression is higher on cells with CD27 expression (patient samples) or lacking CD27 (HMCL). Inverse correlation between PAR1 expression and plasma cell percentage among myeloma patients is detected among RRMM but not on NDMM samples. This finding may point to expression of PAR1 on quiescent plasma progenitors as suggested by Tian et al previously. The intensity or frequency of PAR1 expression on HMCL did not influence the anti-myeloma effects of these novel molecules. PAR1 binding molecules, in particular XT5, are promising as they are effective even on Bortezomib refractory HCML. However their mechanism of action and the role of PAR1 require further investigations. This study has been supported by a research grant from Turkish Academy of Sciences. Table 1. Frequency of PAR1 expression (> 2.5 %) on total plasma cells (CD38+138+) and on quiescent plasma cells (CD38+138+27+) Control (n=43) NDMM (n=84) RRMM (n=54) P CD38+138+ (%) 0,56± 0,66 4,48 ± 7,67 5,44 ± 12,13 0,007 PAR1+ among CD38+138 (%) 6,18 ± 13,14 4,14 ± 11,00 3,42 ± 8,81 0,394 PAR1+ among CD38+138+27+(%) 5,44 ± 12,13 3,42 ± 8,81 3,58 ± 8,57 0,207 Table 1. Comparison of Flow Cytometric PAR1 expression and IC50 (in uM after 72 hours)of the two novel molecules on three Human Myeloma Cell Lines. H929 RPMI8221 U266 IC50 XT2B 33.9 >100 34.3 IC50 XT5 8.12 5.45 9.77 CD38+138+ (total%) 85 % 75 % 80 % PAR1% and (MFI) within CD38+138+ 83 %(13,6) 90 % (2,1) 85 % (2,1) Disclosures Beksac: Celgene: Consultancy, Speakers Bureau; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Takeda: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Janssen-Cilag: Consultancy, Speakers Bureau; Bristol-Myers Squibb: Consultancy, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees. Off Label Use: Elotuzumab is an investigational agent being studied for the treatment of multiple myeloma.. Usmani:Millennium: Honoraria, Speakers Bureau; Sanofi: Honoraria, Research Funding; Onyx: Honoraria, Research Funding, Speakers Bureau; Celgene: Honoraria, Speakers Bureau; Array BioPharma: Honoraria, Research Funding; Pharmacyclics: Research Funding; Janssen Oncology: Honoraria, Research Funding. Tian:University of Arkansas for Medical Sciecnes: Employment.


Sign in / Sign up

Export Citation Format

Share Document