scholarly journals The ABCC6 Transporter Plays a Significant Role in the Efflux of Nilotinib and Dasatinib, and May Contribute to Tyrosine Kinase Inhibitor Resistance

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4237-4237
Author(s):  
Laura N Eadie ◽  
Jarrad M Goyne ◽  
Timothy P. Hughes ◽  
Deborah L White

Abstract Efflux transporters ABCB1 and ABCG2 interact with tyrosine kinase inhibitors (TKIs) and mediate drug resistance, however, evidence of the interaction of other potentially relevant drug transporters with TKIs is lacking. We investigated the involvement of the closely related transporter ABCC6, in imatinib (IM), nilotinib (NIL) and dasatinib (DAS) transport and also the role of ABCC6 in NIL resistance. The impact of short-term (overnight) exposure to NIL on mRNA expression of ABC transporters in three BCR-ABL1+ cell lines was assessed by Taqman transporter array: K562, K562-Dox and KU812 cells. Several transporters of interest were identified, including ABCC6, based on alterations in mRNA expression. In order to elucidate the importance of ABCC6 in the development of NIL resistance, ABCC6 mRNA levels were determined by RT-PCR in K562 and K562-Dox NIL-resistant lines generated in vitro and compared with ABCC6 mRNA levels in respective parental control cells. ABCC6 protein expression was confirmed by western blot. p-Crkl dependent IC50 experiments in the absence and presence of three ABCC6 inhibitors (indomethacin, INDO; probenecid, PRO; pantoprazole, PP) were performed in patient mononuclear cells (MNCs) and BCR-ABL1+ cell lines to assess the role of ABCC6 in NIL, IM and DAS transport. A marked increase in ABCC6 mRNA expression in response to short-term in vitro NIL exposure occurred: in K562 and KU812 cells ABCC6 mRNA levels increased 9.5- and 9.7-fold in response to overnight NIL exposure respectively. Increased expression of ABCC6 was also observed in cells subjected to long-term NIL exposure during development of NIL resistance in vitro. NIL-resistant K562 cells demonstrated up to 57-fold higher levels of ABCC6 mRNA compared with control cells (p=0.002). Analogous results were observed in NIL-resistant K562-Dox cells (up to 33-fold higher levels of ABCC6 mRNA p=0.002). In order to determine the relevance of ABCC6 in patient cells, p-Crkl dependent IC50 experiments were performed in MNCs from de novo CML patients in the absence and presence of ABCC6 inhibition. Results demonstrated a significant reduction in IC50NIL in the presence of all three ABCC6 inhibitors compared with IC50NIL in the absence of inhibitors. Similar results were observed for IC50DAS but not IC50IM. Experiments in three parental BCR-ABL1+ cell lines confirmed these findings (Table 1). Notably, comparison of IC50 values in the absence of ABCC6 inhibition in KU812 vs. K562 cells revealed that KU812 cells demonstrated increased IC50NIL (307 vs. 257 nM, p=0.0493) and IC50DAS (14 vs 8 nM, p=0.0005). This was unexpected given both cell lines demonstrate negligible expression of ABCB1 (a transporter known to interact with both NIL and DAS). However, assessment of ABCC6 protein levels by western blotting revealed KU812 cells have greater levels of ABCC6 when compared with K562 cells: 53% in KU812 vs. 24% in K562 (ABCC6 normalised to β-actin). A greater %reduction in IC50NIL and IC50DAS in the presence of ABCC6 inhibition was also observed in KU812 cells compared with K562 cells confirming the role of ABCC6 in the transport of NIL and DAS. Combined, these studies highlight the importance of ABCC6 in the export of NIL and DAS from patient MNCs and BCR-ABL1+ cell lines. This is the first report of ABCC6 involvement in TKI transport and results suggest ABCC6 overexpression may also contribute to NIL resistance. The addition of ABCC6 inhibitors to NIL and DAS therapy may enhance the efficacy of these TKIs in the treatment of CML. Disclosures Hughes: Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; BMS: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Ariad: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Australasian Leukaemia and Lymphoma Group (ALLG): Other: Chair of the CML/MPN Disease Group. White:Ariad: Consultancy, Honoraria, Research Funding; Bristol-Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 328-328
Author(s):  
Loredana Santo ◽  
Diana Cirstea ◽  
Bin Wang ◽  
Tso-Pang Yao ◽  
Joy Y. Wu ◽  
...  

Abstract Abstract 328 In multiple myeloma (MM), deregulated osteoclast (OC)/osteoblast (OB) cross-talk induces osteolytic bone lesions. The HDAC6 selective inhibitor, rocilinostat (ACY-1215), in combination with bortezomib has shown potent anti myeloma activity in preclinical studies, which provided the rationale for a clinical trial that is currently recruiting relapsed/refractory MM patients (NCT01323751). However, while the beneficial role of bortezomib in tumor-related bone disease has been previously described, the effect of HDAC6 inhibition is not known. Evidence suggests a positive effect on bone turnover as pan HDAC inhibitors accelerate OB maturation and suppress OC maturation in vitro. Here, we evaluated effects of the selective HDAC6 inhibitor rocilinostat (Acetylon Pharmaceuticals, Inc), alone and in combination with bortezomib in MM bone disease. Rocilinostat (1 μM) alone and in combination with bortezomib (2.5 nM) inhibited OC differentiation, evidenced by a decreased number of TRAP positive multinucleated cells and bone-resorbing activity. In addition, rocilinostat (1 μM) significantly decreased cell growth of mature OC in co-culture with MM cell lines and in combination with bortezomib inhibited transcription factors implicated in OC differentiation including p-ERK, p-AKT, c-FOS, and NFATC1. Importantly, such an effect was cytokine (RANKL and M-CSF) dependent. Further, rocilinostat, alone and in combination, enhanced OB differentiation, evidenced by increased alkaline phosphatase (ALP) enzyme activity and alizarin red staining. In addition, we found increased mRNA expression of beta-catenin, osteocalcin, ALP, and RUNX2. Based on this promising in vitro data, we used the xenograft model of disseminated human MM in SCID mice to study the effect of rocilinostat, alone and in combination with bortezomib, on MM bone disease. MM.1S-GFP-Luc cells were injected intravenously, and MM disease progression was followed by bioluminescence imaging. A significant decrease in tumor burden was observed in mice following three weeks of treatment with rocilinostat, alone or in combination with bortezomib. Isolating serum from control and treated mice, we also observed a significant decrease of TRAPc5b levels, a marker of bone resorption, as well as a significant increase in osteocalcin levels, a marker of bone formation, in the serum of the combination treated cohort. Cells isolated from the calvaria from the combination treated group compared to the control group showed a significant increase in the mRNA expression of ALP, RUNX2, and osterix, as well as a significant decrease in the mRNA expression ratio of RANKL/OPG. To elucidate the role of HDAC6 inhibition on bone turnover, we used HDAC6 knockout mice. Cells were isolated from femurs, tibia, and spine of 2 month-old wild type (WT) and HDAC6 knockout (KO) mice and mRNA expression for osteocalcin, ALP, RUNX2 and osterix was assessed by qPCR. We observed a significant increase in osteocalcin mRNA expression without significant changes in the mRNA expression of ALP, RUNX2 and osterix. Bone marrow stromal cells (BMSCs) differentiated from WT and KO mice were co-cultured with MM murine cell lines and, notably, the proliferative advantage conferred by BMSC isolated from HDAC6 KO mice to MM cell lines was significantly decreased compared to WT BMSCs. These data suggest that a microenviroment lacking HDAC6 reduces MM cell proliferation. Moreover, treatment with rocilinostat (1mM) for 24 h inhibited proliferation of MM cells cocultured with WT BMSCs to levels observed in MM cells cultured with KO BMSC lacking endogenous HDAC6. Finally, the effect of co-treatment with rocilinostat (1μM) and bortezomib (2.5 nM) on proliferation of MM cells co-cultured with WT-BMSC was similar to that observed when bortezomib was added to MM cells in cocultures with KO BMSC. In conclusion, the in vitro data and the in vivo results from the xenograft models of human MM in SCID mice, as well as data in the HDAC6 KO mice, indicate a potential beneficial role of HDAC6 inhibition on MM-related bone disease. We are currently performing dynamic and static histomorphometric analysis to confirm this effect on bone remodeling at the tissue level. These effects on bone remodeling are an added benefit for MM patients and will be assessed prospectively in our ongoing clinical trial. Disclosures: Hideshima: Acetylon: Consultancy. Anderson:Onyx: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Millennium: Membership on an entity's Board of Directors or advisory committees. Jones:Acetylon Pharmaceuticals, Inc.: Employment. Raje:Onyx: Consultancy; Celgene: Consultancy; Millennium: Consultancy; Acetylon: Research Funding; Amgen: Research Funding; Eli-Lilly: Research Funding.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2745-2745 ◽  
Author(s):  
Deborah L. White ◽  
Liu Lu ◽  
Timothy P. Clackson ◽  
Verity A Saunders ◽  
Timothy P Hughes

Abstract Abstract 2745 Ponatinib is a potent pan-BCR-ABL tyrosine kinase inhibitor (TKI) currently in a pivotal phase 2 clinical trial. Ponatinib (PON) was specifically designed to target both native and all mutant forms of BCR-ABL, including T315I. The phase I study of oral ponatinib in patients with refractory CML/ALL or other hematologic malignancies recently reported that 66% and 53% of patients with CP-CML achieved MCyR and CCyR respectively (Cortes et al., ASH 2011 abstract #210). While extensive modelling experiments in BaF3 cells have been performed characterising in vitro response to ponatinib, little is known about the interactions of this drug and drug transporters that impact the response of other tyrosine kinase inhibitors (TKIs). To explore this we have examined both the degree of in vitro kinase inhibition mediated by ponatinib in BCR-ABL+ cell lines, and the intracellular uptake and retention (IUR) of ponatinib achieved. The IC50 was determined by assessing the reduction in %p-Crkl in response to increasing concentrations of ponatinib in vitro. The IUR assay was performed as previously using [14-C]-ponatinib. To determine the role of ABCB1 and ABCG2, both previously implicated in the transport of other TKIs, IC50 analysis was performed on K562 cells, and variants; ABCB1 overexpressing K562-DOX and ABCG2 overexpressing K562-ABCG2. As shown in Table 1, in contrast to the results previously observed with imatinib (IM), nilotinib (NIL) and dasatinib (DAS) there was no significant difference in the IC50ponatinib between these three cell lines, suggesting neither ABCB1 nor ABCG2 play a major role in ponatinib transport. Furthermore, the addition of either the ABCB1 and ABCG2 inhibitor pantoprazole, or the multidrug resistance (MDR) inhibitor cyclosporin did not result in a significant change in the IC50ponatinib in any of the cell lines tested. In contrast the addition of either pantoprazole or cyclosporin resulted in a significant reduction in IC50IM, IC50NIL. and IC50DAS of K562-DOX cells, supporting the notion that these TKIs interact with ABCB1.Table 1:The IC50 of ponatinib (compared to IM, NIL and DAS) in K562 cells and the over-expressing variants DOX and ABCG2 in the presence of the ABC inhibitors pantoprazole and cyclosporin. n=5. *p<0.05IC50% reduction in IC50+ pantoprazole+ cyclosporinPON (nM)IM (μM)NIL (nM)DAS (nM)PONIMNILDASPONIMNILDASK5627.793751111544*NA−107NA2DOX7.919*598*100*1018*63*1655*88*ABCG26.4730025*6NA To further examine the effect of ABC transporters on ponatinib efflux we have determined the IUR of [14-C]-ponatinib in K562, DOX and ABCG2 cell lines. We demonstrate no significant difference in the IUR between these cell lines at 37°C (n=6) (K562 vs DOX p=0.6; K562 vs ABCG2 p=0.37 and DOX vs ABCG2 p=0.667 at 2uM respectively). Temperature dependent IUR experiments reveal a significant reduction in the ponatinib IUR at 4°C compared to 37°C in K562 cells (n=6) (p=0.008), DOX cells (p=0.004) and ABCG2 cells (p=0.002) supporting the likely involvement of an ATP/temperature dependent, and yet to be determined, component of ponatinib influx. There was no significant difference in the IUR between these cell lines at 4°C (p=0.824, p=0.7 and p=0.803 respectively). Importantly, these data are consistent with the IC50ponatinib findings. If ATP dependent efflux pumps (ABCB1 and ABCG2) were actively transporting ponatinib, a significant decrease in IUR in DOX and ABCG2 at 37°C compared to K562 cells would be expected, but is not observed here. Analysis of ponatinib IUR in the prototypic ABCB1 over-expressing CEM-VBL100 cells, and their parental, ABCB1 null counterparts (CCRF-CEM) further confirmed these findings. The IUR in VBL100 cells was significantly higher than that observed in CEM's (p<0.001; n=5), providing further evidence that ponatinib was not being exported from the cell actively via ABCB1. These data suggest that the transport of ponatinib is, at least in part, temperature-dependent indicating a yet to be determined ATP transporter may be involved in the transport of ponatinib into leukaemic cells. Importantly, this data suggests that ponatinib is unlikely to be susceptible to resistance via the major ATP efflux transporters (ABCB1 or ABCG2) that have been previously demonstrated to significantly impact the transport of, and mediate resistance to other clinically available TKIs. Disclosures: White: BMS: Honoraria, Research Funding; Novartis Pharmaceuticals: Honoraria, Research Funding. Clackson:ARIAD: Employment. Hughes:Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; BMS: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; ARIAD: Honoraria, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1470-1470
Author(s):  
Jueqiong Wang ◽  
Chung Hoow Kok ◽  
Richard J. D'Andrea ◽  
Timothy P. Hughes ◽  
Deborah L. White

Abstract Introduction The human organic cation transporter-1 (hOCT-1) is the primary active influx protein for imatinib in BCR-ABL positive cells. The functional activity of the OCT-1 protein (OCT-1 activity, OA) is predictive of molecular response in de-novo chronic phase chronic myeloid leukemia (CP-CML) patients. We have previously demonstrated that diclofenac, a competitive peroxisome proliferator-activated receptor-γ (PPARγ) antagonist, can significantly increase OA in CML cells 1. However, the role of PPARγ and its ligands in OA regulation remain unknown. Thus, the link between OA and PPARγ in CML cells has been investigated in this study. Methods OA was determined by intracellular uptake and retention assay (IUR) in the presence and absence of the OCT-1 inhibitor, prazosin 2. To assess the effect of PPARγ ligands on OA, BCR-ABL positive cell lines (KU812, K562) were incubated with PPARγ antagonist (GW9662, T0070907) or agonists (GW1929, rosiglitazone) respectively for 1 hour immediately prior to the IUR assays. The OA was also assessed in the mononuclear cells (MNCs) of 77 CP-CML patients enrolled to the TIDEL II trial. PPARγ activity in CML MNC nuclear extracts was determined through the use of a PPARγ Transcription Factor Assay Kits according to the manufacturer's instructions. To assess the effect of PPARγ ligands on cell death, KU812 or K562 cells were stained with AnnexinV and 7-AAD for detection of apoptosis after the co-administration of imatinib and PPARγ ligands for 72 hours. Results A significant increase in OA was observed in KU812 and K562 cells treated with PPARγ antagonists. In contrast, PPARγ agonists significantly decreased the OA in both cell lines (Table 1). A negative link between OA and PPARγ activity was observed in CML MNC samples (R=-0.585, p<0.001). PPARγ activity was significantly elevated in CML patients who had a low OA at diagnosis (less than 4 ng/200,000 cells) compared with those who had higher OA (p<0.001). After 72 hours co-administration with 0.1µM imatinib, KU812 cells treated with PPARγ antagonists (GW9662 and T0070907) showed a significantly lower cell viability (40% and 18% respectively) compared with vehicle control (70%, p<0.001). Similar results were also observed in K562 cells after co-administration with 1.0µM imatinib for 72 hours. K562 cells treated with PPARγ antagonists (GW9662: 51% and T0070907: 47%) showed a significantly lower cell viability (51% and 47% respectively) compared with vehicle control (61%, p<0.05). Conclusion Ligand-activation or inhibition of PPARγ is a regulator of OA in CML cell lines, and the low MNC OCT-1 activity in CML patients is consistent with the high level of PPARγ activity in these cells. Low PPARγ activity may be the key driver for low OA and poor imatinib response observed in a subset of CML patients. Importantly, the enhanced OA as a result of PPARγ antagonist treatment resulted in increased cell death following co-administration with imatinib. Ongoing studies relating to the upstream pathways involved in PPARγ activation aim to reveal the possible mechanism of OA modulation by PPARγ. Enhancement of OA by PPARg antagonists is likely to provide an important axis for clinical application to improve the clinical efficacy of imatinib. This would be particularly important in patients with low OA who currently have inferior outcomes with imatinib therapy. 1. Wang J, Hughes TP, Kok CH, et al. Contrasting effects of diclofenac and ibuprofen on active imatinib uptake into leukaemic cells. British Journal of Cancer. 2012;106(11):1772-1778. 2. White DL, Saunders VA, Dang P, et al. Most CML patients who have a suboptimal response to imatinib have low OCT-1 activity: Higher doses of imatinib may overcome the negative impact of low OCT-1 activity. Blood. 2007;110(12):4064-4072. Disclosures: Hughes: Novartis: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; BMS: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; Ariad: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; CSL: Research Funding. White:Novartis: Research Funding; BMS: Research Funding, Speakers Bureau; Ariad: Research Funding; CSL: Research Funding.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5425-5425
Author(s):  
Mathias A Schneeweiss ◽  
Konstantin Byrgazov ◽  
Chantal B Lucini ◽  
Susanne Herndlhofer ◽  
Wolfgang R. Sperr ◽  
...  

Abstract In chronic myeloid leukemia (CML), the occurrence of BCR-ABL1 T315I is associated with resistance against first- and second-generation BCR-ABL1 tyrosine kinase inhibitors (TKI). Ponatinib is a third generation TKI that exerts strong anti-neoplastic effects in advanced CML and is capable of suppressing the kinase activity of BCR-ABL1 T315I. However, therapy with ponatinib is associated with potentially severe side effects. In addition, resistance against ponatinib may develop in sub-clones carrying multiple (compound) mutations in BCR-ABL1. In addition, BCR-ABL1-independent oncogenic pathways contribute to drug resistance. For these patients, alternative therapies such as stem cell transplantation (SCT) or various drug combinations are often considered.Hydroxyurea (HU) is used for initial or palliative cytoreduction in CML. However, the effects of HU on TKI-resistant mutant sub-clones have not been examined so far. The aims of this study were to explore the effects of HU on CML clones carrying BCR-ABL1 T315I as individual mutation or in compound-context, and to investigate anti-leukemic effects of the drug combination ponatinib+HU. In in vitro studies, primary patient-derived cells, human CML cell lines (K562, KU812, KCL-22), and Ba/F3 cells expressing wild type (wt) BCR-ABL1, BCR-ABL1 T315I, or BCR-ABL1 compound mutants involving T315 were examined. Cell proliferation was quantified by measuring 3H-thymidine uptake. Drug effects on competitive clonal growth were analyzed by mixing two Ba/F3 clones, one expressing BCR-ABL1 T315I with GFP and one BCR-ABL1 T315I/E255V labeled by tdTomato, at a 1:1 ratio. Then, cells were exposed to HU, pontinib, or HU+ponatinib for 72 hours, and the percentage of viable cells in each clone was analyzed by flow cytometry. The in vivo response of primary CML cells carrying BCR-ABL1 T315I to HU was examined in 4 TKI-resistant CML patients who were treated with HU (1-3 g/day) for up to 18 months. In these patients, we measured white blood counts (WBC), differential counts, and BCR-ABL1 transcript levels in peripheral blood (PB) by qPCR. The percentage of BCR-ABL1 T315I compared to total BCR-ABL1 was determined by ligation-dependent PCR. In all 4 patients treated with HU, WBC and total BCR-ABL1 mRNA levels remained stable for 3-12 months. Surprisingly, in 3 of 4 patients, the leukemic sub-clone expressing BCR-ABL1 T315Iwas no longer detectable after HU-treatment. After 3 months, 2/4 patients received allogenic SCT. In the other 2 patients, the disease remained stable for 6 and 12 months, respectively. In our in vitro studies, HU was found to inhibit the growth of all BCR-ABL1+ cell lines, including K562 (IC50: 1120±89 µM), KU812 (IC50: 216±32 µM), and KCL-22 (IC50: 196±23 µM) as well as Ba/F3 cells harboring BCR-ABL1 T315I as single mutation (IC50: 74±25 µM) or as compound together with E255V (IC50: 86±2 µM), F311L (IC50: 76±20 µM), F359V (IC50: 69±10 µM), or G250E (IC50: 89±4 µM). Interestingly, Ba/F3 cells exhibiting BCR-ABL1 T315I alone or in compound configuration were more sensitive to HU compared to Ba/F3 cells expressing wt BCR-ABL1 (IC50: 236±49 µM). As expected, HU was also found to inhibit growth of primary CML cells. In subsequent experiments, HU and ponatinib were found to synergize with each other in inhibiting growth of K562, KU812, and KCL-22 cells as well as Ba/F3 cells carrying BCR-ABL1 T315I (Figure) or BCR-ABL1-T315I/F359V. In cell mix experiments, ponatinib exerted strong growth-inhibitory effects on Ba/F3-T315I cells but not on Ba/F3-T315I/E255V cells, whereas HU was found to produce stronger effects on Ba/F3-T315I/E255V cells, and only the combination of both drugs resulted in complete suppression of both cell lines. In conclusion, HU exerts strong sub-clone-specific anti-neoplastic effects in TKI-resistant CML cells, both in patients with BCR-ABL1 T315I+CML and in various cell line models, including sub-clones harboring BCR-ABL1 T315I as single mutation or in compound configuration. In addition, we show that HU and ponatinib produce strong synergistic anti-neoplastic effects on TKI resistant CML cells, including sub-clones carrying T315I. These observations may have clinical implications and may pave the way for more effective sub-clone-eradicating but also palliative or bridging-to-SCT concepts in advanced CML. Clinical studies are now warranted to define the exact value of the drug combination ponatinib+HU in TKI-resistant CML. Figure 1 Figure 1. Disclosures Sperr: Novartis: Honoraria; Amgen: Honoraria, Research Funding. Lion:Ariad: Honoraria; Amgen: Honoraria; BMS: Honoraria; Pfizer: Honoraria; Novartis: Honoraria, Research Funding. Hoermann:Ariad: Honoraria; Novartis: Honoraria; Gilead: Research Funding; Amgen: Honoraria. Deininger:CTI BioPharma Corp.: Membership on an entity's Board of Directors or advisory committees; BMS: Consultancy, Research Funding; Pfizer: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Incyte: Consultancy, Membership on an entity's Board of Directors or advisory committees; Gilead: Research Funding; Celgene: Research Funding; Bristol Myers Squibb: Consultancy, Research Funding; Ariad: Consultancy, Membership on an entity's Board of Directors or advisory committees. Valent:Amgen: Honoraria; Novartis: Honoraria, Research Funding; Deciphera Pharmaceuticals: Research Funding; Celgene: Honoraria, Research Funding; Ariad: Honoraria, Research Funding.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3139-3139
Author(s):  
Anjan Thakurta ◽  
Anita K Gandhi ◽  
Michelle Waldman ◽  
Chad C. Bjorklund ◽  
Suzanne Lentzsch ◽  
...  

Abstract Background CRBN, a target of thalidomide and IMiDs® immunomodulatory agents lenalidomide (LEN) and pomalidomide (POM), is a component of the E3 ubiquitin cullin 4 ring ligase (CRL4) complex that also includes DDB1, Roc1, and Cul4. Two CRBN mutations have been reported in multiple myeloma (MM) patients: truncating mutation (Q99) and point mutation (R283K). One copy of the CRBN gene was shown to be deleted in the MM1S and MM1S.R cell lines. No DDB1 mutation has been described previously. Results We investigated the incidence of CRBN and DDB1 mutations by next-generation sequencing in 20 MM cell lines and MM subjects. Of 90 MM patients, 24 were newly diagnosed and 66 were relapsed and refractory of which 36 patients were LEN resistant. Out of the cell lines tested, 1 heterozygous CRBN mutation (D249Y) was found in the LEN-resistant ANBL6R cells, which is located in the putative DDB1 binding domain, and 2 single silent mutations were identified in the KMS-12-BM (rs17027638) and OPM-2 cells. One DDB1 heterozygous mutation (E303D) was identified in ANBL6 cells. In the cohort of patients assessed, no CRBN mutation was detected; however, 5 single nucleotide variations (SNV) were identified. Three of the 5 SNVs were at position 735 (Y245Y) and 1 each at position 219 (H73H) and 939 (C313C), respectively. The first 2 SNVs (rs17027638 and rs1045309) are described but not the last. We found a single SNV (P51P; rs2230356) in DDB1 gene the patient samples. Conclusion Mutations within the coding sequences of CRBN and DDB1 are rare in MM patients and cell lines. Most intrinsically LEN-resistant cells and cell lines made resistant to LEN or POM do not have CRBN or DDB1 mutations, suggesting the potential role of other sources, such as genetic or epigenetic pathways in developing resistance to IMiD drug–based therapy. Disclosures: Thakurta: Celgene: Employment, Equity Ownership. Gandhi:Celgene: Employment, Equity Ownership. Waldman:Celgene: Employment, Equity Ownership. Bjorklund:Celgene: Employment, Equity Ownership. Lentzsch:Celgene: Research Funding. Schey:Celgene: Consultancy, Honoraria, Membership on an entity’s Board of Directors or advisory committees, Speakers Bureau; NAPP: Consultancy, Honoraria, Membership on an entity’s Board of Directors or advisory committees, Speakers Bureau; BMS: Consultancy, Honoraria, Membership on an entity’s Board of Directors or advisory committees, Speakers Bureau. Orlowski:Bristol-Myers Squibb: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; Celgene: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; Millennium: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; Onyx: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; Resverlogix: Research Funding; Array: Honoraria, Membership on an entity’s Board of Directors or advisory committees; Genentech: Honoraria, Membership on an entity’s Board of Directors or advisory committees; Merck: Membership on an entity’s Board of Directors or advisory committees. Madan:Covance Genomics Lab: Employment. Ning:Celgene: Employment, Equity Ownership. Mendy:Celgene: Employment, Equity Ownership. Lopez-Girona:Celgene: Employment, Equity Ownership. Schafer:Celgene: Employment, Equity Ownership. Avet-Loiseau:Celgene: Research Funding. Chopra:Celgene: Employment, Equity Ownership.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 5157-5157
Author(s):  
Laura Eadie ◽  
Timothy P. Hughes ◽  
Deborah L. White

Abstract Tyrosine kinase inhibitors (TKIs) result in excellent responses in most Chronic Myeloid Leukemia (CML) patients. However, up to 35% of patients treated with imatinib (IM) exhibit resistance and more recently nilotinib (NIL) and dasatinib (DAS) resistance have also been observed. Mutations in the BCR-ABL kinase domain (KD) are the main cause of secondary TKI resistance. Other mechanisms include overexpression of BCR-ABL, LYN and ABCB1. Predicting patients with susceptibility to mutation development and disease progression is crucial, thus we investigated the kinetics of TKI resistance emergence in vitro and in vivo. ABCB1 is implicated in TKI efflux hence we postulated that overexpression of ABCB1 leads to reduced intracellular TKI concentrations, resulting in inferior inhibition of Bcr-Abl predisposing cells to resistance development. Accordingly, 3 CML blast crisis (BC) cell lines (K562, K562-Dox, KU812) were cultured in increasing concentrations of IM to 2 μM, NIL to 2 μM and DAS to 200 nM until we observed overt resistance defined as a significant increase in survival in cytotoxicity assays and p-Crkl dependent IC50. Mechanisms of resistance were investigated in cell line intermediates: BCR-ABL, ABCB1 and LYN mRNA expression levels were determined by RT-PCR and KD mutation sequencing was performed. In our TKI resistant cell lines (Table 1), an increase in ABCB1 mRNA was the initial change observed prior to the development of additional resistance mechanisms (KD mutations, ABCB1 BCR-ABL and LYN overexpression). Interestingly, in 4/6 cells lines ABCB1 mRNA reduced to basal levels or below following establishment of these additional resistance mechanisms. ABCB1 levels were assessed in 37 de novo CML patients treated with IM who achieved major molecular response (MMR) compared with patients who progressed to BC, lost MMR or developed KD mutations. ABCB1 levels were determined in blood at diagnosis and following therapy (selected patients summarized in Table 2). A sustained >2 fold rise in ABCB1 was observed prior to disease progression in 3/3 patients and in 13/16 patients who did not achieve MMR. Importantly, the same was not observed in patients who achieved MMR (1/6 patients). The fold change of ABCB1 mRNA at day 22 vs diagnosis in patients achieving MMR was significantly different to that in patients not achieving MMR (p=0.004). ABCB1 increased by >2 fold post therapy and decreased following mutation development in 3/12 patients, confirming observations made in vitro, while 6/12 patients demonstrated sustained increase in ABCB1 post mutation similar to results observed in progression patients. ABCB1 mRNA did not change during therapy in 3/12 patients with mutations. While we recognize the majority of cells present in patients who achieve MMR are normal rather than leukemic, it is important to note that in patients who do not achieve MMR, ABCB1 expression increases in the remaining leukemic cells. We conclude ABCB1 overexpression acts as an initial mediator of resistance, providing a favorable environment for development of further resistance. Sustained increased levels of ABCB1 may contribute to disease progression and lack of response to IM. Additionally, ABCB1 may serve as a prognostic indicator (eg: level at day 22) and potentially assist in development of treatment strategies using TKIs in combination with other medications to enhance intracellular TKI concentration. Disclosures: Hughes: Ariad: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; BMS: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; Novartis: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; CSL: Research Funding. White:Novartis: Research Funding; BMS: Research Funding, Speakers Bureau; Ariad: Research Funding; CSL: Research Funding.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3010-3010 ◽  
Author(s):  
Hans Lee ◽  
Hua Wang ◽  
Heather Lin ◽  
Veera Baladandayuthapani ◽  
Jin He ◽  
...  

Abstract Background: The role of dysregulation of the proto-oncogene MYC in both early and late myeloma progression events is well established. Among key MYC -downstream targets is upregulation of ribosomal biogenesis, resulting in increased protein translational capacity and biomass accumulation that is characteristic of neoplastic cells. Thus, given the relationship between myeloma pathobiology, MYC dysregulation, and ribosomal biogenesis, we hypothesized that selective targeting of ribosomal RNA (rRNA) transcription with the small molecule RNA polymerase (pol) I inhibitor CX-5461 (Senhwa Biosciences) may represent a novel therapeutic strategy in myeloma. Methods: Studies with CX-5461 were performed in human myeloma cell lines, isogenic p53 wild-type (wt) and knock-out (KO) p53 cells generated using sequence-specific zinc-finger nucleases, drug-resistant cell lines, primary patient samples, and myeloma murine xenograft models using NOD-SCID IL2Rgnull mice. Results: CX-5461 treatment of p53 wt (MM1.S, MOLP-8) and p53 mutant (U266, RPMI-8226) myeloma cell lines demonstrated a time- and dose-dependent decrease in cell proliferation with a median inhibitory concentration (IC50) at nM levels after 72 hours. A corresponding increase in cleaved-PARP, cleaved caspase-9, and cleaved caspase-3 expression was seen on Western blot as well as increased Annexin V staining on flow cytometry analysis, although this was more pronounced in p53 wt versus mutant cell lines. CX-5461 also retained activity in a panel of cell lines resistant to standard myeloma therapeutic agents (bortezomib, carfilzomib, lenalidomide, and doxorubicin) and in primary patient samples, including a heavily pretreated relapsed/refractory patient and a de novo plasma cell leukemia patient with del 17p. In vivo studies using a systemic isogenic MM1.S p53 wt and KO myeloma murine xenograft model demonstrated significant improvement in median overall survival in the CX-5461-treated p53 wt cohort (41 days vs. not reached, P .05), although outcomes were more modest in the p53 KO cohort with only a trend towards improved survival (P.1) in the drug-treated mice. To probe the p53-independent effects of CX-5461, gene expression profiling and gene set enrichment analysis was performed on isogenic MM1.S and MOLP-8 p53 wt and KO myeloma cell lines treated with CX-5461 or vehicle. These results suggested downregulation of MYC downstream targets as one p53-independent effect of RNA pol I inhibition. qPCR and Western blot studies revealed rapid downregulation of MYC at the transcript level within 1-hour of CX-5461 treatment followed by decreases in MYC protein levels. Previous studies have suggested ribosomal biogenesis is tightly controlled by an auto-regulatory feedback mechanism in which ribosomal proteins such as RPL5 and RPL11 can bind to the 3'UTR of MYC mRNA and facilitate its degradation through the RNA-induced silencing complex (RISC). Because RNA pol I inhibition is known to induce a nucleolar stress response and increase the availability of free ribosomal proteins, RISC-mediated degradation of MYC mRNA was explored as one possible mechanism of CX-5461-mediated MYC downregulation. Indeed, treatment with CX-5461 led to increased pull-down of RPL5 when immunoprecipitated with the RISC subunit TAR (HIV-1) RNA Binding Protein 2 (TARBP2) compared to vehicle-treated controls, and RNA immunoprecipitation assays with the catalytic RISC subunit, Argonaute 2 (AGO2), demonstrated enrichment of MYC mRNA with CX-5461 treatment. These results suggest that CX-5461 may induce degradation of MYC through the cooperative binding of ribosomal proteins, RISC subunits, and MYC mRNA. Finally, to evaluate the role of MYC expression and ribosomal biogenesis in relation to CX-5461 sensitivity, MYC was overexpressed in the H1112 myeloma cell line, which at baseline does not harbor a MYC translocation. MYC overexpression in H1112pCDH-myc cells led to increased basal pre-rRNA transcript levels compared to H1112pCDH cells, and furthermore, led to enhanced sensitivity to CX-5461. Conclusion: RNA pol I inhibition by CX-5461 is a promising target in myeloma therapy, with downregulation of MYC representing one mechanism of action. Moreover, increased MYC expression enhances sensitivity to CX-5461, providing rationale for the clinical translation of CX-5461 for the treatment of myeloma and other MYC-driven cancers. Disclosures O'Brien: Senhwa Biosciences, Inc.: Employment. Keats:Translational Genomic Research Institute: Employment. Orlowski:Bristol-Myers Squibb: Consultancy, Research Funding; Celgene: Consultancy, Research Funding; Spectrum Pharmaceuticals: Research Funding; Janssen Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees; Acetylon: Membership on an entity's Board of Directors or advisory committees; Onyx Pharmaceuticals: Consultancy, Research Funding; Millennium Pharmaceuticals: Consultancy, Research Funding; Forma Therapeutics: Consultancy; Genentech: Consultancy; BioTheryX, Inc.: Membership on an entity's Board of Directors or advisory committees; Array BioPharma: Consultancy, Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4044-4044
Author(s):  
Blake S Moses ◽  
Jennifer Fox ◽  
Xiaochun Chen ◽  
Samantha McCullough ◽  
Sang Ngoc Tran ◽  
...  

Abstract Antimalarial artemisinins have broad antineoplastic activity in vitro, are well tolerated and inexpensive, and can be parenterally or orally administered in humans. Artemisinin-derived trioxane diphenylphosphate dimer 838 (ART838; a potent artemisinin-derivative) inhibited acute leukemia growth in vivo and in vitro, at doses where normal human CD34+ hematopoietic stem-progenitor cell clonogenicity was essentially unaffected (Fox et al, Oncotarget 2016, PMID: 26771236). In our focused drug combination screen for drugs that synergize with ART838, the only BCL2 inhibitors in the screen library of 111 emerging antineoplastic compounds, navitoclax (ABT737) and venetoclax (ABT199; FDA-approved), were identified as 2 of the top 3 candidates. Synergies between ART838 and BCL2 inhibitors were validated in multiple acute leukemia cell lines and primary cases. This ART838-BCL2 inhibitor synergy may be due to reduced levels of MCL1 protein that we and others have observed in multiple acute leukemia cell lines and primary cases treated with artemisinins (Budhraja et al, Clin Cancer Res 2017, PMID: 28974549). Treatment of acute leukemia xenografts with the ART838 plus ABT199 combination reduced leukemia growth rates and prolonged survivals, compared to vehicle or either ART838 or ABT199 alone. To add to the efficacy of this ART838 plus ABT199 treatment regimen, we sought to rationally add a third low-toxicity active antileukemic agent. Sorafenib (SOR; FDA-approved) inhibits multiple kinases which may mediate its antileukemic activity, with the importance of the targets varying from case to case; e.g. FLT3 is an important target in many AMLs. In addition, several reports have found that SOR reduces MCL1 protein stability and translation through inhibition of the ERK and PI3K pathways (Wang et al, Clin Cancer Res 2016, PMID: 26459180; Huber et al, Leukemia 2011, PMID: 21293487). In all acute leukemia cell lines tested, we observed large reductions in MCL1 protein levels with SOR treatment, which may further rationalize the addition of SOR to our ART838 plus ABT199 antileukemic regimen. We had previously observed strong in vitro synergy between ART838 and SOR (PMID: 26771236). Treatment of acute leukemia xenografts with the ART838 plus SOR combination reduced leukemia xenograft growth rates and prolonged survivals, compared to single drugs. Mice bearing luciferase-labelled acute leukemia xenografts were treated (PO daily x5) with single drug or 2-drug or 3-drug combinations of ART838, ABT199, and SOR, each at their individual maximally tolerated doses. Treatment with this 3-drug combination caused rapid regression of luciferase-labelled MV4;11 AML xenografts (Fig 1A). The 5-day treatment cycles were repeated every other week, and mice receiving this 3-drug combination survived >4 times longer than vehicle-treated mice (Fig 1B). Mouse body weights were stable during treatment. Although myelosuppression is the human clinical dose-limiting toxicity of each of these 3 drugs, mouse blood cell counts during 3-drug combination treatment were in the normal range. Treatment of a luciferase-labelled primary AML leukemia xenograft with this 3-drug combination reduced leukemia growth more than the single drugs or 2-drug combinations (Fig 1C). Assessment of efficacy and pharmacokinetics-pharmacodynamics against diverse acute leukemia xenografts will test this combination of ART838, ABT199 plus SOR as a rational low-toxicity drug triad for treatment of acute leukemias and potentially other cancers. Disclosures Fox: Intrexon Corporation: Employment. Tyner:Genentech: Research Funding; Janssen: Research Funding; AstraZeneca: Research Funding; Gilead: Research Funding; Incyte: Research Funding; Constellation: Research Funding; Array: Research Funding; Takeda: Research Funding; Vivid Biosciences: Membership on an entity's Board of Directors or advisory committees; Aptose: Research Funding. Civin:ConverGene LLC: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Research Funding; GPB Scientific LLC: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; 3DBioWorks Inc: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; BD (Becton Dickinson): Honoraria.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4341-4341
Author(s):  
Fengjuan Fan ◽  
Stefano Malvestiti ◽  
Yujia Shen ◽  
Eugenio Morelli ◽  
Yuji Mishima ◽  
...  

A significant increase in bone marrow (BM) angiogenesis represents a key event in early, microenvironment-dependent, multiple myeloma (MM). Angiogenic growth factor- and cytokine- production and secretion is a complex process regulated by a plethora of transcription factors (TFs). Over the past years, members of the AP-1 family of TFs have emerged as potential new therapeutic targets. Our recent work demonstrated for the first time a pivotal role for the AP-1 family member JunB in MM pathogenesis (Fan et al., 2017). Whether JunB also contributes to MM BM angiogenesis is currently unknown. In silico and immunohistochemical analyses revealed a correlative increase of JunB and angiogenic growth factors in samples isolated from healthy donors to MGUS and MM patients; and a decrease in samples isolated from patients with plasma cell leukemia. These data were supported by the utilization of an innovative in vivo MM model of clonal evolution. Specifically, JunB as well as selected angiogenic factors were significantly increased in tumor cell clones at primary sites (bone chips) versus tumor cell clones at metastatic (distant BM) sites, as evidenced by whole exome and RNA sequencing. Functionally, doxycyclin- induced inhibition of stroma cell: MM cell co-culture- as well as of IL-6- mediated JunB upregulation in TetR-shJunB/ MM.1S cells significantly reduced production and secretion of angiogenic factors; and consequently inhibited in vitro angiogenesis. Conversely, 4-hydroxytamoxifen (4-OHT)-mediated upregulation of JUNB activity in JUNB-ER/MM cells strongly increased the expression and secretion of angiogenic factors and in vitro angiogenesis. The interaction of JunB with angiogenic factor- encoding DNA in MM cells was further confirmed utilizing chromatin immunoprecipitation (ChIP)- sequencing. Finally, treatment with doxycycline effectively inhibited JunB levels and consistently reduced microvessel density in immunodeficient NSG mice inoculated with TetR-shJUNB/ MM.1S, but not TetR-SCR/ MM.1S. In conclusion, our findings demonstrate a pivotal role of JUNB in MM BM angiogenesis; they thereby provide further evidence that JUNB is a promising therapeutic target particularly in early MM. Disclosures Vallet: Pfizer: Honoraria; Roche Pharmaceuticals: Consultancy; MSD: Honoraria. Roccaro:Associazione Italiana per al Ricerca sul Cancro (AIRC): Research Funding; Associazione Italiana per al Ricerca sul Cancro (AIRC): Research Funding; AstraZeneca: Research Funding; Transcan2-ERANET: Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Transcan2-ERANET: Research Funding; AstraZeneca: Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees; European Hematology Association: Research Funding; European Hematology Association: Research Funding. Goldschmidt:Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; John-Hopkins University: Research Funding; Bristol-Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; MSD: Research Funding; Sanofi: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Mundipharma: Research Funding; Takeda: Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding; Adaptive Biotechnology: Membership on an entity's Board of Directors or advisory committees; Janssen: Consultancy, Research Funding; Dietmar-Hopp-Stiftung: Research Funding; John-Hopkins University: Research Funding; Chugai: Honoraria, Research Funding; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Amgen: Consultancy, Research Funding; Molecular Partners: Research Funding. Podar:Takeda: Consultancy; Celgene: Consultancy, Honoraria; Amgen Inc.: Honoraria; Janssen Pharmaceuticals: Consultancy, Honoraria; Roche Pharmaceuticals: Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1442-1442
Author(s):  
Xiangmeng Wang ◽  
Po Yee Mak ◽  
Wencai Ma ◽  
Xiaoping Su ◽  
Hong Mu ◽  
...  

Abstract Wnt/β-catenin signaling regulates self-renewal and proliferation of AML cells and is critical in AML initiation and progression. Overexpression of β-catenin is associated with poor prognosis. We previously reported that inhibition of Wnt/β-catenin signaling by C-82, a selective inhibitor of β-catenin/CBP, exerts anti-leukemia activity and synergistically potentiates FLT3 inhibitors in FLT3-mutated AML cells and stem/progenitor cells in vitro and in vivo (Jiang X et al., Clin Cancer Res, 2018, 24:2417). BCL-2 is a critical survival factor for AML cells and stem/progenitor cells and ABT-199 (Venetoclax), a selective BCL-2 inhibitor, has shown clinical activity in various hematological malignancies. However, when used alone, its efficacy in AML is limited. We and others have reported that ABT-199 can induce drug resistance by upregulating MCL-1, another key survival protein for AML stem/progenitor cells (Pan R et al., Cancer Cell 2017, 32:748; Lin KH et al, Sci Rep. 2016, 6:27696). We performed RNA Microarrays in OCI-AML3 cells treated with C-82, ABT-199, or the combination and found that both C-82 and the combination downregulated multiple genes, including Rac1. It was recently reported that inhibition of Rac1 by the pharmacological Rac1 inhibitor ZINC69391 decreased MCL-1 expression in AML cell line HL-60 cells (Cabrera M et al, Oncotarget. 2017, 8:98509). We therefore hypothesized that inhibiting β-catenin by C-82 may potentiate BCL-2 inhibitor ABT-199 via downregulating Rac1/MCL-1. To investigate the effects of simultaneously targeting β-catenin and BCL-2, we treated AML cell lines and primary patient samples with C-82 and ABT-199 and found that inhibition of Wnt/β-catenin signaling significantly enhanced the potency of ABT-199 in AML cell lines, even when AML cells were co-cultured with mesenchymal stromal cells (MSCs). The combination of C-82 and ABT-199 also synergistically killed primary AML cells (P<0.001 vs control, C-82, and ABT-199) in 10 out of 11 samples (CI=0.394±0.063, n=10). This synergy was also shown when AML cells were co-cultured with MSCs (P<0.001 vs control, C-82, and ABT-199) in all 11 samples (CI=0.390±0.065, n=11). Importantly, the combination also synergistically killed CD34+ AML stem/progenitor cells cultured alone or co-cultured with MSCs. To examine the effect of C-82 and ABT-199 combination in vivo, we generated a patient-derived xenograft (PDX) model from an AML patient who had mutations in NPM1, FLT3 (FLT3-ITD), TET2, DNMT3A, and WT1 genes and a complex karyotype. The combination synergistically killed the PDX cells in vitro even under MSC co-culture conditions. After PDX cells had engrafted in NSG (NOD-SCID IL2Rgnull) mice, the mice were randomized into 4 groups (n=10/group) and treated with vehicle, C-82 (80 mg/kg, daily i.p injection), ABT-199 (100 mg/kg, daily oral gavage), or the combination for 30 days. Results showed that all treatments decreased circulating blasts (P=0.009 for C-82, P<0.0001 for ABT-199 and the combination) and that the combination was more effective than each single agent (P<0.001 vs C-82 or ABT-199) at 2 weeks of therapy. The combination also significantly decreased the leukemia burden in mouse spleens compared with controls (P=0.0046) and single agent treated groups (P=0.032 or P=0.020 vs C-82 or ABT-199, respectively) at the end of the treatment. However, the combination did not prolong survival time, likely in part due to toxicity. Dose modifications are ongoing. These results suggest that targeting Wnt/β-catenin and BCL-2, both essential for AML cell and stem cell survival, has synergistic activity via Rac1-mediated MCL-1 inhibition and could be developed into a novel combinatorial therapy for AML. Disclosures Andreeff: SentiBio: Equity Ownership; Oncolyze: Equity Ownership; Oncoceutics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Jazz Pharma: Consultancy; Amgen: Consultancy, Research Funding; Eutropics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Daiichi-Sankyo: Consultancy, Patents & Royalties: MDM2 inhibitor activity patent, Research Funding; Aptose: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Reata: Equity Ownership; Astra Zeneca: Research Funding; Celgene: Consultancy; United Therapeutics: Patents & Royalties: GD2 inhibition in breast cancer . Carter:novartis: Research Funding; AstraZeneca: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document