Activity of the Hypoxia-Activated Prodrug, TH-302, in Human Acute Myeloid Leukemia Models

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3611-3611
Author(s):  
Scott Portwood ◽  
Deepika Lal ◽  
Yung-Chun Hsu ◽  
Rodrigo Vargas ◽  
Meir Wetzler ◽  
...  

Abstract Abstract 3611 Recent evidence has demonstrated the bone marrow (BM) microenvironment, the principal site of acute myeloid leukemia (AML) initiation and expansion, is characterized by intrinsically low oxygen tension. Theoretically, such microenvironmental changes may lead to the selective outgrowth of AML clones which are “better adapted” to survive within a severely hypoxic microenvironment and/or may confer resistance to chemotherapeutic agents, similar to solid tumor cells. We report here that human AML cells (HL60, ML-2) cultured under chronic hypoxic conditions mimicking the marrow microenvironment (1% O2, 72 hours) exhibited reduced sensitivity to cytarabine-induced apoptosis as compared with normoxic cells, as determined by flow cytometric analysis, western blot analysis, and cell viability assays. Similar results were noted in primary AML samples treated with cytarabine under normoxic and hypoxic conditions in colony formation assays (n=3 samples, p=0.01). In order to improve upon chemotherapy outcomes, we investigated the effects of TH-302, a hypoxia-activated bromo-isophosphoramidate mustard prodrug, which is currently undergoing clinical trial evaluation in multiple tumor types. Treatment of AML cell lines (HL60, HEL) and primary AML samples with TH-302 (at doses ranging from 0.1– 5 mM, p values ranging from <0.05–0.0001) resulted in dose- and hypoxic-dependent inhibition of AML proliferation and apoptosis. In vivo TH-302 treatment significantly decreased disease burden, as measured by total animal bioluminescence, and prolonged overall survival in two systemic human AML xenograft models (HEL-luciferase, HL60-luciferase) (Figure 1). Immunohistochemical studies demonstrated that TH-302 treatment reduced numbers of hypoxic (pimonidazole-positive) cells within the leukemic marrow microenvironment. Because prior data in animal models has shown that AML progression within the marrow is associated with expansion of hypoxic BM areas, we examined the effects of TH-302 treatment on systemic AML growth when initiated early (prior to AML inoculation) or late (several days following AML engraftment) in the disease process. TH-302 was equally effective at both time points. Although anti-vascular therapy has been shown to enhance tumor hypoxia in other cancer types, we noted no synergistic or additive in vivo effects when TH-302 therapy was combined with sorafenib, an inhibitor of vascular endothelial growth factor receptors (VEGFR), in our models. TH-302 therapy administered for two weeks in non-leukemic and leukemia-engrafted mice was not associated with hematologic toxicities. In summary, our results demonstrate the anti-leukemic activity of TH-302 in preclinical AML models and suggest that the efficacy of this and other drugs for AML therapy may be uniquely affected by the BM microenvironment. Further clinical development of TH-302 and other hypoxia-targeted drugs for AML therapy are warranted. Based on our data, higher TH-302 doses and/or chronic drug administration may be needed for optimal in vivo anti-leukemic activity. Figure 1. Effects of TH-302 treatment on systemic AML growth and overall survival in HL60-luciferase engrafted SCID mice. Figure 1. Effects of TH-302 treatment on systemic AML growth and overall survival in HL60-luciferase engrafted SCID mice. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2011 ◽  
Vol 117 (12) ◽  
pp. 3294-3301 ◽  
Author(s):  
Mark Levis ◽  
Farhad Ravandi ◽  
Eunice S. Wang ◽  
Maria R. Baer ◽  
Alexander Perl ◽  
...  

AbstractIn a randomized trial of therapy for FMS-like tyrosine kinase-3 (FLT3) mutant acute myeloid leukemia in first relapse, 224 patients received chemotherapy alone or followed by 80 mg of the FLT3 inhibitor lestaurtinib twice daily. Endpoints included complete remission or complete remission with incomplete platelet recovery (CR/CRp), overall survival, safety, and tolerability. Correlative studies included pharmacokinetics and analysis of in vivo FLT3 inhibition. There were 29 patients with CR/CRp in the lestaurtinib arm and 23 in the control arm (26% vs 21%; P = .35), and no difference in overall survival between the 2 arms. There was evidence of toxicity in the lestaurtinib-treated patients, particularly those with plasma levels in excess of 20μM. In the lestaurtinib arm, FLT3 inhibition was highly correlated with remission rate, but target inhibition on day 15 was achieved in only 58% of patients receiving lestaurtinib. Given that such a small proportion of patients on this trial achieved sustained FLT3 inhibition in vivo, any conclusions regarding the efficacy of combining FLT3 inhibition with chemotherapy are limited. Overall, lestaurtinib treatment after chemotherapy did not increase response rates or prolong survival of patients with FLT3 mutant acute myeloid leukemia in first relapse. This study is registered at www.clinicaltrials.gov as #NCT00079482.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4089-4089
Author(s):  
Yanyan Zhang ◽  
Hadjer Abdelouahab ◽  
Aline Betems ◽  
Monika Wittner ◽  
William Vainchenker ◽  
...  

Abstract Abstract 4089 The receptor CXCR4 and its ligand SDF-1 play major physiological roles especially on hematopoietic stem cells homing and retention. Many studies have implicated CXCR4 in the invasion by tumor cells of organs that produce SDF-1. In acute myeloid leukemia, the physiological role of CXCR4 is not fully understood. We used retrovirus to express MLL-ENL oncogene in CXCR4+/+ and CXCR4−/− hematopoietic primitive cells (Lin- isolated from fetal liver) and showed that CXCR4 is dispensable for generation of immortalized colonies in vitro. To determine CXCR4 function in vivo, CXCR4+/+ and CXCR4−/− transformed cells were transplanted into lethally irradiated mice. Whatever their phenotype, the recipient developed a myelo-monocytique leukemia characterized by their expression of Gr-1 and Mac-1. As expected, all recipients of MLL-ENL transduced CXCR4+/+ cells were moribund within 35 to 80 days post transplant (median survival time: 50 days). Strikingly, recipients of MLL-ENL transduced CXCR4−/− cells showed significantly increased lifespan, with a median survival time of 90 days. The cellularity of the peripheral blood of recipients of MLL-ENL transduced cells displayed considerable increases over time although this increase was much lower in CXCR4−/− than in CXCR4+/+ chimera. Bone marrow of MLL-ENL transduced CXCR4−/− chimera had moderately decreased numbers of mononuclear cells. There were important numbers of leukemic CD45.2+/Gr1+/Mac1+/c-kit+ cells in spleen from MLL-ENL CXCR4+/+ chimera which suggested that CXCR4 is important for leukemic progenitors cells retention in the bone marrow and especially in the spleen. The homing capacity of transduced CXCR4+/+ cells is comparable to the CXCR4−/− cells. Finally, more DNA damages were found in the BM cells of MLL-ENL CXCR4−/− chimera. All these results were confirmed by treating of MLL-ENL CXCR4+/+ chimera with CXCR4 inhibitor (TN140). These results demonstrated that in absence of CXCR4, the cells transduced by oncogene MLL-ENL are capable of generating leukemia in the recipients. However, mice transplanted with MLL-ENL transduced CXCR4−/− FL cells developed acute myeloid leukemia with reduced aggressiveness and organ infiltration, which is associated with induced differentiation and DNA instability. These results indicated that the MLL-ENL progenitors are dependent on CXCR4 for their maintenance in the BM and spleen suggesting that CXCR4 inhibitors might have potential therapeutic applications. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4313-4313
Author(s):  
Lei Wang ◽  
Jie Jin

Abstract Abstract 4313 Previous studies showed HAA regime [HHT (homoharringtonine), cytarabine and ACR (aclarubicin)] resulted in a high complete remission (CR) rate and a better overall survival (OS) rate in patients with primary acute myeloid leukemia. To confirm if a synergistically cytotoxicity was found in AML cells, we investigated the antitumor effect relationship of HHT and ACR against AML cells. Using in vitro system, we demonstrated that simultaneous exposure to HHT and ACR resulted in strong synergistic anti-proliferative effect and apoptosis inducing in AML cells. In vivo, combination of HHT and ACR may be result in a favorable survival in AML xenograft mice. The assay of microarray gene expressing profiling highlighted apparent difference in expression of PI3K gene and WNT3a gene between cells treated by HHT and cells exposure to ACR. Furthermore, decreased expression of PI3K110 and P-AKT protein were observed in AML cells treated with HHT for 3h while no significant change in the expression of two proteins was observed in 90nM of ACR-treated cells. Western Blot analysis also showed ACR could obviously inhibit WNT3a and β-catenin protein levels in AML cells after 3 hours exposure. Although HHT could not inhibit WNT3a protein, it also could apparently down-regulate expression of β-catenin in AML cells. Simultaneous decrease of PI3K signal and WNT3a signal was induced by the combination of HHT and ACR in AML cell lines and primary AML cells. To explore possible targets of synergistically cytotoxity induced by combined HHT/ACR, we silenced wnt3a expression by RNA interference. Then we found suppression of wnt3a expression could enhance the cytotoxity of HHT and AKT inhibitor. Moreover, combining ACR with AKT inhibitor resulted in a synergistically cytotoxic effect too. β-catenin is a shared molecular in both AKT pathway and WNT pathway. Up-regulating of β-catenin expression failed to reduce cell apoptosis induced by HHT plus ACR while partially decrease the growth inhibition rate caused by combining treatment. β-catenin is required for the self-renewal of AML-LSC. Our study also suggests that combining HHT and ACR may synergistically induce apoptosis in LSC-enriched cells. These results indicate that simultaneously inhibiting activity of PI3K/AKT pathway and WNT/β-catenin pathway is a possible mechanism of synergistically cytotoxity induced combinated HHT/ACR in AML cells. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 915-915
Author(s):  
Stuart A Rushworth ◽  
Lyubov Zaitseva ◽  
Megan Y Murray ◽  
Matthew J Lawes ◽  
David J MacEwan ◽  
...  

Abstract Introduction Despite recent significant progress in the understanding of the biology of acute myeloid leukemia (AML) the clinical outcomes for the majority of patients diagnosed with AML presently remain poor. Consequently, there is an urgent need to identify pharmacological strategies in AML, which are not only effective but can be tolerated by the older, less well patient. Recently our group and others have shown that there is high Bruton’s Tyrosine Kinase (BTK) phosphorylation and RNA expression in AML. Moreover, our recent study described for the first time that ibrutinib and BTK-targeted RNA interference reduced factor-induced proliferation of both AML cell lines and primary AML blasts, as well as reducing AML blast adhesion to bone marrow stromal cells. Inhibition of BTK has been shown to regulate chronic lymphocytic leukemia, mantle cell lymphoma and multiple myeloma cell migration by inhibiting SDF1 (stromal derived factor 1) induced CXCR4 regulated cell trafficking. Here we report that in human AML ibrutinib in addition functions in a similar way to inhibit SDF1/CXCR4-mediated AML migration at concentrations achievable in vivo. Methods To investigate the role of BTK in regulating AML migration we used both pharmacological inhibitor ibrutinib and genetic knockdown using a lentivirus mediated BTK targeted miRNA in primary AML blasts and AML cell lines. We examined migration of AML blasts and AML cells to SDF-1 using Transwell permeable plates with 8.0µM pores. Western blotting was used to examine the role of SDF-1 in regulating BTK, AKT and MAPK activation in primary AML blasts. Results We initially examined the expression of CXCR4 in human AML cell lines and found that 4/4 cell lines were positive for CXCR4 expression. Next we examined the effects of ibrutinib on the migration of the AML cell lines U937, MV4-11, HL60 and THP-1 in response to SDF1. We found that ibrutinib can inhibit the migration of all AML cell lines tested. We tested the in-vitro activity of ibrutinib on SDF-1 induced migration in a spectrum of primary AML blasts from a wide age spectrum of adult patients and across a range of WHO AML subclasses and found that ibrutinib significantly inhibits primary AML blast migration (n=12). Next we found that ibrutinib can inhibit SDF-1 induced BTK phosphorylation and downstream MAPK and AKT signalling in primary AML blast. Finally to eliminate the problems associated with off target ibrutinib activity we evaluated migration of AML cells lines using genetic inhibition of BTK. The introduction of BTK-specific miRNA dramatically inhibited the expression of BTK in THP-1 and HL60 and reduced SDF1 mediated migration confirming that BTK is involved in regulating AML migration in response to SDF1. Conclusions These results reported here provide a molecular mechanistic rationale for clinically evaluating BTK inhibition in AML patients and suggests that in some AML patients the blasts count may initially rise in response to ibrutinib therapy, analgous to similar clinical observations in CLL. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2730-2730 ◽  
Author(s):  
Susumu Goyama ◽  
Mahesh Shrestha ◽  
Janet Schibler ◽  
Leah Rosenfeldt ◽  
Whitney Miller ◽  
...  

Abstract Leukemic stem cells (LSCs) are capable of limitless self-renewal and indefinitely propagating leukemia. Eradication of LSCs is the ultimate goal of treating acute myeloid leukemia (AML). Using a mouse model of AML induced by the MLL-fusion protein MLL-AF9, we recently showed that the combined loss of Runx1/Cbfb inhibited the development of leukemia in vivo (Goyama S…Mulloy JC. Transcription factor RUNX1 promotes survival of acute myeloid leukemia cells. Journal of Clinical Investigation 123(9): 3876-3888, 2013). However, LSC-enriched cells with immature surface phenotype (cKit+Gr1-) remained viable in Runx1/Cbfb-deleted MLL-AF9 cells, indicating that RUNX targeting may not eradicate the most immature LSCs. Gene expression analyses of Runx1/Cbfb-deleted MLL-AF9 cells revealed the upregulation of thrombin pathway genes including a thrombin-activatable receptor PAR-1. Interestingly, both overexpression and knockout of PAR-1 inhibit leukemogenesis but do so through distinct mechanisms. Similar to the effect of Runx1/Cbfb-depletion, PAR-1 overexpression induced p21 expression and attenuated proliferation in MLL-AF9 cells. To our surprise, PAR-1-deficiency also prevented leukemia development induced by a small number of MLL-AF9 LSCs in vivo. Re-expression of PAR-1 in PAR-1-deficient cells combined with a limiting-dilution transplantation assay demonstrated the cell-dose dependent role of PAR-1 in MLL-AF9 leukemia: PAR-1 inhibited rapid leukemic proliferation when there are a large number of LSCs, while a small numbers of LSCs required PAR-1 for their growth. Mechanistically, PAR-1 increased adhering properties of MLL-AF9 cells and promoted their engraftment to bone marrow. PAR-1-deficiency also reduced leukemogenicity of AML1-ETO-induced leukemia. Together, these data reveal a multifaceted role for PAR-1 in leukemogenesis, and highlight this receptor as a potential target to eradicate primitive LSCs in AML. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1998 ◽  
Vol 92 (11) ◽  
pp. 4325-4335 ◽  
Author(s):  
A. Blair ◽  
D.E. Hogge ◽  
H.J. Sutherland

Acute myeloid leukemia (AML) occurs as the result of malignant transformation in a hematopoietic progenitor cell, which proliferates to form an accumulation of AML blasts. Only a minority of these AML cells are capable of proliferation in vitro, suggesting that AML cells may be organized in a hierarchy, with only the most primitive of these cells capable of maintaining the leukemic clone. To further investigate this hypothesis, we have evaluated a strategy for purifying these primitive cells based on surface antigen expression. As an in vitro endpoint, we have determined the phenotype of AML progenitor cells which are capable of producing AML colony-forming cells (CFU) for up to 8 weeks in suspension culture (SC) and compared the phenotype with that of cells which reproduce AML in nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice. AML cells were fluorescence-activated cell sorted (FACS) for coexpression of CD34 and CD71, CD38, and/or HLA-DR and the subfractions were assayed in vitro and in vivo at various cell doses to estimate purification. While the majority of primary AML CFU lacked expression of CD34, most cells capable of producing CFU after 2 to 8 weeks in SC were CD34+/CD71−. HLA-DR expression was heterogeneous on cells producing CFU after 2 to 4 weeks. However, after 6 to 8 weeks in SC, the majority of CFU were derived from CD34+/HLA-DR− cells. Similarly, the majority of cells capable of long-term CFU production from SC were CD34+/CD38−. Most cells that were capable of engrafting NOD/SCID mice were also CD34+/CD71− and CD34+/HLA-DR−. Engraftment was not achieved with CD34+/CD71+ or HLA-DR+subfractions, however, in two patients, both the CD34+and CD34− subfractions were capable of engrafting the NOD/SCID mice. A three-color sorting strategy combining these antigens allowed approximately a 2-log purification of these NOD/SCID leukemia initiating cells, with engraftment achieved using as few as 400 cells in one experiment. Phenotyping studies suggest even higher purification could be achieved by combining lack of CD38 expression with the CD34+/CD71− or CD34+/HLA DR− phenotype. These results suggest that most AML cells capable of long-term proliferation in vitro and in vivo share the CD34+/CD71−/HLA-DR− phenotype with normal stem cells. Our data suggests that in this group of patients the leukemic transformation has occurred in a primitive progenitor, as defined by phenotype, with some degree of subsequent differentiation as defined by functional assays.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5126-5126
Author(s):  
Carter Thomas Davis ◽  
Arati V. Rao ◽  
Eross Guadalupe ◽  
Dale J. Christensen ◽  
J. Brice Weinberg

Abstract INTRODUCTION: Conventional treatment of acute myeloid leukemia (AML) remains largely unchanged for over thirty years. With poor overall survival and disease cure rates, novel therapies are needed. The SET oncoprotein has been implicated in AML as essential for proliferation through inhibition of the tumor suppressor protein phosphatase 2A (PP2A). Interaction between SET and PP2A leads to inactivation of PP2A, leaving cell survival and proliferation signals unchecked. PP2A has been postulated to be an important target in AML. Fingolimod (FTY720), an FDA approved drug for relapsing-remitting multiple sclerosis, is a sphingosine-1 phosphate receptor agonist that has off-target activity to activate PP2A. In this work, we show evidence of FTY720's efficacy in AML cells derived from cell lines and patients, and provide preliminary data regarding SET expression in AML cell lines. METHODS: Cytotoxicity experiments were performed using HL-60, THP-1, MV-4, and Kasumi-3 cell lines, as well as patient-derived samples of AML, obtained through an IRB-approved protocol. Cells were incubated overnight with varied concentrations of FTY720, azacitidine, idarubicin, cytarabine, or drugs in combination. After incubation, cells were analyzed by colorimetric assay. Percent cytotoxicity was estimated as a proportion of light absorbance compared with blank media and untreated control cells. Inhibitory concentration of 50% of cells (IC50) was estimated using GraphPad Prism software, version 6.0. Flow cytometry experiments for confirmation of cytotoxicity were also performed with antibodies against Annexin V and propidium iodide. For estimation of SET expression, we performed ELISA with antibodies against SETα and SETß and quantified measurements by light absorption. RESULTS: FTY720inhibits growth of AML cells independently in both cell lines and patient-derived samples. In the THP-1 cell line, we estimated the IC50 of FTY720 to be 3.4 μM (Figure 1). In the HL-60 cell line, we estimated the IC50 to be 2.5 μM. In patient-derived samples of AML, we had similar findings. The mean IC50 was 3.24 μM (SD = 1.32, n = 8). Flow cytometry of tested samples confirmed induction of both apoptosis and cell death within a 3-hour time frame (Figure 2). Samples were also incubated with combination of FTY720 and conventional cytotoxic chemotherapeutic agents used in AML (Table 1). In the HL-60 cell line, the following IC50s were estimated for these drugs: idarubicin (0.02 μM); cytarabine (0.6 μM); azacitidine (5.7 μM). In combination with FTY720, there was no appreciable change. Results of ELISA showed measurable but low SETα and SETß levels, when compared to a known positive control, the Ramos cell line for Burkitt's lymphoma (Table 2). In the MV-4 AML cell line, the SETα/ß ratio was 0.096. In Kasumi-3 cells, the α/ß ratio was measured at 0.063. DISCUSSION: These data support the assertion that FTY720 is a cytotoxic agent in AML. This effect is independent of other cytotoxic agents, as no additive or synergistic effect was demonstrated when drugs were combined. The micromolar cytotoxicity poses challenges to the adoption of this agent as an active drug in AML, as serum concentrations from currently prescribed doses in multiple sclerosis have been shown to achieve only nanomolar concentrations. It is notable that the volume of distribution of FTY720 is very high and over 90% is concentrated in blood cells, so actual cell concentrations may be substantially higher. Our work has not yielded the same results others have reported with increased SET α/ß ratios in AML cells. In other tumor types, high SET alpha ratios have been associated with higher SET activity; thus, these results would not be suggestive of such a role in AML. Despite our findings, the activity of FTY720 in these cells merits further investigation into SET expression in AML. We have recently a flow cytometric assay for SETα and SETß that can be used to quantify SET levels, and we plan to analyze patient samples used in cytotoxicity experiments to help identify the SET α/ß ratio in AML. We hope that these experiments will establish SET and PP2A as targets for drug development in AML. Figure 1 Cytotoxicity curve of FTY720 in THP-1 cells (n=3) Figure 1. Cytotoxicity curve of FTY720 in THP-1 cells (n=3) Figure 2 Flow cytometric analysis of FTY720 cytotoxicity in HL-60 cells. Figure 2. Flow cytometric analysis of FTY720 cytotoxicity in HL-60 cells. Disclosures Rao: Gilead, Inc.: Employment.


2021 ◽  
Vol 8 ◽  
Author(s):  
Huiqing Qu ◽  
Ye Zhu

Background: Acute myeloid leukemia (AML), characterized by the low cure rate and high relapse, urgently needs novel diagnostic or prognostic biomarkers and potential therapeutic targets. Sphingomyelin Phosphodiesterase Acid Like 3B (SMPDL3B) is a negative regulator of Toll-like receptor signaling that plays important roles in the interface of membrane biology and innate immunity. However, the potential role of SMPDL3B in human cancer, especially in AML, is still unknown.Methods: The expression of SMPDL3B in AML samples was investigated through data collected from Gene Expression Omnibus (GEO). Association between SMPDL3B expression and clinicopathologic characteristics was analyzed with the chi-square test. Survival curves were calculated by the Kaplan–Meier method. Cox univariate and multivariate analyses were used to detect risk factors for overall survival. The biological functions of SMPDL3B in human AML were investigated both in vitro and in vivo.Results: Expression of SMPDL3B mRNA was significantly upregulated in human AML samples and closely correlated to cytogenetics risk and karyotypes. Elevated expression of SMPDL3B was associated with poor overall survival and emerged as an independent predictor for poor overall survival in human AML. Blocked SMPDL3B expression inhibited AML cells growth both in vitro and in vivo via promoting cell apoptosis.Conclusion: Taken together, our results demonstrate that SMPDL3B could be used as an efficient prognostic biomarker and represent a potential therapeutic target for human AML.


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 781-781
Author(s):  
Konstantinos Tzelepis ◽  
Etienne De Braekeleer ◽  
Isaia Barbieri ◽  
Vijay Baskar ◽  
Demetrios Aspris ◽  
...  

Abstract Acute myeloid leukemia (AML) is an aggressive cancer with a poor prognosis, for which the therapeutic landscape has changed little for decades. Aberrant mRNA splicing plays an important role in cancer development and genes coding for several of the major components of the spliceosome are targeted by somatic mutations in several cancers including myelodysplastic syndromes and AML. Recently, myeloid neoplasms harbouring spliceosome gene mutations were shown to be preferentially susceptible to pharmacological disruption of the spliceosome. Here we report that targeting particular pathways of the spliceosome machinery can also be an effective therapeutic strategy in other types of AML. Recently, we generated a comprehensive catalogue of genetic vulnerabilities in AML using CRISPR-Cas9 genome-wide recessive screens and reported several novel intuitive and non-intuitive therapeutic candidates. Amongst these we identified SRPK1, the gene coding for a serine-threonine kinase that phosphorylates the major spliceosome protein SRSF1. Here, we demonstrate that targeted genetic disruption of SRPK1 in MLL-rearranged AMLs leads to differentiation and apoptosis (Fig. 1A). Additionally, the survival of immunocompromised mice transplanted with human AML cell lines carrying the MLL-AF9 fusion gene, namely MOLM-13 and THP-1, was significantly prolonged by genetic disruption of SRPK1 with CRISPR-Cas9. Similar effects were seen with pharmacological inhibition of SRPK1 in vitro and in vivo, using the novel SRPK1-specific kinase inhibitor SPHINX31 (Fig. 1B-C). Importantly, we go on to demonstrate that, while the SRPK1 kinase activity is required for AML cell survival, it is dispensable for normal hematopoiesis. At the molecular level, we show that genetic or pharmacological inhibition of SRPK1 was associated with widespread changes in the splicing of multiple genes including several with roles in leukemogenesis such as MYB, BRD4 and MED24 . We focused on BRD4 as its splicing isoforms have distinct molecular properties and found that SRPK1 inhibition led to a substantial switch from the short (BRD4S) to the long (BRD4L) isoform at the mRNA and protein levels (Fig. 1D-E). This was associated with BRD4 eviction from genomic loci involved in myeloid leukemogenesis including BCL2 and MYC. Notably, ectopic expression of the short (BRD4S) isoform rescued the phenotype of SRPK1 inhibition suggesting that the observed BRD4 splicing switch mediates at least part of the anti-leukemic effects of SRPK1 inhibition. Furthermore, we show that the BRD inhibitor iBET-151 synergizes with SRPK1 inhibition to kill human MLL-AF9 -driven AMLs in vitro and in vivo. Collectively our findings reveal that SRPK1 is required for normal splicing of key epigenetic regulators including BRD4 and represents a novel therapeutic vulnerability in AML that can be used alone or in combination with clinically relevant epigenetic drugs to enhance their anti-leukemic effects. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 912-912
Author(s):  
Alan K. Ikeda ◽  
Dejah Judelson ◽  
Junling Li ◽  
Ru Qi Wei ◽  
Paul Tapang ◽  
...  

Abstract Children with acute myeloid leukemia (AML) have 50% overall survival despite aggressive chemotherapy and bone marrow transplantation. Similarly, only one third of adults diagnosed with AML will be cured. AML blast cells from approximately 30% of patients express a constitutively active receptor tyrosine kinase, FLT3-ITD, which contains internal tandem duplications in the juxtamembrane domain. Patients with FLT3-ITD have a worse prognosis. ABT-869 is a multi-targeted small molecule inhibitor of receptor tyrosine kinases and is a potent inhibitor of FLT3, c-Kit, and members of the VEGF and PDGF receptor families. We previously demonstrated that ABT-869 in vitro induces apoptosis of AML cell lines harboring the FLT3-ITD and primary AML cells, and in vivo in tumors from MV-411 xenograft models. Phosphorylation of FLT3 and activation of downstream signaling molecules, STAT5 and ERK, were inhibited by ABT-869 in a concentration-dependent manner. Cells were also stained with Annexin V-FITC and propidium iodide, and analyzed using FACS. ABT-869 induced apoptosis, caspase-3 activation, and PARP cleavage after 48 hours. Toxic effects were not observed on normal hematopoietic progenitor cells in methylcellulose-based colony assays at concentrations that were effective in AML cells. To examine the effects of ABT-869 in vivo, we treated SCID mice injected with MV-411 with oral preparations of ABT-869. Complete regression of MV4-11 tumors was observed in mice treated with ABT-869 at 20 and 40 mg/kg/day. No adverse effects were detected in the peripheral blood counts, bone marrow, spleen or liver. Tumors from mice treated with ABT-869 showed decreased proliferation by Ki67 and increased apoptosis by TUNEL staining. We also observed that the mice treated with ABT-869 the day after injection of AML cells remained tumor-free for over 3 months in contrast to the mice receiving the vehicle alone. Inhibition of FLT3 phosphorylation was demonstrated in the tumors from mice treated with ABT-869. ABT-869 also suppresses the growth of Molm-13 (human AML cell line that expresses both FLT3-ITD and wt FLT3) at an IC50 between 1 and 10nM. To examine the effects of ABT-869 in vivo, we employed a murine bone marrow transplantation model. After chemical ablation of the bone marrow, SCID mice were injected with Molm-13 cells through the tail vein to allow engraftment. We observed that mice treated with an oral preparation of ABT-869 at 40 mg/kg/day prevented the engraftment of Molm-13 cells. The SCID mice that were not administered ABT-869 demonstrated clinical engraftment with hind leg paralysis and chloroma formation. Chloroma formation was confirmed by immunohistochemical staining with CD33 and CD45. NOD-SCID mouse models are currently being used to analyze the effects of ABT-869 on primary AML cells in vivo. We will also determine if there is any difference in efficacy in relation to the FLT3 status of each primary AML sample. Our preclinical studies demonstrate that ABT-869 is effective and nontoxic at the doses studied, and provide rationale for the treatment and prevention of relapse in AML patients.


Sign in / Sign up

Export Citation Format

Share Document