PDGFRα and CD51 Mark Human Nestin+ Sphere-Forming Mesenchymal Stem Cells Capable of Robust Hematopoietic Stem Cell Expansion

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 505-505
Author(s):  
Sandra Pinho ◽  
Julie Lacombe ◽  
Maher Hanoun ◽  
Ingmar Bruns ◽  
Yuya Kunisaki ◽  
...  

Abstract Abstract 505 Few markers have thus far been identified on native mesenchymal stem cells (MSCs), both in the mouse and human systems. Most markers cited in the literature are indeed based on expression analyses on heterogeneous cultured cell populations, which may not have self-renewal properties if rigorously tested by transplantation assays. Previous studies using Nestin (Nes)-Gfp transgenic mice showed that Nes-GFP+ cells are self-renewing MSCs, a major constituent of the hematopoietic stem cell (HSC) niche in the bone marrow (BM) (Nature 2010; 466:829). However, the cytoplasmic location of Nestin precludes prospective live cell isolation outside of the transgenic mice. Hence, finding a combination of surface markers labeling Nestin+ cells in situ would be valuable to isolate bona fide MSCs and characterize niche cells. Screening analyses toward this end revealed that PDGFRα and CD51 expression among CD45− Ter119− CD31− BM stromal cells comprised a large fraction (∼60%) of Nes-GFP+ cells. Upon gating first on PDGFRα+ and CD51+, double-positive cells were also highly enriched in Nes-GFP+ cells (∼75%), and represented a rare fraction (∼2%) of the stromal population. Endogenous Nestin expression was also enriched in PDGFRα+ CD51+ cells, compared to single-positive or double-negative stromal cells (control subsets). Cell sorting of BM PDGFRα+ CD51+ and control subsets revealed that PDGFRα+ CD51+ significantly enriched (> 10-fold, p<0.05) for colony forming unit-fibroblastic (CFU-F) and multipotent clonal mesenspheres (> 7-fold, p<0.01) that differentiate robustly along the osteoblastic, chondrocytic and adipocytic lineages. To test in vivo self-renewal capacity, clonal spheres or polyclonal freshly sorted PDGFRα+ CD51+ cells and control subsets were transplanted into recipient mice by different approaches (renal capsule implants, collagen and/or HA/TCP carrier grafts). After 2 months, secondary sphere formation assays and histological analyses revealed the in vivo self-renewal and heterotopic BM niche regeneration capacity of PDGFRα+ CD51+ cells, but not the control subsets. In addition, the PDGFRα+ CD51+ fraction of Nestin+ cells was markedly enriched in major HSC regulatory genes (Cxcl12, Vcam1, Angpt1, Opn and Scf), supporting the notion that niche activity co-segregates with MSC activity in the BM. Next, we investigated whether PDGFRα+ CD51+ cells also labeled putative Nestin+ MSCs in the human BM. To this end, we analyzed the fetal human BM (13–19 gw), a period during which hematopoietic activity is nascent. At this stage, we found that PDGFRα+ CD51+ cells comprised ∼3% of stromal cells, contained most of the CFU-F activity (6.3 ± 0.8 CFU-Fs/102 cells) in the BM, and also expressed Nestin and HSC regulatory factors. PDGFRα+ CD51+ cells could also form mesenspheres that can self-renew in vivo after heterotopic transplantation. Furthermore, we found that human BM PDGFRα+ CD51+ cells represented a subset of CD146+ cells previously suggested to mark human MSCs (Cell 2007; 131:324), as ∼30% of the CD146high cells also expressed PDGFRα and CD51, and ∼65% of PDGFRα+ CD51+ cells were CD146high. To evaluate functionally the HSC niche properties of human PDGFRα+ CD51+ cells, we set up a co-culture system of human BM CD34+ cells with PDGFRα+ CD51+ mesenspheres. We found that mesenspheres were capable of expanding the number of human CD45+ Lin− CD38− CD34+ CD90+ CD49f+ cells (hHSCs) by 11-fold (p<0.05) compared to input (day 0). In addition, hHSC expansion was 2-fold greater (p<0.05) using mesenspheres compared to serum-free media alone with hematopoietic growth factors (SCF, TPO, Flt3L). Recent studies have suggested that SCF production in the BM niche is derived from perivascular and endothelial cells distinct from Nestin+ cells (Nature 2012; 481:457), although Nestin+ MSCs express high levels of SCF (Nature 2010; 466:829). Immunofluorescence analyses of human PDGFRα+ CD51+ mesenspheres showed that all cells forming the sphere uniformly expressed both Nestin and SCF. Moreover, in the absence of SCF from the media, PDGFRα+ CD51+ mesenspheres rescued hHSCs expansion, yielding a 46- and 5-fold (p<0.001) expansion, as compared to control media alone and input, respectively. These results thus indicate that the HSC niche is conserved between the murine and human species and suggest that highly purified non-adherent cultures of niche cells may represent a useful novel technology to expand hHSCs in vitro. Disclosures: No relevant conflicts of interest to declare.

2019 ◽  
Vol 116 (4) ◽  
pp. 1447-1456 ◽  
Author(s):  
Rong Lu ◽  
Agnieszka Czechowicz ◽  
Jun Seita ◽  
Du Jiang ◽  
Irving L. Weissman

While the aggregate differentiation of the hematopoietic stem cell (HSC) population has been extensively studied, little is known about the lineage commitment process of individual HSC clones. Here, we provide lineage commitment maps of HSC clones under homeostasis and after perturbations of the endogenous hematopoietic system. Under homeostasis, all donor-derived HSC clones regenerate blood homogeneously throughout all measured stages and lineages of hematopoiesis. In contrast, after the hematopoietic system has been perturbed by irradiation or by an antagonistic anti-ckit antibody, only a small fraction of donor-derived HSC clones differentiate. Some of these clones dominantly expand and exhibit lineage bias. We identified the cellular origins of clonal dominance and lineage bias and uncovered the lineage commitment pathways that lead HSC clones to different levels of self-renewal and blood production under various transplantation conditions. This study reveals surprising alterations in HSC fate decisions directed by conditioning and identifies the key hematopoiesis stages that may be manipulated to control blood production and balance.


2019 ◽  
Vol 55 (6) ◽  
pp. 1029-1040 ◽  
Author(s):  
Xiuxiu Yin ◽  
Linping Hu ◽  
Yawen Zhang ◽  
Caiying Zhu ◽  
Hui Cheng ◽  
...  

AbstractThe bone marrow (BM) niche regulates multiple hematopoietic stem cell (HSC) processes. Clinical treatment for hematological malignancies by HSC transplantation often requires preconditioning via total body irradiation, which severely and irreversibly impairs the BM niche and HSC regeneration. Novel strategies are needed to enhance HSC regeneration in irradiated BM. We compared the effects of EGF, FGF2, and PDGFB on HSC regeneration using human mesenchymal stem cells (MSCs) that were transduced with these factors via lentiviral vectors. Among the above niche factors tested, MSCs transduced with PDGFB (PDGFB-MSCs) most significantly improved human HSC engraftment in immunodeficient mice. PDGFB-MSC-treated BM enhanced transplanted human HSC self-renewal in secondary transplantations more efficiently than GFP-transduced MSCs (GFP-MSCs). Gene set enrichment analysis showed increased antiapoptotic signaling in PDGFB-MSCs compared with GFP-MSCs. PDGFB-MSCs exhibited enhanced survival and expansion after transplantation, resulting in an enlarged humanized niche cell pool that provide a better humanized microenvironment to facilitate superior engraftment and proliferation of human hematopoietic cells. Our studies demonstrate the efficacy of PDGFB-MSCs in supporting human HSC engraftment.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 572-572
Author(s):  
Hitoshi Takizawa ◽  
Chandra S Boddupalli ◽  
Roland R Regoes ◽  
Sebastian Bonhoeffer ◽  
Markus G Manz

Abstract Abstract 572 Life-long blood production is maintained by a small fraction of hematopoietic stem cells (HSCs). Steady-state HSC cycling kinetics have been evaluated by in vivo labeling assays with 5-bromo-2-deoxyuridine (BrdU) (Cheshier et. al., PNAS 1999; Kiel et al., Nature 2007), biotin (Nygren et. al., 2008) and histon 2B-green fluorescent protein (H2B-GFP) transgenic mouse models (Wilson et. al., 2008; Foudi et. al., 2009). While the former studies showed that all HSCs equally divide and likely contribute to blood formation (clonal maintenance), the latter suggested that some HSCs divide frequently and contribute to blood formation until cell death or full differentiation, while some HSCs are quiescent and then get activated to follow the same fate as frequently dividing ones (clonal succession). However, due to low resolution, none of the labeling techniques used were able to track single cell divisions. Furthermore, methods used might have direct influence on cycling activity of HSCs. Thus it remains to be determined a) if HSC divide continuously, sequentially or repetitively and contribute to steady-state hematopoiesis, b) what is a relationship between divisional history and repopulating ability, and c) how self-renewal and differentiation capacity of HSC is impacted by naturally-occurring severe hematopoietic challenges as infections. To address this directly, we set up a high resolution non-invasive in vivo HSC divisional tracking assay with CFSE (carboxyfluorescein diacetate succinimidyl ester). We here show that i.v. transfer of CFSE-labeled HSCs into non-conditioned congenic recipient mice allows evaluation of steady-state HSC cycling-dynamics as CFSE is equally distributed to daughter cells upon cellular division. Transfer of Lin-c-kit+Sca-1+ cells (LKS) into non-irradiated mice revealed non- and 1–7x divided LKS in recipient bone marrow over 20 weeks. To test in vivo limiting dilution and single cell HSC potential, non- or ≥5x divided cells were sorted based on divisional history from primary recipients at different weeks after transplantation, and transplanted into lethally irradiated secondary recipients. Single non-divided LKS at 3 weeks post primary transfer was able to multi-lineage repopulate 24% of recipients long-term, while 50 of ≥5x divided LKS did not engraft. Interestingly, both non- and ≥5x divided LKS at 7 or 12–14 weeks after primary transfer engrafted and showed fluctuating contribution to multi-lineage hematopoiesis over serial transplantation. Mathematical modeling based on limiting dilution transplantation, revealed no evidence for a dichotomy of biologically defined HSCs in different groups. Instead, steady-state serial transplantation with temporary fast-cycling cells revealed that they can slow down over time, suggesting dynamically changing cycling activity of HSC. We next tested the effects of hemato-immunological challenge on HSC proliferation. Mice transplanted with CFSE-labeled LKS cells were repetitively treated with LPS. Analysis 8 days after final LPS injection, i.e. three weeks after steady-state transplantation revealed that all LKS entered cell cycle and the number of ≥5x divided LKS was increased. Secondary transplantation showed that 2–4 time and ≥5x divided LKS from LPS-treated mice reconstituted multi-lineage hematopoiesis whereas both fractions from control mice failed to engraft. This data clearly indicate that HSCs are activated from quiescence upon LPS challenge and provide evidence, that naturally-occurring hemato-immunological challenges, such as gram-negative bacterial infection induces proliferation and self-renewal of HSCs. Our data suggest in contrast to previously proposed concepts, a novel “dynamic repetition” model for HSC cycling activity and blood formation where some HSCs participate in hematopoiesis for a while, subsequently enter a resting phase and get reactivated again to contribute to blood formation in repetitive cycles, leading to homogenous total divisional history of all HSCs at end of life. These findings might represent a biological principle that could hold true for other somatic stem cell-sustained organ-systems and might have developed during evolution to ensure equal distribution of work-load, efficient recruitment of stem cells during demand, and reduction of risk to acquire genetic alterations or fatal damage to the whole HSC population at any given time. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1994 ◽  
Vol 83 (2) ◽  
pp. 361-369 ◽  
Author(s):  
PE Funk ◽  
PW Kincade ◽  
PL Witte

In suspensions of murine bone marrow, many stromal cells are tightly entwined with hematopoietic cells. These cellular aggregations appear to exist normally within the marrow. Previous studies showed that lymphocytes and stem cells adhered to stromal cells via vascular cell adhesion molecule 1 (VCAM1). Injection of anti-VCAM1 antibody into mice disrupts the aggregates, showing the importance of VCAM1 in the adhesion between stromal cells and hematopoietic cells in vivo. Early hematopoietic stem cells were shown to be enriched in aggregates by using a limiting-dilution culture assay. Myeloid progenitors responsive to WEHI-3CM in combination with stem cell factor (c-kit ligand) and B220- B-cell progenitors responsive to insulin-like growth factor-1 in combination with interleukin-7 are not enriched. We propose a scheme of stromal cell-hematopoietic cell interactions based on the cell types selectively retained within the aggregates. The existence of these aggregates as native elements of bone marrow organization presents a novel means to study in vivo stem cell-stromal cell interaction.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2351-2351
Author(s):  
Chiemi Nishida ◽  
Kaori Sato-Kusubata ◽  
Yoshihiko Tashiro ◽  
Ismael Gritli ◽  
Aki Sato ◽  
...  

Abstract Abstract 2351 Stem cells reside in a physical niche. The organization of cellular niches has been shown to play a key role in regulating normal stem cell differentiation, stem cell maintenance and regeneration. Various stem cell niches have been shown to be hypoxic, thereby maintaining the stem cell phenotype of e.g. hematopoietic stem cells (HSCs) or cancer stem cells. The bone marrow (BM) niche is a rich reservoir of tissue-specific pluripotent HSCs. Proteases such as matrix metalloproteinases (MMPs) have been implicated in cell movement, partly due to their proteolytic function, and they have been linked to cellular processes such as cell proliferation and differentiation. The proteolytic function of Membrane-type 1 MMP (MT1-MMP/MMP-14) is essential for angiogenesis, arthritis and tumour growth. Recently, it has been reported that MT1-MMP is highly expressed in HSCs and stromal/niche cells. However the clear function of MT1-MMP in hematopoiesis is not well understood. To reveal the functional consequences of MT1-MMP deficiency for post-natal hematopoiesis in vivo, we have taken advantage of MT1-MMP−/− mice to demonstrate that MT1-MMP deficiency leads to impaired steady state hematopoiesis of all hematopoietic cell lineages. In a search for factors whose deficiency could cause this hematopoietic phenotype, we found not only reduced protein release, but also reduced transcription of the following growth factors/chemokines in MT1-MMP−/− mice: erythropoietin (Epo), stromal cell-derived factor-1 (SDF-1a/CXCL12), interleukin-7 (IL-7) and Kit ligand (KitL, also known as stem cell factor). All of these factors, except for Epo, are typical stromal cell-derived factors. To ensure that impaired gene transcription in vivo was not due to a lower number of stromal cells in vivo, we demonstrated that MT1-MMP knockdown in stromal cells in vitro also reduced transcription of the stromal cell derived factors SDF-1a/CXCL12, IL-7 and KitL. In contrast, overexpression of MT1-MMP in stromal cells enhanced gene transcription of these factors. All genes, whose transcription was altered in vitro and in vivo due to MT1-MMP deficiency, had one thing in common: their gene transcription is regulated by the hypoxia inducible factor-1 (HIF-1) pathway. Further mechanistic studies revealed that MT1-MMP activates the HIF-1 pathway via factor inhibiting HIF-1 (FIH-1) within niche cells, thereby inducing the transcription of HIF-responsive genes, which induce terminal hematopoietic differentiation. Thus, MT1-MMP in niche cells regulates postnatal hematopoiesis by modulating hematopoietic HIF-dependent niche factors that are critical for terminal differentiation and migration. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1994 ◽  
Vol 83 (2) ◽  
pp. 361-369 ◽  
Author(s):  
PE Funk ◽  
PW Kincade ◽  
PL Witte

Abstract In suspensions of murine bone marrow, many stromal cells are tightly entwined with hematopoietic cells. These cellular aggregations appear to exist normally within the marrow. Previous studies showed that lymphocytes and stem cells adhered to stromal cells via vascular cell adhesion molecule 1 (VCAM1). Injection of anti-VCAM1 antibody into mice disrupts the aggregates, showing the importance of VCAM1 in the adhesion between stromal cells and hematopoietic cells in vivo. Early hematopoietic stem cells were shown to be enriched in aggregates by using a limiting-dilution culture assay. Myeloid progenitors responsive to WEHI-3CM in combination with stem cell factor (c-kit ligand) and B220- B-cell progenitors responsive to insulin-like growth factor-1 in combination with interleukin-7 are not enriched. We propose a scheme of stromal cell-hematopoietic cell interactions based on the cell types selectively retained within the aggregates. The existence of these aggregates as native elements of bone marrow organization presents a novel means to study in vivo stem cell-stromal cell interaction.


Blood ◽  
2005 ◽  
Vol 105 (6) ◽  
pp. 2340-2342 ◽  
Author(s):  
Stéphane J. C. Mancini ◽  
Ned Mantei ◽  
Alexis Dumortier ◽  
Ueli Suter ◽  
H. Robson MacDonald ◽  
...  

AbstractJagged1-mediated Notch signaling has been suggested to be critically involved in hematopoietic stem cell (HSC) self-renewal. Unexpectedly, we report here that inducible Cre-loxP–mediated inactivation of the Jagged1 gene in bone marrow progenitors and/or bone marrow (BM) stromal cells does not impair HSC self-renewal or differentiation in all blood lineages. Mice with simultaneous inactivation of Jagged1 and Notch1 in the BM compartment survived normally following a 5FU-based in vivo challenge. In addition, Notch1-deficient HSCs were able to reconstitute mice with inactivated Jagged1 in the BM stroma even under competitive conditions. In contrast to earlier reports, these data exclude an essential role for Jagged1-mediated Notch signaling during hematopoiesis.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 396-396
Author(s):  
Stephane Barakat ◽  
Julie Lambert ◽  
Guy Sauvageau ◽  
Trang Hoang

Abstract Abstract 396 Hematopoietic stem cells that provide short term reconstitution (ST-HSCs) as well as hematopoietic progenitors expand from a small population of long term hematopoietic stem cells (LT-HSCs) that are mostly dormant cells. The mechanisms underlying this expansion remain to be clarified. SCL (stem cell leukemia), is a bHLH transcription factor that controls HSC quiescence and long term competence. Using a proteomics approach to identify components of the SCL complex in erythroid cells, we and others recently showed that the ETO2 co-repressor limits the activity of the SCL complex via direct interaction with the E2A transcription factor. ETO2/CBF2T3 is highly homologous to ETO/CBFA2T1 and both are translocation partners for AML1. We took several approaches to identify ETO2 function in HSCs. We initially found by Q-PCR that ETO2 is highly expressed in populations of cells enriched in short-term HSC (CD34+Flt3-Kit+Sca+Lin-) and lympho-myeloid progenitors (CD34+Flt3+Kit+Sca+Lin-) and at lower levels in LT-HSCs (CD34-Kit+Sca+Lin- or CD150+CD48-Kit+Sca+Lin-). Next, the role of ETO2 was studied by overexpression or downregulation combined with transplantation in mice. Ectopic ETO2 expression induces a 100 fold expansion of LT-HSCs in vivo in transplanted mice associated with differentiation blockade in all lineages, suggesting that ETO2 overexpression overcomes the mechanisms that limit HSC expansion in vivo. We are currently testing the role of the NHR1 domain of ETO2 in this expansion. Conversely, shRNAs directed against ETO2 knock down ET02 levels in Kit+Sca+Lin- cells, causing a ten-fold decrease in this population after transplantation, associated with reduced short-term reconstitution in mice. Finally, proliferation assays using Hoechst and CFSE indicate that ETO2 downregulation affects cell division (CFSE) and leads to an accumulation of Kit+Sca+Lin-cells in G0/G1 state (Hoescht). In conclusion, we show that ETO2 is highly expressed in ST-HSCs and lymphoid progenitors, and controls their expansion by regulating cell cycle entry at the G1-S checkpoint. In addition, ETO2 overexpression converts the self-renewal of maintenance into self-renewal of expansion in LT-HSCs. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 394-394
Author(s):  
Kristin J Hope ◽  
Sonia Cellot ◽  
Stephen Ting ◽  
Guy Sauvageau

Abstract Abstract 394 Hematopoietic stem cells (HSC) can not yet be unambiguously prospectively identified, a fact which has made it difficult to determine whether a segregation of cell fate determinants underlies the asymmetric/symmetric self-renewal of these cells or whether deregulation of such determinants could contribute to the pathogenesis of hematopoietic malignancies by inducing constitutive symmetric self-renewal divisions. We have addressed these questions through a functional genetics approach taking advantage of systematic RNAi to evaluate the function of conserved polarity factors and cell fate determinants in HSCs. From a list of 72 of such factors identified in the literature, 30 murine homologues were chosen based on their differentially higher level of expression in HSC-enriched populations as measured by qRT-PCR. For each candidate we designed 3 unique short hairpin RNA (shRNA) encoding retroviral constructs also carrying EGFP for the purposes of following transduced cells. Primitive hematopoietic cells enriched for HSC were infected at high efficiency with the library in an arrayed 96-well format and their in vivo reconstituting potential was then evaluated through competitive repopulating unit assays. Genes for which shRNA vectors altered late transplant EGFP levels below or above thresholds as defined by a control shRNA to luciferase were considered as hits. Using this approach, we identified and comprehensively validated 4 genes, including the RNA binding protein Msi2, for which shRNA-mediated depletion dramatically impairs repopulation but does not induce cell death or a cell cycle block. Importantly, we show that the loss in the repopulating ability of these shRNA transduced cells is mediated at the stem cell level and is not due to progenitor or downstream cell toxicity or to any defect in the process of bone marrow homing. Subsequent expression profiling indicated that Msi2 is also upregulated in HOXB4-overexpressing symmetrically expanding HSC in line with our findings that it functions as a positive HSC regulator and further suggesting that it represents a potential novel HSC marker. As well as finding HSC agonists, the RNAi screen identified the homeodomain containing transcription factor Prox1 as a negative HSC regulator since its shRNA-mediated transcript loss consistently led to the dramatic in vivo accumulation of EGFP+ transduced cells. Grafts comprised of Prox1 shRNA-transduced cells did not exhibit any lineage skewing however, repeatedly contained an average of 10-fold more primitive Lin-Sca+CD150+48- cells as compared to non-transduced donor cells within the same recipient or to control shRNA-luciferase grafts indicating Prox1 knockdown leads to a significant in vivo expansion of phenotypic HSCs. Moreover, following a 7 day in vitro culture, cells infected with shRNAs to Prox1 were both morphologically and immunophenotypically more primitive than control cells and when transplanted at this time yielded a significantly enhanced engraftment level relative to control shRNAs (51+/-6% GFP vs 8+/-3% GFP). These results further suggest that Prox1 reduction by RNAi expands functional HSCs in vitro. Together these findings have identified conserved cell fate determinants as important and novel regulators of murine hematopoietic stem cells. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1999 ◽  
Vol 93 (2) ◽  
pp. 481-487 ◽  
Author(s):  
Johanne D. Cashman ◽  
Connie J. Eaves

Self-renewal is considered to be the essential defining property of a stem cell. Retroviral marking, in vitro amplification, and serial transplantation of human cells that can sustain long-term lymphomyelopoiesis in vivo have provided evidence that human hematopoietic stem cell self-renewal occurs both in vitro and in vivo. To investigate whether this process can be manipulated by cytokines, we administered two different combinations of human growth factors to sublethally irradiated nonobese diabetic/severe combined immunodeficient (SCID) mice transplanted with 107 light-density human cord blood cells and then performed secondary transplants to compare the number of transplantable human lymphomyeloid reconstituting cells present 4 to 6 weeks post-transplant. A 2-week course of Steel factor + interleukin (IL)-3 + granulocyte-macrophage colony-stimulating factor + erythropoietin (3 times per week just before sacrifice) specifically and significantly enhanced the numbers of transplantable human lymphomyeloid stem cells detectable in the primary mice (by a factor of 10). Steel factor + Flt3-ligand + IL-6 (using either the same schedule or administered daily until sacrifice 4 weeks post-transplant) gave a threefold enhancement of this population. These effects were obtained at a time when the regenerating human progenitor populations in such primary mice are known to be maximally cycling even in the absence of growth factor administration suggesting that the underlying mechanism may reflect an ability of these growth factors to alter the probability of differentiation of stem cells stimulated to proliferate in vivo.


Sign in / Sign up

Export Citation Format

Share Document