CD4 Cells Engineered to Express an MHC Class I Restricted TCR Can Rescue CD8 Cells Tolerized to Tumour-Associated Antigens

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 952-952
Author(s):  
Sara Ghorashian ◽  
Ben Carpenter ◽  
Angelika Holler ◽  
Emma Nicholson ◽  
Maryam Ahmadi ◽  
...  

Abstract Abstract 952 Background: The efficacy of T cell therapies for cancer may be limited when targeting tumour-associated antigens (TAA) which are also self-antigens. Ongoing exposure to TAA on normal cells may lead to tolerance via anergy or exhaustion of antigen-specific T cells. Methods: We have designed a model of tolerance to TAA in which T cell receptor (TCR)-transduced CD8 T cells recognise pMDM2, a TAA that is also a ubiquitous self-antigen. CD8+ T cells were transduced with pMDM2-specific TCR (MDM-CD8) and transferred to sub-lethally irradiated B6 mice that express pMDM2 in the context of MHC Class I (H2-Kb). MDM-CD8 cells are detectable 4 weeks after transfer but show defective in vivo killing of target cells pulsed with MDM2 peptide. We have used this model to determine the mechanism of tolerance and to evaluate whether tolerant CD8+ T cells can be rescued by CD4 help. Results: To determine whether tolerance of MDM-CD8 cells was dependent upon recognition of cognate antigen, we transferred MDM-CD8 cells into mice of a different MHC background (BALB/c) which lack H2-Kb required for presentation of the TCR-recognised MDM2 peptide. When BALB/c MDM-CD8 cells were transferred to BALBc hosts their functions were preserved and they retained efficient antigen-specific cytolysis. To determine whether tolerance could be modified by provision of CD4+ T cell help, we co-transferred MDM-CD8 with transgenic OT-II CD4+ cells. OT-II cells were primed with dendritic cells (DCs) loaded with cognate pOVA323-339 or irrelevant peptide. When activated through their TCR, OT-II cells increased both the frequency of MDM2-specific CD8 cells and their cytotoxic functions, indicating that CD4 help can overcome CD8 tolerance to TAA. Ineffective antigen presentation to CD4 cells and lack of known MHC class II-restricted TAA are major limitations to providing CD4 help in T cell therapy for cancer. We therefore tested whether transfer of the MHC Class I-restricted MDM2 TCR into CD4 cells could provide help upon transfer to antigen-expressing hosts. Co-transfer of MDM2-TCR-transduced CD4 cells with CD8 cells improved antigen-specific killing of target cells when compared to single transfer of either TCR-transduced CD8 or CD4 cells. Conclusion: CD4 cells rendered capable of responding to an MHC class I restricted TAA by TCR transfer can rescue tolerance developing in a CD8 population with the same specificity. This is potentially a novel way to circumvent defective immune responses arising in adoptively transferred effector cells due to prolonged exposure to cognate antigen on normal host cells. Disclosures: Stauss: Cell Medica: Scientific Advisor Other.

2007 ◽  
Vol 204 (9) ◽  
pp. 2023-2030 ◽  
Author(s):  
Ian Galea ◽  
Martine Bernardes-Silva ◽  
Penny A. Forse ◽  
Nico van Rooijen ◽  
Roland S. Liblau ◽  
...  

CD8 T cells are nature's foremost defense in encephalitis and brain tumors. Antigen-specific CD8 T cells need to enter the brain to exert their beneficial effects. On the other hand, traffic of CD8 T cells specific for neural antigen may trigger autoimmune diseases like multiple sclerosis. T cell traffic into the central nervous system is thought to occur when activated T cells cross the blood-brain barrier (BBB) regardless of their antigen specificity, but studies have focused on CD4 T cells. Here, we show that selective traffic of antigen-specific CD8 T cells into the brain occurs in vivo and is dependent on luminal expression of major histocompatibility complex (MHC) class I by cerebral endothelium. After intracerebral antigen injection, using a minimally invasive technique, transgenic CD8 T cells only infiltrated the brain when and where their cognate antigen was present. This was independent of antigen presentation by perivascular macrophages. Marked reduction of antigen-specific CD8 T cell infiltration was observed after intravenous injection of blocking anti–MHC class I antibody. These results expose a hitherto unappreciated route by which CD8 T cells home onto their cognate antigen behind the BBB: luminal MHC class I antigen presentation by cerebral endothelium to circulating CD8 T cells. This has implications for a variety of diseases in which antigen-specific CD8 T cell traffic into the brain is a beneficial or deleterious feature.


Blood ◽  
2006 ◽  
Vol 109 (8) ◽  
pp. 3300-3307 ◽  
Author(s):  
Paul R. Hess ◽  
Carie Barnes ◽  
Matthew D. Woolard ◽  
Michael D. L. Johnson ◽  
John M. Cullen ◽  
...  

Abstract CD8+ cytotoxic T lymphocytes (CTLs) are important effector cells responsible for tissue destruction in several autoimmune and allograft-related diseases. To discover if pathogenic T cells could be selectively deleted, we investigated the ability of a toxin coupled to major histocompatibility complex (MHC) class I tetramers to kill antigen-specific CD8+ T cells. H2-Db tetramers were assembled using streptavidin conjugated to the ribosome-inactivating protein (RIP) saporin (SAP). These tetramers inhibited ribosome activity in vitro, retained the T-cell receptor (TCR)–binding specificity of their nontoxic counterparts, and were internalized by 100% of target cells, leading to cell death in 72 hours. Cytotoxicity was dependent on the tetramer dose and avidity for the T cell. A single injection of the SAP-coupled tetramer eliminated more than 75% of cognate, but not control, T cells. This work demonstrates the therapeutic potential of cytotoxic tetramers to selectively eradicate pathogenic clonotypes while leaving overall T-cell immunity intact.


2002 ◽  
Vol 196 (12) ◽  
pp. 1627-1638 ◽  
Author(s):  
Laura Bonifaz ◽  
David Bonnyay ◽  
Karsten Mahnke ◽  
Miguel Rivera ◽  
Michel C. Nussenzweig ◽  
...  

To identify endocytic receptors that allow dendritic cells (DCs) to capture and present antigens on major histocompatibility complex (MHC) class I products in vivo, we evaluated DEC-205, which is abundant on DCs in lymphoid tissues. Ovalbumin (OVA) protein, when chemically coupled to monoclonal αDEC-205 antibody, was presented by CD11c+ lymph node DCs, but not by CD11c− cells, to OVA-specific, CD4+ and CD8+ T cells. Receptor-mediated presentation was at least 400 times more efficient than unconjugated OVA and, for MHC class I, the DCs had to express transporter of antigenic peptides (TAP) transporters. When αDEC-205:OVA was injected subcutaneously, OVA protein was identified over a 4–48 h period in DCs, primarily in the lymph nodes draining the injection site. In vivo, the OVA protein was selectively presented by DCs to TCR transgenic CD8+ cells, again at least 400 times more effectively than soluble OVA and in a TAP-dependent fashion. Targeting of αDEC-205:OVA to DCs in the steady state initially induced 4–7 cycles of T cell division, but the T cells were then deleted and the mice became specifically unresponsive to rechallenge with OVA in complete Freund's adjuvant. In contrast, simultaneous delivery of a DC maturation stimulus via CD40, together with αDEC-205:OVA, induced strong immunity. The CD8+ T cells responding in the presence of agonistic αCD40 antibody produced large amounts of interleukin 2 and interferon γ, acquired cytolytic function in vivo, emigrated in large numbers to the lung, and responded vigorously to OVA rechallenge. Therefore, DEC-205 provides an efficient receptor-based mechanism for DCs to process proteins for MHC class I presentation in vivo, leading to tolerance in the steady state and immunity after DC maturation.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 5262-5262
Author(s):  
Emma Morris ◽  
Aristotle Tsallios ◽  
Gavin Bendle ◽  
Shao-an Xue ◽  
Hans Stauss

Abstract CD4 helper T cells play a critical role in the anti-tumour immune response. Cytokines secreted by CD4 T cells can have a direct effect on tumour cells and provide help for CTL priming and effector function. In this study we tested if it was possible to generate MHC class I-restricted helper T cells by retroviral TCR gene transfer into CD4 lymphocytes. Methods: We used a TCR (utilising V11) that recognises the influenza virus A nucleoprotein (NP366–379) peptide in the context of murine Db MHC class I. Murine splenocytes were isolated from C57BL/6 mice (H2b) and activated with conconavalin A and IL-7, and after 48 hours transduced with the pMX-TCR-IRES-TCR retroviral vector. The transduced splenocytes were then cultured in the presence of IL2 for a further 48 hours before staining with anti-murine CD4, CD8 and V11 antibodies and sorting into CD4+ V11+ and CD8+ V11+ populations. Sorted cells were expanded for a further 48–72 hours prior to functional assays. Functional Assays: Purified TCR-transduced (TCR-Td) CD8+ cells and purified TCR-Td CD4+ cells were tested for IFN secretion in response to dendritic cells (DCs) pulsed with NP peptide, an irrelevant peptide (pMDM100) or no peptide. Further experiments examined IFN secretion in response to peptide-loaded tumour cells (EL4 murine lymphoma cells) or transfected tumour cells expressing NP endogenously. Secretion of IFN was measured by ELISA. Results: (1) Antigen-specific IFN secretion was observed by both CD8+ (100% purity) and CD4+ cells (99.93% purity) expressing the class I-restricted TCR when incubated with peptide-loaded DCs. When tested with no peptide or irrelevant peptide, no IFN secretion was observed. The CD8+ cells were more sensitive, recognizing lower concentrations of peptide (10pM) than CD4+ cells (100pM). With peptide-coated EL4 tumour cells as stimulator cells, CD8+ cells showed a peptide-specific response. In contrast, the TCR-Td CD4+ cells were only able to elicit a weak peptide-specific response. Similarly, TCR-Td CD8+ cells were able to recognise NP transfected EL4 tumour cells (EL4NP68), whereas the CD4+ cells were unable to. However, the addition of syngeneic DCs restored the CD4+ cell response to NP transfected EL4 tumour cells to one equivalent to that seen with the TCR-Td CD8+ populations (Table 1). Summary: We have demonstrated that it is feasible to generate MHC class I-restricted CD4+ helper T cells, that are specific for peptide epitopes presented in the context of MHC class I. The CD4+ T cells can recognise antigen-expressing tumour cells in the presence of professional APC, such as DCs. The mechanism by which APC restore tumour recognition may involve trans-costimulation or cross presentation. The data suggest that class I-restricted CD4+ T cells may be able to contribute to enhanced anti-tumour immunity. αββββγγγγγβ γIFN Secretion (ng/ml) After Stimulation with DCs or Tumour Cells T Cell (Responder Cell) Stimulator Cell/s No Peptide NP (100nM) pMDM100 (100nM) Abbreviations: ND not done; DC, EL4 and EL4NP68 as indicated in text. TCR-Td CD8+ DCs 0.1 163.2 0.7 TCR-Td CD8+ EL4 0.1 19.9 0.2 TCR-Td CD8+ EL4NP68 16.6 ND ND TCR-Td CD8+ EL4NP68 + DCs 31.2 ND ND TCR-Td CD4+ DCs 0.1 163.9 0.2 TCR-Td CD4+ EL4 0.1 0.8 0.0 TCR-Td CD4+ EL4NP68 0.2 ND ND TCR-Td CD4+ EL4NP68 + DCs 25.3 ND ND


Blood ◽  
1999 ◽  
Vol 93 (12) ◽  
pp. 4375-4386 ◽  
Author(s):  
Susanne Müerköster ◽  
Marian Rocha ◽  
Paul R. Crocker ◽  
Volker Schirrmacher ◽  
Victor Umansky

We recently established an effective immune T-cell–mediated graft-versus-leukemia (GVL) murine model system in which complete tumor remissions were achievable even in advanced metastasized cancer. We now describe that this T-cell–mediated therapy is dependent on host macrophages expressing the lymphocyte adhesion molecule sialoadhesin (Sn). Depletion of Kupffer cells in tumor-bearing mice during adoptive immunotherapy (ADI) or the treatment of these animals with anti-Sn monoclonal antibodies led to complete or partial inhibition of the immune T-cell–mediated therapeutic effect. Furthermore, Sn+ host macrophages in livers formed clusters during ADI with donor CD8 T cells. To test for a possible antigen presentation function of these macrophages, we used as an in vitro model the antigen β-galactosidase for which a dominant major histocompatibility complex (MHC) class I Ld-restricted peptide epitope is known to be recognized by specific CD8 cytotoxic T lymphocytes (CTL). We demonstrate that purified Sn+ macrophages can process exogenous β-galactosidase and stimulate MHC class I peptide-restricted CTL responses. Thus, Sn+ macrophages, which are significantly increased in the liver after ADI, may process tumor-derived proteins via the MHC class I pathway as well as via the MHC class II pathway, as shown previously, and present respective peptide epitopes to CD8 as well as to CD4 immune T cells, respectively. The synergistic interactions observed before between immune CD4 and CD8 T cells during ADI could thus occur in the observed clusters with Sn+ host macrophages.


Blood ◽  
2000 ◽  
Vol 96 (8) ◽  
pp. 2828-2833 ◽  
Author(s):  
Yiwen Li ◽  
Maurizio Bendandi ◽  
Yuping Deng ◽  
Cynthia Dunbar ◽  
Nikhil Munshi ◽  
...  

Immunoglobulin secreted by myeloma cells contains a unique antigenic determinant (idiotype [Id]) that may serve as a tumor-specific antigen. Although Id-protein–specific T-cell responses have been reported in patients with myeloma, it is not known whether primary myeloma tumor cells can present naturally processed Id peptides on their surface as a target. We immunized 2 healthy human stem-cell donors with Id proteins from their recipients. T cells from the immunized donors released high levels of T-helper 1–type cytokines in response to stimulation with myeloma cells from their recipients. The T-cell–mediated cytokine response to tumor cells was blocked by a major histocompatibility complex (MHC) class I monoclonal antibody, whereas the response to soluble Id protein was dependent on MHC class II. To investigate whether Id-specific CD8+ T cells can recognize and kill autologous myeloma cells, we generated T cells from peripheral blood mononuclear cells from a third patient with myeloma by means of in vitro stimulation with autologous dendritic cells pulsed with Id protein. Tumor-specific lysis of myeloma cells was demonstrated by the lack of killing of autologous nonmalignant B cells or natural killer–sensitive K562 cells. Lysis of autologous myeloma targets was restricted by MHC class I molecules. These data represent the first report of class I–restricted T-cell recognition of fresh autologous myeloma targets and formally demonstrate that human myeloma cells can serve as targets of an Id-specific T-cell response.


Blood ◽  
2001 ◽  
Vol 98 (2) ◽  
pp. 467-474 ◽  
Author(s):  
Patricia A. Taylor ◽  
Christopher J. Lees ◽  
Herman Waldmann ◽  
Randolph J. Noelle ◽  
Bruce R. Blazar

The promotion of alloengraftment in the absence of global immune suppression and multiorgan toxicity is a major goal of transplantation. It is demonstrated that the infusion of a single modest bone marrow dosage in 200 cGy-irradiated recipients treated with anti-CD154 (anti-CD40L) monoclonal antibody (mAb) resulted in chimerism levels of 48%. Reducing irradiation to 100 or 50 cGy permitted 24% and 10% chimerism, respectively. In contrast, pan–T-cell depletion resulted in only transient engraftment in 200 cGy-irradiated recipients. Host CD4+ cells were essential for alloengraftment as depletion of CD4+ cells abrogated engraftment in anti-CD154–treated recipients. Strikingly, the depletion of CD8+ cells did not further enhance engraftment in anti-CD154 mAb–treated recipients in a model in which rejection is mediated by both CD4+ and CD8+ T cells. However, anti-CD154 mAb did facilitate engraftment in a model in which only CD8+ T cells mediate rejection. Furthermore, CD154 deletional mice irradiated with 200 cGy irradiation were not tolerant of grafts, suggesting that engraftment promotion by anti-CD154 mAb may not simply be the result of CD154:CD40 blockade. Together, these data suggest that a CD4+regulatory T cell may be induced by anti-CD154 mAb. In contrast to anti-CD154 mAb, anti-B7 mAb did not promote donor engraftment. Additionally, the administration of either anti-CD28 mAb or anti-CD152 (anti–CTLA-4) mAb or the use of CD28 deletional recipients abrogated engraftment in anti-CD154 mAb–treated mice, suggesting that balanced CD28/CD152:B7 interactions are required for the engraftment-promoting capacity of anti-CD154 mAb. These data have important ramifications for the design of clinical nonmyeloablative regimens based on anti-CD154 mAb administration.


Blood ◽  
1989 ◽  
Vol 74 (1) ◽  
pp. 343-353 ◽  
Author(s):  
P Fisch ◽  
G Weil-Hillman ◽  
M Uppenkamp ◽  
JA Hank ◽  
BP Chen ◽  
...  

Abstract Culturing of leukemic blood lymphocytes from a patient with acute T- cell lymphoblastic leukemia (T-ALL) with interleukin-2 (IL-2) yielded T- cell line AK-1 with a remarkable cytotoxic specificity. This line mediated strong lysis of tumor target lines expressing major histocompatibility complex (MHC) class I antigens, such as Raji, CEM, and Molt-4 cells, but no killing of K562 and Daudi cells, which are deficient in MHC class I. In contrast, lymphokine-activated killer (LAK) cells from normal donors destroyed all these tumor targets, without MHC restriction. Line AK-1, originating from residual normal T cells present in the leukemic blood, lysed autologous leukemic blasts and peripheral blood lymphocytes (PBL) from many but not all allogeneic individuals but failed to kill autologous remission lymphocytes. Destruction of the autologous leukemic targets by AK-1 could be inhibited by unlabeled competitor target cells that were lysed by AK-1, but not by target cells that were not lysed. This suggests that AK-1 specifically recognized an alien determinant on the autologous ALL cells, crossreactive with allogeneic MHC class I antigens. This reactivity with some degree of tumor specificity may be a leukemic equivalent to responses reported for populations of tumor infiltrating lymphocytes (TIL) seen in some solid tumors.


Blood ◽  
1999 ◽  
Vol 93 (12) ◽  
pp. 4375-4386 ◽  
Author(s):  
Susanne Müerköster ◽  
Marian Rocha ◽  
Paul R. Crocker ◽  
Volker Schirrmacher ◽  
Victor Umansky

Abstract We recently established an effective immune T-cell–mediated graft-versus-leukemia (GVL) murine model system in which complete tumor remissions were achievable even in advanced metastasized cancer. We now describe that this T-cell–mediated therapy is dependent on host macrophages expressing the lymphocyte adhesion molecule sialoadhesin (Sn). Depletion of Kupffer cells in tumor-bearing mice during adoptive immunotherapy (ADI) or the treatment of these animals with anti-Sn monoclonal antibodies led to complete or partial inhibition of the immune T-cell–mediated therapeutic effect. Furthermore, Sn+ host macrophages in livers formed clusters during ADI with donor CD8 T cells. To test for a possible antigen presentation function of these macrophages, we used as an in vitro model the antigen β-galactosidase for which a dominant major histocompatibility complex (MHC) class I Ld-restricted peptide epitope is known to be recognized by specific CD8 cytotoxic T lymphocytes (CTL). We demonstrate that purified Sn+ macrophages can process exogenous β-galactosidase and stimulate MHC class I peptide-restricted CTL responses. Thus, Sn+ macrophages, which are significantly increased in the liver after ADI, may process tumor-derived proteins via the MHC class I pathway as well as via the MHC class II pathway, as shown previously, and present respective peptide epitopes to CD8 as well as to CD4 immune T cells, respectively. The synergistic interactions observed before between immune CD4 and CD8 T cells during ADI could thus occur in the observed clusters with Sn+ host macrophages.


Sign in / Sign up

Export Citation Format

Share Document