High Density Lipoprotein and Apolipoprotein A-I Bind Von Willebrand Factor and Prevent Its Self-Association Into Thick Fibers

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 194-194
Author(s):  
Dominic W. Chung ◽  
Ying Zheng ◽  
Junmei Chen ◽  
Minhua Ling ◽  
Xiaoyun Fu ◽  
...  

Abstract Von Willebrand factor (VWF) is a large plasma protein secreted constitutively or upon activation by endothelial cells. On activated endothelium, a portion of the VWF molecules remain attached to the surface, where they self-associate to produce long hyperadhesive strands and fibers capable of capturing platelets and other blood cells if not removed by the plasma metalloprotease ADAMTS13. Failure to clear these fibers underlies the pathophysiology of many microangiopathies, most prominently thrombotic thrombocytopenic purpura, in which accumulation of VWF-platelet aggregates in the microvasculature leads to ischemia and organ failure. VWF self-association also plays a major role in the adsorption of purified VWF to surfaces. We observed that adsorption of VWF to surfaces began with contact and direct binding of VWF to the surface via hydrophobic interactions. After saturating the binding sites on the surface, VWF continued to bind to and associate with the immobilized VWF molecules via hydrophilic VWF-VWF interactions, depositing multiple layers of VWF molecules on the surface until essentially all VWF molecules were depleted from the fluid phase. Using the method of Magnani and coworkers, we eluted VWF molecules that were bound to the surface via VWF-VWF interactions with the ionic detergent SDS, and then eluted VWF molecules that were bound to the surface via VWF-surface interactions with the zwitterion detergent CHAPS. Quantification of the eluted VWF showed that self-association of VWF onto the surface accounted for >80% of the adsorptive loss. Using the disappearance of purified VWF from the fluid phase as a measurement of self-association, we fractionated human plasma by heat and identified that apolipoprotein A-I (ApoAI), the major apolipoprotein component in high density lipoprotein (HDL) particles, which is stable to heat at 100° C, stabilized and prevented VWF surface adsorption by interfering with VWF self-association. Commercial preparations of ApoAI and HDL, prepared without exposure to heat, similarly prevented adsorption of purified VWF to surfaces. Half-maximal stabilization occurred at a molar ratio of eight ApoAI molecules to each VWF subunit. We assessed the role of HDL in VWF self-association that leads to the assembly of ultra-large VWF (ULVWF) strings on the surface of phorbol myristyl acetate-stimulated endothelial cells in flow chambers. We observed that HDL reduced the number and length of platelet-decorated ULVWF strings on the endothelial surface, consistent with the ability of HDL to interfere with VWF self-association and ULVWF assembly. We also studied the role of ApoAI in the recruitment of fluid-phase VWF to hyperadhesive ULVWF fibers in a synthetic microvessel system. We observed that ApoAI directly bound to hyperadhesive transluminal ULVWF fibers under flow, and this binding completely blocked the recruitment of fluid phase VWF molecules to the immobilized ULVWF fibers. These results showed that ApoAI or HDL interacted with hyperadhesive forms of VWF and modified the adhesive properties of the ULVWF strings and fibers. Consistent with its antithrombotic properties, the level of ApoAI in patients with hyperadhesive forms of VWF, such as thrombotic thrombocytopenic purpura and sepsis, was significantly reduced. These results suggest that regulation of VWF self-association may be another mechanism by which HDL protects against cardiovascular disease and extends its protective effects from large arteries to the microvasculature. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2016 ◽  
Vol 127 (5) ◽  
pp. 637-645 ◽  
Author(s):  
Dominic W. Chung ◽  
Junmei Chen ◽  
Minhua Ling ◽  
Xiaoyun Fu ◽  
Teri Blevins ◽  
...  

Key Points High-density lipoprotein and its major apolipoprotein ApoA-I prevent von Willebrand factor self-association. Targeting von Willebrand factor self-association could be a new approach to treating thrombotic disorders.


2011 ◽  
pp. 11-24
Author(s):  
Joanna Gouni-Berthold ◽  
Wilhelm Krone

• Lipids and lipoproteins have a central role in the pathogenesis of atherosclerosis. • The concentration of low-density lipoprotein (LDL) is strongly and directly related to risk of atherosclerosis whereas high-density lipoprotein (HDL) is inversly related, low HDL being an independent risk factor. • The role of plasma triglycerides is less well defined. • The ratio of apolipoprotein B (the major apolipoprotein of LDL) to apolipoprotein A-1 (the major apolipoprotein of HDL) is emerging as the best predictor of atherosclerotic risk.


2020 ◽  
Vol 21 (Supplement_1) ◽  
Author(s):  
K Ozawa ◽  
M Muller ◽  
O Varlamov ◽  
W Packwood ◽  
A Xie ◽  
...  

Abstract Funding Acknowledgements JSPS Overseas Research Fellowship Background Platelets are known to be both pro-inflammatory and pro-mitogenic. However, the role of platelet-endothelial interactions in the initiation and growth of atherosclerotic lesions is not well understood. Purpose We used contrast-enhanced ultrasound (CEU) molecular imaging of the arterial endothelium to test the hypothesis that platelet attachment to endothelial Von Willebrand Factor (VWF) promotes atherogenesis. Methods We studied wild-type mice (WT), low-density lipoprotein deficient mice fed western diet to produce atherosclerosis (LDLR-/-), and LDLR-/- mice also deficient for ADAMTS-13 (LDLR-/-ADAMTS13-/-) which is the enzyme responsible for proteolytic cleavage of endothelial-associated VWF. Mice were studied at 20 weeks and 30 weeks of age. A subset of LDLR-/- mice were treated with recombinant ADAMTS13 1 hr prior to study. Proximal aortic CEU molecular imaging of P-selectin, vascular cell adhesion molecule (VCAM)-1, von Willebrand factor (VWF), and platelet GPIbα was performed. Aortic distensibility was assessed using high-frequency (30 MHz) transthoracic echocardiography and tail cuff blood pressure systems. NF-κB of aorta was assessed by ELISA kit. Plaque size and composition were assessed by histology. Platelets and macrophage immunohistochemistry were also performed on confocal microscopy. Results Aortic molecular imaging signal for P-selectin, VCAM-1, VWF, and platelet adhesion was significantly higher in LDLR-/- than WT mice, and increased by 2-fold between 20 and 30 wks of age. Signal for VWF and platelet adhesion was abolished 1 h after administration of ADAMTS13, confirming that platelet adhesion was VWF-mediated. At 20 and 30 wks of age, molecular imaging signal for all targets was 2-fold higher (p < 0.01) in LDLR-/-ADAMTS13-/- versus LDLR-/- mice. The LDLR-/-ADAMTS13-/- mice also had lower aortic distensibility (p < 0.05), had a 2-fold higher NF-κB signal (p < 0.05), and had a 2-fold greater total plaque area (p < 0.01). Fluorescent immunohistochemistry confirmed that the LDLR-/-ADAMTS13-/- mice also had greater platelets (p < 0.05) and increased macrophage content (p < 0.05) than LDLR-/- mice in aortic plaque. Conclusion In early to mid-stage atherosclerosis, abnormal regulation of endothelial-associated VWF results in platelet adhesion and secondary up-regulation of endothelial inflammatory adhesion molecules, thereby promoting atherosclerotic plaque progression. These results indicate an important role of platelet-endothelial interactions in early atherogenesis. Abstract 418 Figure


2009 ◽  
Vol 285 (7) ◽  
pp. 4387-4397 ◽  
Author(s):  
Takao Kimura ◽  
Hideaki Tomura ◽  
Koichi Sato ◽  
Masaaki Ito ◽  
Isao Matsuoka ◽  
...  

Author(s):  
Nadarajah Varatharajah

COVID-19 thromboembolic disease has brought all of us back to the drawing board. In COVID-19, pre-existing activated endothelium with increased Von Willebrand factor (VWF), low density lipoprotein (LDL) promoting “self-association” and “sticking” of long VWF strings to the vascular endothelial wall, suppressed ADAMTS13 cleavage of VWF, hypoxia induced upregulation and activation of VWF, fibrous network from neutrophil extracellular traps (NETs) with free DNA and histone, all appear to be initiating the thrombogenesis. Worsening complement activation, cytokine storm and resulting endothelial destruction, unregulated thrombogenesis leads to vascular occlusions and hypoxia. At this stage, the presence of abundant extracellular DNA, histone and -defensins appears worse than the SARS-CoV-2 itself. Previously observed in vitro mechanisms like histone “auto-activating” prothrombin, histone activated platelets generating thrombin without FXII, thrombin and plasmin cleaving complement C5 appears highly likely in COVID-19. Megakaryocytes are actively producing platelets in the lungs and appear to play a major role in thrombogenesis of COVID-19 raising suspicion of emperipolesis. This focused review is a compilation of my observations in relation to the pathophysiology of the intravascular environment, mainly in COVID-19 lungs. Pathophysiology based clinical trials are paramount in reducing morbidity and mortality in COVID-19.


2003 ◽  
Vol 23 (03) ◽  
pp. 103-108 ◽  
Author(s):  
A. Winkler ◽  
J. A. Kremer Hovinga ◽  
V. Bianchi ◽  
J.-D. Studt ◽  
B. Lämmle

SummaryWe present the case of a woman (age: 64 years) with acute thrombotic microangiopathy due to severe acquired ADAMTS-13 (von Willebrand factor-cleaving protease) deficiency. She was successfully treated with plasma exchange therapy and glucocorticosteroids. She relapsed seven months later, and splenectomy led to lasting remission.Pathomechanisms of thrombotic thrombocytopenic purpura, especially the role of ADAMTS-13, are discussed and therapeutic measures outlined.


Sign in / Sign up

Export Citation Format

Share Document