PI3Kδ Inhibitor Idelalisib Inhibits AKT Signaling In Myelofibrosis Patients On Chronic JAK Inhibitor Therapy

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4065-4065
Author(s):  
Sarah A Meadows ◽  
Huong (Marie) Nguyen ◽  
Christophe Queva ◽  
Brian J. Lannutti ◽  
Adam Kashishian ◽  
...  

Abstract Background Myelofibrosis (MF) is characterized by activation of the JAK-STAT pathway, with the JAK2 V617F mutation found in 50-60% of patients. Although JAK inhibitors, such as FDA-approved ruxolitinib, have been effective in reducing splenomegaly and mitigating symptoms, patients uniformly exhibit “disease persistence” which is equated with a lack of hematologic or molecular remissions, or with loss of clinical improvement over time. Prior studies using cell lines or primary patient samples have shown that the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway is dysregulated in MPNs and is a potential therapeutic target (Kamishimoto et al, Cell Signal 2011; Huang et al, ASH 2009 Abstract 1896; Vannucchi et al, ASH 2011 Abstract 3835; Khan et al, Leukemia 2013). In CLL and other B-cell malignancies, the PI3K pathway is constitutively upregulated and is dependent on PI3Kδ. Idelalisib is a δ-isoform-specific PI3K inhibitor that is efficacious in patients with CLL and indolent NHL. Herein, the specific aims of our study were: 1) to determine whether the PI3Kδ isoform is expressed in progenitor cells from MF patients, and 2) to evaluate the inhibitory effects of idelalisib on basal and thrombopoietin (TPO)-stimulated AKT/S6RP phosphorylation (p-AKT/p-S6RP) in cell lines and in primary samples from MF patients who were either on chronic ruxolitinib (RUX) therapy or were not exposed to ruxolitinib (RUX-naïve or off-therapy at the time of sample collection). Methods To evaluate isoform expression, CD34+ cells from the peripheral blood of MF patients were sorted by FACSAria and cell lysates were analyzed by Simple Western using Peggy (ProteinSimple) with recombinant protein as a positive control. For cell line studies, BaF3/MPL W515L and UT-7/TPO cells were stimulated with recombinant human TPO and incubated with idelalisib. Whole cell lysates were analyzed by Western blot to quantify the % of p-AKT and p-S6RP levels compared to idelalisib-untreated cells. For MF patient samples, PBMCs were isolated from the whole blood of MF patients who were either RUX-naïve or on chronic RUX therapy and treated for 2 hours with idelalisib. Antibodies specific to p-AKT Ser473 and pS6RP Ser235/236 were used to quantify the proportion of p-AKT and pS6RP in basal and TPO-stimulated CD34+/CD3-/CD14-/CD19-/CD66- gated cells. Results The PI3Kδ isoform was found to be the predominant isoform expressed in 3 of 3 RUX-naïve and 4 of 4 chronic RUX patients tested; PI3Kβ was expressed at lower levels and no PI3Kα or γ was detected (Figure 1). In BaF3/MPL cells, p-AKT levels decreased by 51%, 64% and 67%, with 0.1, 1.0, 2.0 µM idelalisib, respectively, when compared to idelalisib-untreated cells; p-S6RP levels decreased by 24%, 27%, and 41%, respectively. Similarly, for UT-7/TPO cells, p-AKT decreased by 11%, 44%, and 55%, and p-S6 decreased by 13%, 28% and 48%, respectively. In CD34+ cells from RUX-naïve patients (n=3), p-AKT and p-S6RP levels decreased with increasing concentrations of idelalisib (0.02, 0.2, 2 µM). All patients on chronic RUX treatment demonstrated decreased p-AKT (n=3) and p-S6RP (n=4 basal, n=3 TPO-induced; patient 4 was only tested for basal) levels with increasing concentrations of idelalisib in both basal (Figure 2A) and TPO-stimulated (Figure 2B) assays. All 4 chronic RUX and 2 of 3 RUX-naïve patients tested carried the JAK2 V617F mutation. Conclusions The PI3Kδ isoform was identified as the predominant isoform expressed in CD34+ cells from MF patients. In both cell lines and patient samples, idelalisib inhibits the PI3K/AKT pathway, with a dose-dependent decrease of p-AKT and p-S6RP. Inhibition was observed for both RUX-naïve and chronic RUX-treated patients. Studies are underway to evaluate the effects of idelalisib on progenitor colony formation and induction of cell cycle arrest and apoptosis. * Meadows and Nguyen are first co-authors Disclosures: Meadows: Gilead: Employment, Equity Ownership. Queva:Gilead: Employment, Equity Ownership. Lannutti:Gilead, Acetra, Effector: Consultancy, Employment, Equity Ownership, Membership on an entity’s Board of Directors or advisory committees. Kashishian:Gilead: Employment, Equity Ownership. Jun:Gilead: Employment, Equity Ownership. Coutre:Gilead: Research Funding. Dansey:Gilead: Employment, Equity Ownership. Gotlib:Gilead: Consultancy, Research Funding.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 873-873
Author(s):  
Maria Eugenia Riveiro ◽  
Lucile Astorgues-Xerri ◽  
Charlotte Canet-jourdan ◽  
Mohamed Bekradda ◽  
Esteban Cvitkovic ◽  
...  

Abstract Background: Exposure of cancer cells to BET-BRD protein inhibitors has been associated with a significant downregulation of C-MYC expression, leading to suppression of the transcriptional program linked to proliferation and survival. C-MYC mRNA expression, mediated by STAT5 activation, is induced by the JAK2 (V617F) mutation (JAK2mu) in transfected BA/F3 cells (Funakoshi-Tago, et al. 2013). We selected JAK2mu leukemia-derived cell lines for preclinical evaluation of OTX015 (Oncoethix, Switzerland), a selective orally-bioavailable inhibitor of BET-BRD proteins with promising early results in an ongoing phase I study in hematologic malignancies (Herait et al, AACR 2014, NCT01713582). Material and Methods: Antiproliferative effects of OTX015 and JQ1 were evaluated in three established JAK2mu human myeloid leukemia cell lines (SET2, MUTZ8, HEL 92.1.7). GI50 (OTX015 concentration inducing 50% growth inhibition) and Emax (% cell proliferation at 6 µM OTX015) values were determined by MTT assay after 72h exposure. Protein levels were analyzed by Western blot, and RT-PCR was performed with Fast SYBR Green Master Mix on a StepOnePlus Real-Time PCR System. For cell cycle analysis, cells were stained with propidium iodide and analyzed with a FACScan flow cytometer. Induction of apoptosis was evaluated by Annexin-V. Simultaneous schedules of OTX015 combined with ruxolitinib, a JAK2 inhibitor, were evaluated. Combination index (CI) was determined using the Chou & Talalay method; CI<1 reflects synergy, CI=1 additivity and CI>1 antagonism. Results: After 72h exposure, SET2 was the most sensitive cell line (GI50=0.12 µM and Emax=15%), and HEL92.1.7 cells had a GI50=1.9 µM with an Emax=23%. MUTZ8 was the most resistant cell line with an Emax=61%. Similar GI50 and Emax values are observed with JQ1. A significant increase in the fraction of apoptotic cells was observed in SET2 cells after 72h 500 nM OTX015 exposure. Non-significant increases in Annexin-positive cells were seen in HEL92.1.7 and MUTZ8 cells. Cell cycle analysis revealed a significant increase in the percentage of SET2 cells in subG0/G1 after 24, 48, and 72h 500 nM OTX015, correlating with the increase in apoptosis. Conversely, an increase in the percent cells in the G1 phase was observed in HEL 92.1.7 cells. After 4h 500 nM OTX015, BRD2 mRNA levels were significantly increased in all three cell lines, whereas BRD3 levels were not modified. BRD4 mRNA levels increased significantly after 48h in SET2 cells. OTX015 treatment induced a transitory reduction of C-MYC mRNA levels after 4h with an increase at 24h in all cell lines. At the protein level, C-MYC decreased substantially in SET2 cells after 4h, with complete disappearance after 48h without recovery, while in the less sensitive MUTZ8 cell line, the decrease in C-MYC protein levels was transitory. Conversely, this proto-oncogene was not modified in HEL92.1.7 cells. In addition, p-STAT5 protein was downregulated by OTX015 in SET2 cells, but was increased in MUTZ8 cells after longer exposure time. Furthermore, BCL2 mRNA and protein levels decreased in SET2 cells, correlating with the apoptosis induction seen with OTX015 treatment. In HEL92.1.7 cells, P21 mRNA levels and cyclin D1 protein levels increased after 4h and 48h OTX015 treatment, respectively. Moreover, concomitant combination of OTX015 with ruxolitinib showed a highly antagonist effect (CI>7) in SET2 cells, the most sensitive cell line to both agents. On the other hand, very strong synergy was observed in HEL92.1.7 (CI=0.19) and MUTZ8 (CI=0.41), despite their low sensitivity to single agent OTX015. Conclusions. Our findings demonstrate that OTX015 exhibits potent activity against cultured leukemic cells expressing the JAK2 V617F mutation, inducing apoptosis or cell cycle arrest at submicromolar concentrations. This activity correlates with modulation of C-MYC, p-STAT5, BCL2, P21 and cyclin D1 mRNA and protein levels following OTX015 treatment. Our study highlights the novel and synergistic activity of the combination of a BRD antagonist and a JAK inhibitor in human leukemic cells harboring the JAK2 V617 F mutation, supporting the rationale for in vivo testing of OTX015 in combination with JAK inhibitors in leukemic JAK2mu models. Disclosures Riveiro: Oncoethix SA: Research Funding. Astorgues-Xerri:Oncoethix SA: Research Funding. Canet-jourdan:Oncoethix SA: Research Funding. Bekradda:Oncoethix SA: Research Funding. Cvitkovic:Oncoethix SA: Membership on an entity's Board of Directors or advisory committees, Shareholder and CSO Other. Herait:Oncoethix SA: CMO and Shareholder Other. Raymond:Oncoethix SA: Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1598-1598
Author(s):  
Paula de Melo Campos ◽  
Joao Machado-Neto ◽  
Adriana Silva Santos Duarte ◽  
Rafaela Mendonça ◽  
Irene Lorand-Metze ◽  
...  

Abstract Background Polycythemia Vera (PV), Essential Thrombocythemia (ET) and Primary Myelofibrosis (PMF) are BCR-ABL1 negative Chronic Myeloproliferative Neoplasms (MPN) characterized by increased myeloid proliferation, with predominant erythroid, megakaryocytic and megakaryocytic/granulocytic expansion, respectively. The finding of a recurrent mutation in the gene of the tyrosine-kinase Janus kinase 2 (JAK2 V617F) in these diseases has raised the hypothesis that this could be the main cause of their development. However, the evidence that MPN patients have a very similar response to JAK2 inhibitors regardless of JAK2 mutation status, and the knowledge that many receptors and substrates may lead to the activation of JAK/STAT, Ras/Raf/MAP kinases and PI3K/Akt/mTOR pathways, indicate the need to investigate other crucial proteins involved in the physiopathology of these diseases. Insulin receptor substrate 2 (IRS2) mediates mitogenic and antiapoptotic signaling from IR, IGF-IR, EPO-R and TPO-R. Previous studies performed on non-hematological cell lines have shown the association of IRS2 with JAK/STAT, PI3K/Akt/mTOR and Ras/Raf/MAP kinases pathways, giving rise to the hypothesis that IRS2 could participate in the activation of crucial signaling pathways in MPN through direct interaction with JAK2 or through alternative mechanisms. Aims To identify the JAK2/IRS2 protein interaction and to study the effects of pharmacological JAK1/2 inhibition (Ruxolitinib) over IRS2 phosphorylation in leukemia cell lines harboring or not the JAK2 V617F mutation; to characterize IRS2 expression in CD34+ cells from patients with MPN and its correlation with clinical data including JAK2 mutation status. Methods Leukemia cell lines carrying JAK2 V617F mutation (HEL) or not (HL60) were used for immunoprecipitation and immunobloting with IRS2 and JAK2 antibodies. Cells treated or not with JAK1/2 inhibitor Ruxolitinib were also submitted to immunoprecipitation and immunobloting with IRS2 and anti-phosphotyrosine antibodies. Peripheral blood mononuclear cells from 28 healthy donors and 97 patients with MPN (PV=28, ET=38, PMF=31) were included, and CD34+ cells were submitted to quantitative PCR (q-PCR). Relative expression of IRS2 was correlated with clinical data and with JAK2 V617F mutation status. Results Immunoprecipitation analysis showed that IRS2 associates with JAK2 in leukemia cell lines harboring (HEL) or not (HL60) the JAK2 V617F mutation. Furthermore, treatment of HEL cell line with the JAK1/2 selective inhibitor Ruxolitinib resulted in decreased IRS2 tyrosine phosphorylation. IRS2 mRNA expression in CD34+ cells were significantly higher in patients with ET when compared to healthy donors (1.70 [0.42-10.60] versus 0.87 [0.01-11.22], p=0.03). There was no difference in IRS2 mRNA expression in PV or PMF patients when compared to healthy donors. Furthermore, significantly higher levels of IRS2 mRNA expression were observed in patients harboring JAK2 V617F mutation when compared to the wild type JAK2 for ET (2.37 [0.96-10.60], n=14 versus 1.54 [0.42-1.54], n=22; p=0.01); and for PMF (2.27 [0.003-10.59], n=20 versus 0.60 [0.02-2.42], n=11; p=0.02). Although there was also a significant difference in IRS2 mRNA expression in mutated versus non mutated JAK2 in PV (p=0.02), the number of non mutated samples was low (n=2). Conclusions Our data indicate that IRS2 is a binding partner of JAK2 in myeloproliferative neoplasms and suggest that this protein association may be involved in cell proliferation in these diseases. The higher IRS2 expression in mutated samples (JAK2 V617F) might be associated with the constitutive activation of JAK2 in these samples. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1125-1125 ◽  
Author(s):  
Tamara K Moyo ◽  
Andrew Sochacki ◽  
Gregory D Ayers ◽  
Michael T. Byrne ◽  
Stephen A. Strickland ◽  
...  

Abstract Background: Therapies for myelofibrosis (MF) are limited and most are palliative. The JAK1/2 inhibitor ruxolitinib reduces spleen size and MF-related symptoms and improves survival, but can be limited by dose-dependent anemia and thrombocytopenia. Moreover, nearly half of ruxolitinib responders relapse within 5 years. PI3Kd is highly expressed in MF patient samples, independent of ruxolitinib pre-exposure. In JAK2-mutated cell lines, inhibition of PI3K/AKT signaling reduced proliferation and clonogenic potential. The once daily, next generation PI3Kd inhibitor TGR-1202 inhibited PI3K/AKT signaling and led to apoptosis in leukemia and lymphoma cell lines and was well-tolerated in clinical studies, with a toxicity profile distinct from that of ruxolitinib and other PI3Kd inhibitors. We hypothesized that adding TGR-1202 to ruxolitinib could resensitize or augment the response of MF patients with lost or suboptimal response to single-agent ruxolitinib. Objective: To assess safety of TGR-1202 in combination with ruxolitinib in MF patients Secondary Objectives: Hematologic response, symptom assessment Methods: MF patients who had sub-optimal responses to ruxolitinib continued their highest tolerated dose of ruxolitinib without change for ≥ 8 weeks, and were assigned to escalating doses of TGR-1202 in a standard 3+3 algorithm. Adverse events (AEs) were graded by NCI-CTCAE v4.03. Efficacy was assessed according to IWG-MRT consensus response criteria. Symptoms were assessed by the MPN symptom assessment form total symptom score (TSS). All patients received Pneumocystis pneumonia prophylaxis after cycle 1. Results: Eleven MF patients were enrolled and received 400 mg (n=3), 800 mg (n=6), or 600 mg TGR-1202 (n=2) daily. Nine were evaluable for response. Median age was 66y, 73% were male. All had ECOG PS 0-1. Five patients had mutations in JAK2, 4 in CALR, and 3 in MPL; these were mutually exclusive with exception of 1 patient with CALR and MPL mutations (Table 1). Median number of cycles of TGR-1202 + ruxolitinib treatment was 5 (1-13). Grade 2 anemia was the most common AE (Table 2). Two patients had asymptomatic Grade 3 elevations in amylase and lipase that persisted after drug was held, meeting criteria for dose limiting toxicities (DLTs) in 2 separate cohorts (TGR-1202 800mg+ruxolitinib 15mg BID and TGR-1202 800mg+ruxolitinib 10mg BID). Both patients had peak plasma TGR-1202 concentrations 1.5-2x higher than the other patients receiving 800mg TGR-1202, although steady-state levels were equivalent. The maximum tolerated dose (MTD) of TGR-1202 in combination with ruxolitinib was not established. Two patients went off-study due to AEs, and 3 due to progressive disease. One of 9 evaluable patients achieved complete remission and 7 had stable disease. Seven of the 9 evaluable patients had improvement in hematologic parameters and 8 had reduced MF symptoms with a median 33% decrease in TSS (Fig. 1). Conclusions: TGR-1202 + ruxolitinib was well-tolerated. Pharmacokinetic data were consistent with single-agent TGR-1202 (unpublished data), indicating that ruxolitinib does not alter absorption or metabolism of TGR-1202. Grade 3 elevations in amylase and lipase were considered DLTs, per protocol. Although the clinical significance of these asymptomatic laboratory findings is not clear, the protocol was amended to further assay these labs and to exclude concomitant medications with the potential to increase amylase/lipase. Importantly, no grade ≥3 hepatotoxicity, colitis, or thrombocytopenia was seen and no MTD was found. Although only one patient achieved CR, 89% demonstrated clinical benefit with the addition of TGR-1202 to ruxolitinib, supporting further exploration of this combination. Disclosures Strickland: Alexion Pharmaceuticals: Consultancy; Ambit: Consultancy; Baxalta: Consultancy; Boehringer Ingelheim: Consultancy, Research Funding; CTI Biopharma: Consultancy; Daiichi Sankyo: Consultancy; Sunesis Pharmaceuticals: Consultancy, Research Funding; Abbvie: Research Funding; Astellas Pharma: Research Funding; Celator: Research Funding; Cyclacel: Research Funding; GlaxoSmithKline: Research Funding; Karyopharm Therapeutica: Research Funding; Sanofi: Research Funding. Miskin:TG Therapeutics, Inc: Employment, Equity Ownership. Cavers:TG Therapeutics: Employment, Equity Ownership. Sportelli:TG Therapeutics, Inc.: Employment, Equity Ownership. Michaelis:Pfizer: Equity Ownership; Cellgene Corporation: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Incyte Corporation: Consultancy, Honoraria. Mesa:CTI: Research Funding; Promedior: Research Funding; Celgene: Research Funding; Gilead: Research Funding; Incyte: Research Funding; Galena: Consultancy; Ariad: Consultancy; Novartis: Consultancy. Savona:Amgen Inc.: Membership on an entity's Board of Directors or advisory committees; TG Therapeutics: Research Funding; Ariad: Membership on an entity's Board of Directors or advisory committees; Takeda: Research Funding; Sunesis: Research Funding; Incyte: Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Membership on an entity's Board of Directors or advisory committees; Gilead: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1961-1961
Author(s):  
John F. DiPersio ◽  
Jonathan Hoggatt ◽  
Steven Devine ◽  
Lukasz Biernat ◽  
Haley Howell ◽  
...  

Background Granulocyte colony-stimulating factor (G-CSF) is the standard of care for mobilization of hematopoietic stem cells (HSCs). G-CSF requires 4-7 days of injections and often multiple aphereses to acquire sufficient CD34+ cells for transplant. The number of CD34+ HSCs mobilized can be variable and patients who fail to mobilize enough CD34+ cells are treated with the combination of G-CSF plus plerixafor. G-CSF use is associated with bone pain, nausea, headaches, fatigue, rare episodes of splenic rupture, and is contraindicated for patients with autoimmune and sickle cell disease. MGTA-145 (GroβT) is a CXCR2 agonist. MGTA-145, in combination with plerixafor, a CXCR4 inhibitor, has the potential to rapidly and reliably mobilize robust numbers of HSCs with a single dose and same-day apheresis for transplant that is free from G-CSF. MGTA-145 plus plerixafor work synergistically to rapidly mobilize HSCs in both mice and non-human primates (Hoggatt, Cell 2018; Goncalves, Blood 2018). Based on these data, Magenta initiated a Phase 1 dose-escalating study to evaluate the safety, PK and PD of MGTA-145 as a single agent and in combination with plerixafor. Methods This study consists of four parts. In Part A, healthy volunteers were dosed with MGTA-145 (0.0075 - 0.3 mg/kg) or placebo. In Part B, MGTA-145 dose levels from Part A were selected for use in combination with a clinically approved dose of plerixafor. In Part C, a single dose MGTA-145 plus plerixafor will be administered on day 1 and day 2. In Part D, MGTA-145 plus plerixafor will be administered followed by apheresis. Results MGTA-145 monotherapy was well tolerated in all subjects dosed (Table 1) with no significant adverse events. Some subjects experienced mild (Grade 1) transient lower back pain that dissipated within minutes. In the ongoing study, the combination of MGTA-145 with plerixafor was well tolerated, with some donors experiencing Grade 1 and 2 gastrointestinal adverse events commonly observed with plerixafor alone. Pharmacokinetic (PK) exposure and maximum plasma concentrations increased dose proportionally and were not affected by plerixafor (Fig 1A). Monotherapy of MGTA-145 resulted in an immediate increase in neutrophils (Fig 1B) and release of plasma MMP-9 (Fig 1C). Neutrophil mobilization plateaued within 1-hour post MGTA-145 at doses greater than 0.03 mg/kg. This plateau was followed by a rebound of neutrophil mobilization which correlated with re-expression of CXCR2 and presence of MGTA-145 at pharmacologically active levels. Markers of neutrophil activation were relatively unchanged (<2-fold vs baseline). A rapid and statistically significant increase in CD34+ cells occurred @ 0.03 and 0.075 mg/kg of MGTA-145 (p < 0.01) relative to placebo with peak mobilization (Fig 1D) 30 minutes post MGTA-145 (7-fold above baseline @ 0.03 mg/kg). To date, the combination of MGTA-145 plus plerixafor mobilized >20/µl CD34s in 92% (11/12) subjects compared to 50% (2/4) subjects receiving plerixafor alone. Preliminary data show that there was a significant increase in fold change relative to baseline in CD34+ cells (27x vs 13x) and phenotypic CD34+CD90+CD45RA- HSCs (38x vs 22x) mobilized by MGTA-145 with plerixafor. Mobilized CD34+ cells were detectable at 15 minutes with peak mobilization shifted 2 - 4 hours earlier for the combination vs plerixafor alone (4 - 6h vs 8 - 12h). Detailed results of single dose administration of MGTA-145 and plerixafor given on one day as well as also on two sequential days will be presented along with fully characterized graft analysis post apheresis from subjects given MGTA-145 and plerixafor. Conclusions MGTA-145 is safe and well tolerated, as a monotherapy and in combination with plerixafor and induced rapid and robust mobilization of significant numbers of HSCs with a single dose in all subjects to date. Kinetics of CD34+ cell mobilization for the combination was immediate (4x increase vs no change for plerixafor alone @ 15 min) suggesting the mechanism of action of MGTA-145 plus plerixafor is different from plerixafor alone. Preliminary data demonstrate that MGTA-145 when combined with plerixafor results in a significant increase in CD34+ fold change relative to plerixafor alone. Magenta Therapeutics intends to develop MGTA-145 as a first line mobilization product for blood cancers, autoimmune and genetic diseases and plans a Phase 2 study in multiple myeloma and non-Hodgkin lymphoma in 2020. Disclosures DiPersio: Magenta Therapeutics: Equity Ownership; NeoImmune Tech: Research Funding; Cellworks Group, Inc.: Membership on an entity's Board of Directors or advisory committees; Karyopharm Therapeutics: Consultancy; Incyte: Consultancy, Research Funding; RiverVest Venture Partners Arch Oncology: Consultancy, Membership on an entity's Board of Directors or advisory committees; WUGEN: Equity Ownership, Patents & Royalties, Research Funding; Macrogenics: Research Funding, Speakers Bureau; Bioline Rx: Research Funding, Speakers Bureau; Celgene: Consultancy; Amphivena Therapeutics: Consultancy, Research Funding. Hoggatt:Magenta Therapeutics: Consultancy, Equity Ownership, Research Funding. Devine:Kiadis Pharma: Other: Protocol development (via institution); Bristol Myers: Other: Grant for monitoring support & travel support; Magenta Therapeutics: Other: Travel support for advisory board; My employer (National Marrow Donor Program) has equity interest in Magenta. Biernat:Medpace, Inc.: Employment. Howell:Magenta Therapeutics: Employment, Equity Ownership. Schmelmer:Magenta Therapeutics: Employment, Equity Ownership. Neale:Magenta Therapeutics: Employment, Equity Ownership. Boitano:Magenta Therapeutics: Employment, Equity Ownership, Patents & Royalties. Cooke:Magenta Therapeutics: Employment, Equity Ownership, Patents & Royalties. Goncalves:Magenta Therapeutics: Employment, Equity Ownership, Patents & Royalties. Raffel:Magenta Therapeutics: Employment, Equity Ownership. Falahee:Magenta Therapeutics: Employment, Equity Ownership, Patents & Royalties. Morrow:Magenta Therapeutics: Employment, Equity Ownership, Patents & Royalties. Davis:Magenta Therapeutics: Employment, Equity Ownership.


Blood ◽  
2006 ◽  
Vol 107 (9) ◽  
pp. 3676-3682 ◽  
Author(s):  
Francesco Passamonti ◽  
Elisa Rumi ◽  
Daniela Pietra ◽  
Matteo G. Della Porta ◽  
Emanuela Boveri ◽  
...  

We studied the relationship between granulocyte JAK2 (V617F) mutation status, circulating CD34+ cells, and granulocyte activation in myeloproliferative disorders. Quantitative allele-specific polymerase chain reaction (PCR) showed significant differences between various disorders with respect to either the proportion of positive patients (53%-100%) or that of mutant alleles, which overall ranged from 1% to 100%. In polycythemia vera, JAK2 (V617F) was detected in 23 of 25 subjects at diagnosis and in 16 of 16 patients whose disease had evolved into myelofibrosis; median percentages of mutant alleles in these subgroups were significantly different (32% versus 95%, P < .001). Circulating CD34+ cell counts were variably elevated and associated with disease category and JAK2 (V617F) mutation status. Most patients had granulocyte activation patterns similar to those induced by administration of granulocyte colony-stimulating factor. A JAK2 (V617F) gene dosage effect on both CD34+ cell counts and granulocyte activation was clearly demonstrated in polycythemia vera, where abnormal patterns were mainly found in patients carrying more than 50% mutant alleles. These observations suggest that JAK2 (V617F) may constitutively activate granulocytes and by this means mobilize CD34+ cells. This exemplifies a novel paradigm in which a somatic gain-of-function mutation is initially responsible for clonal expansion of hematopoietic cells and later for their abnormal trafficking via an activated cell progeny.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4665-4665 ◽  
Author(s):  
Sabina I. Swierczek ◽  
Donghoon Yoon ◽  
Josef T. Prchal

Abstract Myeloproliferative disorders (MPDs) are caused by clonal proliferation arising from a single multi-lineage stem cell. The JAK2 V617F mutation has been reported in greater than 90% of patients with polycythemia vera (PV), and ∼50% of patients with essential thrombocythemia (ET) and primary myelofibrosis (PMF). However, several studies have indicated that the JAK2 V617F mutation is not an MPD initiating mutation but rather represents clonal evolution of these MPDs. Jelinek and colleagues first reported that most PV transformed acute leukemias are JAK2 V617F negative (Jelinek, Blood, 2005 106:3370). More recently, the role of the JAK2 V617F mutation in leukemic transformation in 27 patients with MPDs revealed that most JAK2 V617F -positive MPD patients transformed to a JAK2 V617F -negative AML (Theocharides, Blood, 2007 110:375); however, in the 4 patients with an apparent JAK2 V617F -positive leukemia clonality of leukemic blasts and mature granulocytes was not determined. Two models proposed by Theocharides et al may explain these findings. First, MPD and AML represent 2 independent clones that arose de novo from different progenitors. Second, MPD and AML are 2 subclones derived from a common progenitor. Here, we describe a woman with PMF with transformation to AML. We determined her JAK2 V617F mutation status by sensitive and quantitative real-time PCR (Nussenzveig, Exp Hematol, 2007 3:32). At the time of her transformation to AML, her normal appearing peripheral blood granulocytes were purified and the frequency of mutant JAK2 allele T was 6%. However, all FACS-sorter isolated CD34+ cells (enriched to 95% purity) were heterozygous for the JAK2 V617F mutation. To determine if MPD and AML clones arose de novo or from the same progenitor, we performed clonality studies using a newly developed sensitive and quantitative real-time PCR based on the X-chromosome inactivation principle using transcriptional clonality assays in granulocytes and CD34+ purified cells from peripheral blood at both stages of disease (see Swierczek et al, abstract, this meeting). When this woman’s PMF was first discovered, hematopoiesis was clonal, based on heterozygosity for three X-chromosome genes, FHL1, G6PD and IDS (Liu, Blood, 2003 101:3294) and their single allelic expression in granulocytes and platelets. At the time of leukemic transformation, both her granulocytes and leukemic CD34+ cells expressed all three identical isoforms from the same parental X chromosome. Our findings indicate that leukemic transformation does not invariably arise from a JAK2 V617F negative progenitor. This has important implication for therapy of MPDs with JAK2 V617F inhibitors, as these would not prevent leukemic transformation. It remains to be determined if the JAK2 background of leukemic progenitors is variable, and if there are differences between PV and PMF.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3224-3224 ◽  
Author(s):  
Brian J. Bolwell ◽  
Auayporn P. Nademanee ◽  
Patrick Stiff ◽  
Edward Stadtmauer ◽  
Richard T. Maziarz ◽  
...  

Abstract Abstract 3224 Poster Board III-161 Background While most centers use 2 × 106 CD34+ cells/kg as the minimal cell dose for autologous hematopoietic stem cell (HSC) transplantation (auto-HSCT), infusion of higher CD34+ cell dose is associated with better outcomes in patients with multiple myeloma (MM) or non-Hodgkin's lymphoma (NHL). Recent evidence suggests a correlation between CD34+ cell yield on Day 1 of collection and total CD34+ cell yield as well as post-transplant outcomes. This analysis was designed to: 1) compare Day 1 collection between patients with NHL or MM mobilized with plerixafor plus G-CSF or placebo plus G-CSF; and 2) determine whether Day 1 CD34+ cell yields correlated with the total mobilization yield and number of apheresis days. Methods Data were obtained from two prospective, randomized, double-blind, placebo-controlled, phase 3 clinical trials that compared the safety and efficacy of plerixafor (0.24 mg/kg/day SQ) plus G-CSF (10 μg/kg/day) with placebo plus G-CSF for mobilization of HSC for auto-HSCT in patients with NHL (3101 Study) or MM (3102 Study). Pearson correlation coefficient was used to evaluate the association of day 1 CD34+ cell collection with total CD34+ cell yield and the number of days of apheresis. Results In the NHL trial, 150 patients were mobilized with plerixafor plus G-CSF and 148 patients underwent mobilization with placebo plus G-CSF. More than half the patients (55.3%) in the plerixafor group collected ≥2 × 106 CD34+ cells/kg on Day 1 of apheresis (Figure 1A). In contrast, 19.6% patients in the placebo group collected ≥ 2 × 106 CD34+ cells/kg on Day 1 of apheresis (p< 0.001). In the MM study, 148 patients were mobilized with plerixafor plus G-CSF and 154 patients were mobilized with placebo plus G-CSF. More than half the patients (52.7%) in the plerixafor group collected ≥6 × 106 CD34+ cells/kg on the first day of collection compared to only 16.9% patients in the placebo group (p<0.001; Figure 1B). There was a strong positive correlation between day 1 collection and the total CD34+ cell yield in patients with NHL (r= 0.86, p-value= <0.0001) or MM (r= 0.87, p-value= <0.0001) in both the plerixafor and placebo groups. For NHL patients, the median Day 1 collection was higher in the plerixafor group compared to the placebo group: 2.66 × 106 vs. 0.77 × 106 CD34+ cells/kg (p<0.001) and this translated into higher total CD34+ cell yields in the two groups respectively: 5.69 × 106 vs. 1.98 × 106 CD34+ cells/kg (p<0.001). Similarly, for MM patients, the median CD34+ cells/kg collected on Day 1 was higher in the plerixafor group compared to the placebo group: 7.01 × 106 vs. 2.29 × 106 CD34+ cells/kg (p<0.001) and this translated into better overall collection in the plerixafor vs. placebo groups: 10.96 × 106 vs. 6.18 × 106 CD34+ cells/kg (p<0.001). A negative correlation was observed between CD34+ cells collected on Day 1 and the number of days of apheresis performed in patients with NHL (r= -0.67, p-value=<0.0001) or MM (r= -0.50, p-value= <0.0001) in both the plerixafor and placebo groups. Consequently, better Day 1 collection in plerixafor-treated NHL or MM patients translated into significantly fewer apheresis days to achieve the target collection compared to placebo treated patients. Conclusions These data support previous reports demonstrating a strong correlation between day 1 CD34+ cell collection and total CD34+ cell yield and apheresis days. These data also demonstrate that addition of plerixafor to G-CSF allows significantly more patients to achieve the target cell collection within 1 day of apheresis compared to G-CSF alone. These findings support the observation that mobilization with plerixafor plus G-CSF reduces the number of apheresis days required to achieve the minimal or optimal cell dose to proceed to transplantation. Disclosures Bolwell: Genzyme Corporation: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Nademanee:Genzyme Corporation: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Stiff:Genzyme Corp.: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Stadtmauer:Genzyme Corporation: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Maziarz:Genzyme Corp.: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Micallef:Genzyme Corporation: Membership on an entity's Board of Directors or advisory committees, Research Funding. Marulkar:Genzyme Corporation: Employment, Equity Ownership. Gandhi:Genzyme Corporation: Employment, Equity Ownership. DiPersio:Genzyme: Honoraria.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 631-631 ◽  
Author(s):  
Farhad Ravandi ◽  
Srdan Verstovsek ◽  
Zeev Estrov ◽  
Jan A. Burger ◽  
Solly George ◽  
...  

Abstract Abstract 631 Background: Mutations of JAK2 gene have been identified in a significant proportion of patients with MPDs with the selective JAK2 inhibitors demonstrating significant activity. Patients with AML following prior MPD (sAML) respond poorly to standard cytotoxic chemotherapy and have a poor outcome. Abnormalities of the Jak-Stat signaling pathway have also been identified in a number of other hematological malignancies; chromosomal translocations resulting in TEL-JAK2 constructs lead to the constitutive activation of STAT5, IL-3-independent cellular proliferation, and leukemogenesis. Similarly, infection with oncogenic viruses such as human T-cell lymphotrophic virus, type I, and Abelson murine leukemia viruses results in enhanced kinase activity of Jaks, possibly accounting for their leukemogenic potential. Furthermore, disrupted Jak-Stat signaling has been reported in a number of leukemias. Aim: To identify potential activity of INCB018424 in patients with advanced hematological cancers. Methods: We are conducting a phase II study of INCB018424 in patients with relapsed/refractory leukemias for which no standard therapies are anticipated to result in a durable remission. Patients with performance status 0,1,and 2 with adequate organ function and no active, uncontrolled intercurrent illness or infection receive INCB018424 orally at 25 mg BID daily for 4 weeks (cycle #1). Response is assessed after 2 cycles of treatment. Responding patients or patients with stable disease are allowed to continue until progression. Predetermined dose modifications to 15 mg or 10 mg BID are allowed for drug related toxicities. Results: Eighteen patients [median age, 68 years; (range, 53-88] with relapsed and refractory leukemias (9 de novo AML, 3 sAML, 2 ALL, 1 MDS, 2 CMML, 1 CML) have been treated. The median number of prior therapies is 2 (range,1 to 6). Five patients (1 with AML, 2 with sAML, and 3 with CMML) had the JAK2 V617F mutation. Cytogenetic abnormalities include diploid in 7, chromosome 5 and 7 in 5, t(2;9) in 1, and the Philadelphia chromosome in 2. Pts have received a median of 1 cycle of therapy (range, 1-5 cycles) with 8 pts having stable disease (3 for 2 cycles, 2 for 3 cycles, 1 for 4 cycles, and 2 for 5 cycles). Three patients (including 2 with sAML and 1 with CMML, all with JAK2 mutation) have had significant declines in their bone marrow blasts (to <5%) associated with significant decrease in the size of the spleen and clinical improvement. The regimen has been very well tolerated with only grade 3 side effects being elevation of liver enzymes in 2 patients (thought not to be related to the study drug) and grade 3 thrombocytopenia in 1 patient. Conclusion: INCB018424 has significant activity in sAML and CMML associated with JAK2 V617F mutation. Clinical studies combining it with chemotherapy in sAML are warranted. Disclosures: Ravandi: Incyte Corporation: Research Funding. Verstovsek:Incyte: Research Funding. Garrett:Incyte Corporation: Employment. Newton:Incyte Corporation: Employment.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3139-3139
Author(s):  
Anjan Thakurta ◽  
Anita K Gandhi ◽  
Michelle Waldman ◽  
Chad C. Bjorklund ◽  
Suzanne Lentzsch ◽  
...  

Abstract Background CRBN, a target of thalidomide and IMiDs® immunomodulatory agents lenalidomide (LEN) and pomalidomide (POM), is a component of the E3 ubiquitin cullin 4 ring ligase (CRL4) complex that also includes DDB1, Roc1, and Cul4. Two CRBN mutations have been reported in multiple myeloma (MM) patients: truncating mutation (Q99) and point mutation (R283K). One copy of the CRBN gene was shown to be deleted in the MM1S and MM1S.R cell lines. No DDB1 mutation has been described previously. Results We investigated the incidence of CRBN and DDB1 mutations by next-generation sequencing in 20 MM cell lines and MM subjects. Of 90 MM patients, 24 were newly diagnosed and 66 were relapsed and refractory of which 36 patients were LEN resistant. Out of the cell lines tested, 1 heterozygous CRBN mutation (D249Y) was found in the LEN-resistant ANBL6R cells, which is located in the putative DDB1 binding domain, and 2 single silent mutations were identified in the KMS-12-BM (rs17027638) and OPM-2 cells. One DDB1 heterozygous mutation (E303D) was identified in ANBL6 cells. In the cohort of patients assessed, no CRBN mutation was detected; however, 5 single nucleotide variations (SNV) were identified. Three of the 5 SNVs were at position 735 (Y245Y) and 1 each at position 219 (H73H) and 939 (C313C), respectively. The first 2 SNVs (rs17027638 and rs1045309) are described but not the last. We found a single SNV (P51P; rs2230356) in DDB1 gene the patient samples. Conclusion Mutations within the coding sequences of CRBN and DDB1 are rare in MM patients and cell lines. Most intrinsically LEN-resistant cells and cell lines made resistant to LEN or POM do not have CRBN or DDB1 mutations, suggesting the potential role of other sources, such as genetic or epigenetic pathways in developing resistance to IMiD drug–based therapy. Disclosures: Thakurta: Celgene: Employment, Equity Ownership. Gandhi:Celgene: Employment, Equity Ownership. Waldman:Celgene: Employment, Equity Ownership. Bjorklund:Celgene: Employment, Equity Ownership. Lentzsch:Celgene: Research Funding. Schey:Celgene: Consultancy, Honoraria, Membership on an entity’s Board of Directors or advisory committees, Speakers Bureau; NAPP: Consultancy, Honoraria, Membership on an entity’s Board of Directors or advisory committees, Speakers Bureau; BMS: Consultancy, Honoraria, Membership on an entity’s Board of Directors or advisory committees, Speakers Bureau. Orlowski:Bristol-Myers Squibb: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; Celgene: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; Millennium: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; Onyx: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; Resverlogix: Research Funding; Array: Honoraria, Membership on an entity’s Board of Directors or advisory committees; Genentech: Honoraria, Membership on an entity’s Board of Directors or advisory committees; Merck: Membership on an entity’s Board of Directors or advisory committees. Madan:Covance Genomics Lab: Employment. Ning:Celgene: Employment, Equity Ownership. Mendy:Celgene: Employment, Equity Ownership. Lopez-Girona:Celgene: Employment, Equity Ownership. Schafer:Celgene: Employment, Equity Ownership. Avet-Loiseau:Celgene: Research Funding. Chopra:Celgene: Employment, Equity Ownership.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4255-4255 ◽  
Author(s):  
Ka Tat Siu ◽  
Homare Eda ◽  
Loredana Santo ◽  
Janani Ramachandran ◽  
Miroslav Koulnis ◽  
...  

Abstract The bromodomain and extraterminal (BET) proteins recognize acetylated lysine residues on histone tails and recruit transcriptional machinery to promote gene expression. The BET proteins are attractive drug targets because they regulate the expression of MYC, BCL2 and NF- κB target genes. We investigated the therapeutic potential of CPI-0610, an inhibitor of BET proteins, currently in Phase I testing in multiple myeloma (MM). Our preliminary data show that human MM cell lines are sensitive to BET inhibition, with IC50 values of 800-1000 nM being observed in MM.1S, MM.1R, RPMI-8226, LR5, H929 and U266 cell lines in 72h culture. We further show that CPI-0610 inhibits MM cell growth in the presence of cytokines and when co-cultured with bone marrow stromal cells. CPI-0610 induces apoptosis and G1 cell cycle arrest associated with MYC downregulation. However, protein levels of BCL2, NF- κ B and MCL1 remain unchanged in MM cells upon BET inhibition. The zinc finger transcriptional factor Ikaros (IKZF1) is highly expressed in MM (GEO dataset GSE36133). It is actively transcribed in the MM.1S cell line with an active transcription start site occupied by BRD4 and MED1 (Loven J et al. Cell 2013). Interestingly, we found that CPI-0610 suppresses Ikaros and IRF4 expression at the levels of both transcription and protein in MM cells. With the use of doxycycline-inducible shRNAs targeting IKZF1, IRF4 and MYC, we identified a positive feedback mechanism that is critical for MM cell survival. Individual knockdown of IRF4, IKZF1 or MYC all lead to induction of apoptosis in MM cells. Suppression of IRF4 decreases both Ikaros and MYC protein expression, suggesting that IRF4 is upstream of both Ikaros and MYC. Downregulation of MYC protein expression is observed following IKZF1 knockdown, suggesting that MYC is downstream of Ikaros. Finally, we observed a decrease in IRF4 protein level upon MYC downregulation, implicating a feedback mechanism from MYC to IRF4. Together, these data illustrate a molecular sequence of events going from IRF4 to IKZF1 to MYC and then back to IRF4, forming a positive feedback loop in MM cells. Based on the observation that shRNA-mediated knockdown of MYC and IKZF1 are toxic to MM, we combined CPI-0610 with lenalidomide, an immunomodulatory drug which stabilizes cereblon and facilitates Ikaros degradation in MM cells (Kronke J et al., and Lu G et al., Science 2014). We observed a synergistic cytotoxic effect in the cell lines tested (MM.1S and RPMI-8226). The enhanced cytotoxic effect of the combined treatment in MM cell lines is due in part to suppression of MYC, IKZF1 and IRF4. Ongoing studies will focus on understanding the molecular mechanism underlying this synergistic combination and validating its efficacy in vivo in order to provide a rationale for clinical protocols of BET inhibitors in MM. Disclosures Mertz: Constellation Pharmaceuticals: Employment, Equity Ownership. Sims:Constellation Pharmaceuticals: Employment, Equity Ownership. Cooper:Constellation Pharmaceuticals: Employment, Equity Ownership. Raje:Celgene Corporation: Consultancy; Eli Lilly: Research Funding; Takeda: Consultancy; Amgen: Consultancy; Onyx: Consultancy; AstraZeneca: Research Funding; Novartis: Consultancy; BMS: Consultancy; Acetylon: Research Funding; Millenium: Consultancy.


Sign in / Sign up

Export Citation Format

Share Document