scholarly journals Identification of Secreted Factors with a Role in Hematopoietic Stem and Progenitor Cell Engraftment in the Developing Zebrafish

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4361-4361
Author(s):  
Bradley Wayne Blaser ◽  
Brian Li ◽  
Owen J. Tamplin ◽  
Vera Binder ◽  
David Prober ◽  
...  

Abstract The hematopoietic microenvironment regulates the behavior of hematopoietic stem and progenitor cells (HSPC) throughout vertebrate development. We sought to identify secreted factors that may play a role in HSPC engraftment in the caudal hematopoietic territory (CHT), an endothelial cell-rich vascular plexus that serves as the primary site of hematopoiesis in the developing zebrafish from 3-6 days post fertilization (dpf). We hypothesized that such factors would be highly expressed in endothelial cells relative to hematopoietic stem cells (HSCs). To identify these factors, endothelial cells and HSCs were purified from 3 dpf Flk1:mcherry; Runx1:GFP double transgenic zebrafish embryos and gene expression profiling was performed by microarray analysis. Gene set enrichment analysis of these data showed that zebrafish chemokines, cytokines, TGF-β, TNF, Notch and non-canonical WNT family members were enriched in the endothelial cell fraction with a nominal P ≤ 0.2. Genes from the leading edge of these gene sets were then used as candidates for gain-of-function testing. Coding sequences from candidate genes were cloned downstream of the zebrafish HSP70l promoter and microinjected into wildtype zebrafish embryos at the single-cell stage. Gene expression was induced in F0 transgenic animals by heat shock at 36 and 48 hours post fertilization. HSPC numbers were assayed by performing whole-mount in situ hybridization to identify runx1- and cmyb-expressing cells at 3 dpf. WNT5A was found to enhance HSPC numbers in this assay (P = 0.00046). We conclude non-canonical WNT family members, in particular WNT5A, regulate HSPC engraftment in the developing zebrafish. Disclosures Tamplin: Boston Children's Hospital: Patents & Royalties. Zon:FATE Therapeutics, Inc: Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Other; Scholar Rock: Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Other; Stemgent: Equity Ownership, Membership on an entity's Board of Directors or advisory committees.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 783-783
Author(s):  
Bradley Wayne Blaser ◽  
Jessica Moore ◽  
Brian LI ◽  
Owen J. Tamplin ◽  
Vera Binder ◽  
...  

Abstract The microenvironment is an important regulator of hematopoietic stem and progenitor cell (HSC/HSPC) engraftment during development and in recipients of hematopoietic stem cell transplantation (HSCT). Factors secreted by the hematopoietic microenvironment that promote HSC/HSPC engraftment in the developing zebrafish may therefore be therapeutic targets for enhancing HSC engraftment in patients undergoing HSCT. We previously described a novel behavior we called endothelial cuddling in which sinuosoidal endothelial cells of the niche make intimate interactions with stem cells. To find candidate extracellular factors regulating this behavior, gene expression profiling was performed on sorted zebrafish endothelial cells. Gene set enrichment analysis showed that expression of chemokines and TNF family members was significantly enriched in all endothelial cells. The leading edge gene sets included 16 chemokines and chemokine receptors. Thirteen of these genes were used as candidates in a gain-of-function screen to test whether overexpression was sufficient to stimulate the hematopoietic niche in favor of HSC engraftment. High level, global gene expression was induced at 36 and 48 hours post fertilization (hpf) using a heat shock-inducible system. One gene, CXCR1, enhanced HSC/HSPC engraftment when globally overexpressed (p=0.03, N=63). CXCR1 is a specific receptor for the chemokine IL-8/CXCL8 in higher vertebrates. Zebrafish IL-8 was used in similar gain of function experiments and was also sufficient to enhance HSC/HSPC engraftment (p=0.003, N=41). CXCR2 is a promiscuous chemokine receptor for IL-8, Gro-α and Gro-β and did not enhance HSC/HSPC engraftment in this system. To further characterize the effects of CXCR1 on HSC engraftment, it was overexpressed in transgenic zebrafish carrying a stem-cell specific reporter gene, Runx1:mCherry. HSC engraftment in the CHT was enhanced when CXCR1 expression was induced beginning at 36 hpf (3.0 +/- 2.0 vs 7.4 +/- 2.6 HSC per CHT) or 48 hpf (4.3 +/- 1.1 vs 9.4 +/- 3.6 HSC per CHT). Inhibition of CXCR1 signaling from 48 to 72 hpf using the selective CXCR1/2 antagonist, SB225002, decreased HSC engraftment in Runx1:mCherry animals (1.2 +/- 0.39 vs 0.4 +/- 0.2 HSC per CHT, p=0.03). We next hypothesized that overexpression of CXCR1 might also have effects on the endothelial cell niche itself. Using FLK1(VEGFR2):mCherry reporter zebrafish and 3-dimensional reconstruction of the CHT, we found that global overexpression of CXCR1 increased the volume of the endothelial cell niche (2.0 +/- 0.09 x 106 vs 2.4 +/- 0.1 x 106 μm3, p=0.005) while treatment with SB225002 reduced its volume (6.3 +/- 0.3 x 105 vs 4.9 +/- 0.5 x 105 µm3, p=0.04). Finally, we asked if CHT remodeling would still be enhanced if CXCR1 were constitutively expressed only within the endothelial cell niche. FLK1:CXCR1; FLK1:mCherry double transgenic animals had significantly increased CHT volume when compared with FLK1:mCherry single transgenic animals (1.1 +/- 0.05 x 106 vs 1.3 +/- 0.06 x 106 um3, p=0.02). These findings suggest a model whereby HSC/HSPCs actively participate in the remodeling of the endothelial niche via CXCR1/IL-8 in order to promote their own engraftment. Further, they suggest that CXCR1/IL-8 is a potential therapeutic target for enhancing HSC/HSPC engraftment in patients undergoing HSCT. Disclosures Zon: FATE Therapeutics: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Other: Founder; Scholar Rock: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Other: Founder.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 860-860
Author(s):  
Pulin Li ◽  
Emily K Pugach ◽  
Elizabeth B Riley ◽  
Dipak Panigrahy ◽  
Garrett C Heffner ◽  
...  

Abstract Abstract 860 During bone marrow transplantation, hematopoietic stem/progenitor cells (HSPCs) are exposed to various stress signals, and undergo homing, rapid proliferation and differentiation in order to achieve engraftment. To explore how fate decisions are made under such stress conditions, we developed a novel imaging-based competitive marrow transplantation in zebrafish. The feasibility of handling hundreds of zebrafish for transplantation per day allowed us to screen a library of 480 small molecules with known bioactivity, aimed at identifying new drugs and pathways regulating HSPC engraftment. Two structurally related eicosanoids, 11,12-epoxyeicosatrienoic acid (EET) and 14,15-EET, were able to enhance GFP+ marrow engraftment compared to DsRed2+ engraftment in zebrafish. This remarkable effect of EETs on adult marrow prompted us to study the effect of EETs in embryonic hematopoiesis. Treating zebrafish embryos with 11,12-EET during definitive hematopoiesis increased the HSPC marker Runx1 expression in the AGM (Aorta-Gonad-Mesonephros), resulting in a significant increase of HSPC in the next hematopoietic site, caudal hematopoietic tissue, the equivalent of fetal liver/placenta in mammals. The same treatment condition also induced ectopic Runx1 expression in the tail mesenchyme, a non-hematopoietic tissue. Microarray analysis on EET-treated zebrafish embryos revealed an upregulation of genes involved in stress response, especially Activator Protein 1 (AP-1) family members. Genetic knockdown experiments confirmed AP-1 members, especially JunB and its binding partners, cFos and Fosl2, are required for Runx1 induction. Motif analysis also predicted several conserved AP-1 binding sites in the Runx1 enhancer regions. To understand how EETs induced AP-1 expression, a suppressor screen was performed in zebrafish embryos. The screen revealed that activation of both PI3K/Akt and Stat3 are required for induced AP-1 expression, and therefore Runx1 upregulation. Similarly, ex vivo treatment of mouse whole bone marrow with 11,12-EET resulted in a 2-fold increase of long-term repopulating units. Microarray data had previously shown that Cyp2j6, one of the cytochrome P450 enzymes involved in EET biosynthesis from arachidonic acid, is enriched in quiescent mouse long-term HSCs. To further increase the EET levels in HSPCs, human CYP2C8 enzyme was over-expressed in transgenic mice using the Tie2 promoter. These transgenic mice have a 4-fold increase of long-term multi-lineage repopulating unit compared to their wild-type siblings. In purified mouse HSPCs, EETs directly and cell-autonomously activate PI3K/AKT pathway. Co-treatment of mouse bone marrow with EET and a PI3K inhibitor, LY294,002, completely blocked EET-induced enhancement of mouse bone marrow engraftment. In conclusion, we performed the first competitive marrow transplantation-based chemical screen, leading to the discovery of arachidonic acid-cytochrome P450-EETs as a novel modulator of HSC cell fate decision. PI3K/Akt and Stat3 pathways activated by EETs are required for adult HSPC engraftment and/or embryonic HSC specification, partially through transcriptional regulation of AP-1. We also demonstrated the requirement of AP-1 family members for Runx1 expression during embryonic development. This discovery may have clinical application in marrow or cord blood transplantation. Disclosures: Daley: iPierian, Inc: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Epizyme, Inc: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Verastem, Inc: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Solasia, KK: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; MPM Capital, Inc: Consultancy, Membership on an entity's Board of Directors or advisory committees; Johnson & Johnson: Membership on an entity's Board of Directors or advisory committees. Zon:Fate Therapeutics: Founder; Stemgent: Consultancy.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 527-527
Author(s):  
Donn L Calkins ◽  
Jami L Shaffer ◽  
Emily M Teets ◽  
Alex M Belardo ◽  
Serine Avagyan ◽  
...  

We currently have little understanding of the mechanisms by which hematopoietic stem and progenitor cells (HSPCs) gain a selective advantage in patients with clonal hematopoiesis and other myeloid neoplasms. The chemokine CXCL8 is elevated in a subset of patients with myeloid neoplasms. Our previous work in zebrafish has discovered a novel role for cxcl8 and its receptor, cxcr1, in supporting colonization of HSPCs within the sinusoidal endothelial cell niche of the embryonic zebrafish known as the caudal hematopoietic tissue (CHT). We hypothesized that mosaic overexpression of cxcl8 in a population of HSPCs during development would alter HSPC-niche interactions, selectively favor HSPCs expressing cxcl8 and lead to their expansion in adults. To test this hypothesis, we microinjected DNA constructs encoding cxcl8-2A-GFP or GFP alone under the control of the HSPC-specific Runx1+23 enhancer into zebrafish embryos at the single-cell stage. Time lapse fluorescence video microscopy and single-cell tracking was performed on HSPCs within the CHT. Overexpression of cxcl8 nearly doubled the amount of time HSPCs resided within the CHT when compared to expression of GFP alone as a control (cxcl8: 4.94 ± 0.86 h vs GFP: 2.54 ± 0.18 h, p=0.01, N=142 tracked cells). Substitution of WT cxcl8 with a mutant cxcl8 construct lacking the ELRCXC motif required for receptor binding reduced these effects (WT cxcl8: 6.6 ± 0.48 h vs ELRCXC-cxcl8: 5.3 ± 0.33 h, p=0.02, N=355 tracked cells). To observe HSPC-niche interactions, kdrl:mCherry endothelial cell reporter zebrafish were microinjected with Runx1+23:cxcl8-2A-GFP or Runx1+23:GFP DNA constructs. The percent of time individual HSPCs spent closely interacting with a single group of CHT endothelial cells (endothelial cell cuddling) was quantified over the period from 52 to 72 hours post-fertilization. Overexpression of cxcl8 by HSPCs increased HSPC-endothelial cell cuddling time by 30% (cxcl8: 87% vs GFP: 57%, p=0.001). To directly test competition between wild type and cxcl8 overexpressing HSPCs, zebrafish embryos were microinjected with a 1:1 molar ratio of Runx1+23:cxcl8-2A-mCherry and Runx1+23:clover DNA. Single cxcl8-2A-mCherry+ and clover+ competitor cells were tracked by time-lapse fluorescence confocal microscopy. HSPCs expressing cxcl8 resided longer within the CHT than competitor HSPCs when quantified over the period from 72 to 96 hours post-fertilization (cxcl8: 4.0 ± 0.20 h vs competitor: 2.5 ± 0.25 h, p=2.0 x 10-6, n=426 tracked cells). Single cell RNA-sequencing (scRNA-seq) of zebrafish embryos with mosaic expression of cxcl8 in HSPCs showed upregulation of cxcl12a in endothelial cells compared to endothelial cells from control embryos (p=5.19 x 10-3), suggesting a possible mechanism to explain the increased CHT residency time. Zebrafish with mosaic expression of Runx1+23:cxcl8 were raised to adulthood and the kidney marrow cells were analyzed by flow cytometry. Compared to clutchmate controls, Runx1+23:cxcl8 mosaic transgenics had a higher hematopoietic progenitor/precursor to lymphocyte ratio, suggesting a mild differentiation block and possible lineage skewing (cxcl8: 2.0 ± 0.15 vs control: 1.6 ± 0.10, p=0.048, N=25 animals). Taken together, these data support a model in which pre-malignant HSPC clones aberrantly express cxcl8 and acquire a selective advantage over normal clones through enhanced interactions with the endothelial cell niche. Disclosures Zon: Fate Therapeutics: Equity Ownership; Scholar Rock: Equity Ownership; CAMP4: Equity Ownership.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 770-770
Author(s):  
Owen J. Tamplin ◽  
Ellen M. Durand ◽  
Logan A. Carr ◽  
Sarah J. Childs ◽  
Elliott H. Hagedorn ◽  
...  

Abstract Hematopoietic stem cells (HSC) reside in a highly structured microenvironment called the niche. There is two-way communication between a stem cell and its niche that determines important cell fate decisions. HSC must remain quiescent to persist throughout life but also divide and contribute progenitors that will replenish the blood supply. Although there have been a number of elegant studies that have imaged the mammalian bone marrow, we still lack a high-resolution real-time view of endogenous HSC behaviors and interactions within the niche. To overcome these challenges, we developed a transgenic zebrafish line that expresses GFP or mCherry in HSC. We generated this line using the previously described mouse Runx1 +23 kb intronic enhancer. We confirmed the purity of these stem cells by adult-to-adult limiting dilution transplantation with as few as one cell. Based on long-term multi-lineage engraftment, we estimated a stem cell purity of approximately 1/35, which is similar to the KSL (Kit+Sca1+Lin-) population in mouse. Using a novel embryo-to-embryo transplantation assay that is unique to zebrafish, we estimated an even higher stem cell purity of 1/2. These experiments have defined the most pure HSC population in the zebrafish. Using this novel transgenic reporter we have tracked HSC as they migrate in the live zebrafish embryo. This allowed us to image HSC as they interact with other cell types in their microenvironment, including endothelial cells and mesenchymal stromal cells. We have shown that a small group of endothelial cells remodel around a single HSC soon after it lodges in the niche. Recently, we have also found that a single stromal cell can anchor an HSC as it divides. In most cases, we observed that an HSC divides perpendicular to the stromal cell, with one daughter cell remaining attached to the stromal cell and the other migrating away. To gain a much higher resolution view of these cellular events than is possible with confocal microscopy we looked for an alternative approach. A combined method is called “Correlative Light and Electron Microscopy” (CLEM), and involves identification of cells by confocal microscopy, followed by processing of the same sample for EM scanning. We have applied this method by: 1) tracking endogenous HSC in the live embryo; 2) fixing the same embryo for serial block-face scanning EM; 3) reconstructing 3D models from high resolution serial EM sections. We used easily visible blood vessels as anatomical markers that allowed us to pinpoint a single cell in a relatively large block of scanned tissue. As expected, the identified HSC was round, had a distinctive large nucleus, scant cytoplasm, and ruffled membrane. The HSC was surrounded by a small group of 5-6 endothelial cells, as predicted from our confocal live imaging. However at this very high resolution (10 nm/pixel), we could see that only part of the HSC surface was contacted and wrapped by an endothelial cell. Other regions of the HSC surface were contacted by small endothelial cell protrusions. Much of the HSC surface was surrounded by a narrow extracellular space with endothelial and stromal cells lying opposite. Strikingly, we were able to identify the firm anchored attachment between a single stromal cell and HSC that we showed previously oriented the plane of division. By combining confocal live imaging of a novel zebrafish HSC reporter, and serial block-face scanning EM, we have created the first high-resolution 3D model of an endogenous stem cell in its niche. Disclosures Tamplin: Boston Children's Hospital: Patents & Royalties. Zon:FATE Therapeutics, Inc: Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Other; Scholar Rock: Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Other; Stemgent: Equity Ownership, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1165-1165
Author(s):  
Heidi Anderson ◽  
Taylor Patch ◽  
Pavan Reddy ◽  
Elliott Hagedorn ◽  
Owen J. Tamplin ◽  
...  

Abstract Rare endothelial cells in the aorta-gonad-mesonephros (AGM) transition into hematopoietic stem cells (HSCs) during embryonic development. Lineage tracing experiments indicate that HSCs emerge from Cadherin 5 (Cdh5, VE-cadherin)+ endothelial precursors, and isolated populations of Cdh5+ cells from mouse embryos and embryonic stem (ES) cells can be differentiated into hematopoietic cells. Cdh5 has also been widely implicated as a marker of AGM-derived hemogenic endothelial cells. Since Cdh5-/- mice embryos die before the first HSCs emerge, it is unknown if Cdh5 has a direct role in HSC emergence. Our previous genetic screen yielded malbec (mlbbw306), a zebrafish mutant for cdh5, with normal embryonic and definitive blood. Utilizing time-lapse imaging, parabiotic surgical pairing of zebrafish embryos, and blastula transplantation assays, we show that HSCs emerge, migrate, engraft, and differentiate in the absence of cdh5 expression. By tracing Cdh5-/- GFP+/+ cells inchimeric mice, we demonstrated that Cdh5-/- GFP+/+ HSCs emerging from E10.5 and E11.5 AGM or derived from E13.5 fetal liver not only differentiate into hematopoietic colonies but also engraft and reconstitute multi-lineage adult blood. These data establish that Cdh5, a marker of hemogenic endothelium in the AGM, is dispensable for the transition of hemogenic endothelium to HSCs. Disclosures Bauer: Biogen: Research Funding; Editas Medicine: Consultancy. Zon:FATE Therapeutics: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Other: Founder; Scholar Rock: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Other: Founder. Orkin:Editas Medicine: Membership on an entity's Board of Directors or advisory committees; Biogen: Research Funding; Pfizer: Research Funding; Sangamo Biosciences: Consultancy.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1283-1283
Author(s):  
Peter G Kim ◽  
Colleen E Albacker ◽  
Il-ho Jang ◽  
Garrett C Heffner ◽  
Yoowon Lim ◽  
...  

Abstract Abstract 1283 Adult hematopoietic cells transition through a hemogenic endothelial (HE) intermediate during development, but the signaling pathways modulating this transition are incompletely characterized. Although the Hedgehog (Hh) pathway is hypothesized to play a role in blood and endothelial cell formation, early embryonic lethality of mice lacking Hedgehog signaling precludes such analysis. To determine a role for Hh signaling in HE patterning, we assessed the effect of altered Hh signaling in differentiating mouse embryonic stem cells (mESCs), cultured embryonic day 9.5 mouse embryos, and developing zebrafish embryos. In differentiating mESCs, addition of Indian Hh ligand (IHH) increased the number of CD41+c-Kit+ hematopoietic progenitors, whereas chemical inhibition of Hh signaling led to a decrease without affecting primitive-streak mesoderm gene expression. In the setting of Hh inhibition, Notch induction rescued hemogenic VE-cadherin+ cells, demonstrating that Notch expands HE. Scl/Tal1 (stem cell leukemia/T-cell associated leukemia 1) induction rescued VE-cadherin+CD41+ cells, demonstrating that Scl/Tal1 converts endothelial cells to hematopoietic tissue. Similar experiments using cultured mouse yolk sacs demonstrated that signaling pathways are conserved in vivo. Moreover, VE-cadherin+ cells isolated from the mouse yolk sac or paraaortic splanchnopleura, when virally transduced with Notch signaling or Scl, had increased hematopoietic colony-forming activity. Finally, ectopic Notch or Scl induction in zebrafish embryos rescued the expression of the prototypical hemogenic endothelium marker Runx1 in the absence of Hh signalling. Together, our results reveal that the Hh-Notch-Scl axis promotes embryonic hematopoiesis through endothelial-to-hematopoietic transition. Disclosures: Zon: Fate Therapeutics: Consultancy; Stemgent: Consultancy. Daley:iPierian, Inc: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Epizyme, Inc: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Verastem, Inc: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Solasia, KK: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; MPM Capital, Inc: Consultancy, Membership on an entity's Board of Directors or advisory committees; Johnson & Johnson: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 172-172
Author(s):  
Bradley W Blaser ◽  
Jessica L Moore ◽  
Elliott Hagedorn ◽  
Brian LI ◽  
Vera Binder ◽  
...  

Abstract The vascular niche is an important regulator of hematopoietic stem and progenitor cell (HSPC) function during development and in response to non-physiologic stress. The zebrafish caudal hematopoietic territory (CHT) is a vascular niche that serves as the primary site of hematopoiesis from 36 hours post fertilization (hpf) to 6 days post fertilization (dpf). We have recently identified CXCL8/CXCR1 signaling as a positive regulator of HSPC colonization of the zebrafish caudal hematopoietic territory (CHT) during late embryogenesis. This observation raised the question whether CXCR1 signaling might induce dynamic changes in the CHT that favor HSPC colonization. CXCR1 was expressed at high levels in endothelial cells using a kdrl(VEGFR2):CXCR1;kdrl:mCherry double transgenic line. The CHT was imaged by fluorescence confocal microscopy, reconstructed in 3 dimensions and the volume measured using digital image analysis software. Overexpression of CXCR1 within the endothelial cells of these animals increased the volume of the CHT by 28% (p=0.02). To understand how CXCR1 affects the dynamics of niche development, we globally overexpressed CXCR1 beginning at 36 hpf using a heat shock induction system and performed time lapse confocal microscopy from 52 to 72 hpf. This revealed that overexpression of CXCR1 consistently increased the CHT volume from 53 to 72 hpf compared to control (21% increase at 72 hpf, p=0.004). To understand whether CXCR1 acted directly on the vascular niche or indirectly via secreted factors or circulating cells, we created parabiotic zebrafish by fusing kdrl:mCherry embryos at 4 hpf. One half of each parabiotic animal was modified by DNA microinjection to globally overexpress CXCR1 or GFP as a control via heat shock induction at 36 and 48 hpf. The volume of the CHT was measured in each half of each parabiotic animal at 72 hpf. In control parabiotics overexpressing GFP, there was no difference in CHT volume between modified and unmodified sides of the organism. However, in parabiotics overexpressing CXCR1, the CHT of the modified side was 27% larger compared with the unmodified side (p=0.012), consistent with our previous results and suggesting that CXCR1 acts directly on the niche in this system. We then asked whether this volume change could affect HSPC engraftment. Parabiotic animals were created using Runx1:mCherry embryos that carry an HSPC-specific reporter transgene as "donors" and WT embryos as "recipients". The recipient niche was modified as before to overexpress CXCR1 or GFP as a control. At 72 hpf there was no difference in HSPC colonization of donor and recipient niches when the recipient niche expressed GFP. However, when the recipient niche expressed CXCR1, there was a significant increase in HSPC colonization of the recipient niche compared to the donor niche (11.4+/-2.4 vs 19.8+/-3.5 HSPCs per CHT, p=0.02). Taken together, these results identify a novel role for CXCL8/CXCR1 signaling in HSPC biology and they provide a new example of how innate immune signaling pathways are important for interactions between stem and progenitor cells and the niche. Administration of CXCL8 to hematopoietic stem cell transplant recipients may therefore improve HSPC engraftment and clinical outcomes in patients who are being treated for hematologic malignancies. Disclosures Zon: Marauder Therapeutics: Equity Ownership, Other: Founder; Scholar Rock: Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Other: Founder; Fate, Inc.: Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Other: Founder.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3765-3765
Author(s):  
Cheuk-Him Man ◽  
David T. Scadden ◽  
Francois Mercier ◽  
Nian Liu ◽  
Wentao Dong ◽  
...  

Acute myeloid leukemia (AML) cells exhibit metabolic alterations that may provide therapeutic targets not necessarily evident in the cancer cell genome. Among the metabolic features we noted in AML compared with normal hematopoietic stem and progenitors (HSPC) was a strikingly consistent alkaline intracellular pH (pHi). Among candidate proton regulators, monocarboxylate transporter 4 (MCT4) mRNA and protein were differentially increased in multiple human and mouse AML cell lines and primary AML cells. MCT4 is a plasma membrane H+and lactate co-transporter whose activity necessarily shifts protons extracellularly as intracellular lactate is extruded. MCT4 activity is increased when overexpressed or with increased intracellular lactate generated by glycolysis in the setting of nutrient abundance. With increased MCT4 activity, extracellular lactate and protons will increase causing extracellular acidification while alkalinizing the intracellular compartment. MCT4-knockout (MCT4-KO) of mouse and human AMLdid not induce compensatory MCT1 expression, reduced pHi, suppressed proliferation and improved animal survival. Growth reduction was experimentally defined to be due to intracellular acidification rather than lactate accumulation by independent modulation of those parameters. MCT4-KOmetabolic profiling demonstrated decreased ATP/ADP and increased NADP+/NADPH suggesting suppression of glycolysis and the pentose phosphate pathway (PPP) that was confirmed by stable isotopic carbon flux analyses. Notably,the enzymatic activity of purified gatekeeper enzymes, hexokinase 1 (HK1), pyruvate kinase M2 isoform (PKM2) and glucose-6-phosphate dehydrogenase (G6PDH) was sensitive to pH with increased activity at the leukemic pHi (pH 7.6) compared to normal pHi (pH 7.3). Evaluating MCT4 transcriptional regulation, we defined that activating histonemarks, H3K27ac and H3K4me3, were enriched at the MCT4 promoter region as were transcriptional regulators MLL1 and Brd4 by ChIP in AML compared with normal cells. Pharmacologic inhibition of Brd4 suppressed Brd4 and H3K27ac enrichment and MCT4 expression in AML and reduced leukemic cell growth. To determine whether MCT4 based pHi changes were sufficient to increase cell proliferation, we overexpressed MCT4 in normal HSPC and demonstrated in vivo increases in growth in conjunction with pHi alkalization. Some other cell types also were increased in their growth kinetics by MCT4 overexpression and pHi increase. Therefore, proton shifting may be a means by which cells respond to nutrient abundance, co-transporting lactate and protons out of the cell, increasing the activity of enzymes that enhance PPP and glycolysis for biomass generation. Epigenetic changes in AML appear to exploit that process by increasing MCT4 expression to enforce proton exclusion thereby gaining a growth advantage without dependence on signaling pathways. Inhibiting MCT4 and intracellular alkalization may diminish the ability of AML to outcompete normal hematopoiesis. Figure Disclosures Scadden: Clear Creek Bio: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Novartis: Other: Sponsored research; Editas Medicine: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Bone Therapeutics: Consultancy; Fog Pharma: Consultancy; Red Oak Medicines: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; LifeVaultBio: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Magenta Therapeutics: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Agios Pharmaceuticals: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Fate Therapeutics: Consultancy, Equity Ownership.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3229-3229 ◽  
Author(s):  
Ivana N Micallef ◽  
Eric Jacobsen ◽  
Paul Shaughnessy ◽  
Sachin Marulkar ◽  
Purvi Mody ◽  
...  

Abstract Abstract 3229 Poster Board III-166 Introduction Low platelet count prior to mobilization is a significant predictive factor for mobilization failure in patients with non-Hodgkin's lymphoma (NHL) or Hodgkin's disease (HD) undergoing autologous hematopoietic stem cell (HSC) transplantation (auto-HSCT; Hosing C, et al, Am J Hematol. 2009). The purpose of this study is to assess the efficacy of HSC mobilization with plerixafor plus G-CSF in patients with concomitant thrombocytopenia undergoing auto-HSCT. Methods Patients who had failed successful HSC collection with any mobilization regimen were remobilized with plerixafor plus G-CSF as part of a compassionate use program (CUP). Mobilization failure was defined as the inability to collect 2 ×106 CD34+ cells/kg or inability to achieve a peripheral blood count of ≥10 CD34+ cells/μl without having undergone apheresis. As part of the CUP, G-CSF (10μg/kg) was administered subcutaneously (SC) every morning for 4 days. Plerixafor (0.24 mg/kg SC) was administered in the evening on Day 4, approximately 11 hours prior to the initiation of apheresis the following day. On Day 5, G-CSF was administered and apheresis was initiated. Plerixafor, G-CSF and apheresis were repeated daily until patients collected the minimum of 2 × 106 CD34+ cells/kg for auto-HSCT. Patients in the CUP with available data on pre-mobilization platelet counts were included in this analysis. While patients with a platelet count <85 × 109/L were excluded from the CUP, some patients received waivers and were included in this analysis. Efficacy of remobilization with plerixafor + G-CSF was evaluated in patients with platelet counts ≤ 100 × 109/L or ≤ 150 × 109/L. Results Of the 833 patients in the plerixafor CUP database, pre-mobilization platelet counts were available for 219 patients (NHL=115, MM=66, HD=20 and other=18.). Of these, 92 patients (NHL=49, MM=25, HD=8 and other=10) had pre-mobilization platelet counts ≤ 150 × 109/L; the median platelet count was 115 × 109/L (range, 50-150). The median age was 60 years (range 20-76) and 60.4% of the patients were male. Fifty-nine patients (64.1%) collected ≥2 × 109 CD34+ cells/kg and 13 patients (14.1%) achieved ≥5 × 106 CD34+ cells/kg. The median CD34+ cell yield was 2.56 × 106 CD34+ cells/kg. The proportion of patients proceeding to transplant was 68.5%. The median time to neutrophil and platelet engraftment was 12 days and 22 days, respectively. Similar results were obtained when efficacy of plerixafor + G-CSF was evaluated in 29 patients with platelet counts ≤ 100 × 109/L (NHL=12, MM=10, HD=3 and other=4). The median platelet count in these patients was 83 × 109/L (range, 50-100). The median age was 59 years (range 23-73) and 60.4% of the patients were male. The minimal and optimal cell dose was achieved in 19(65.5%) and 3(10.3%) patients, respectively. The median CD34+ cell yield was 2.92 × 106 CD34+ cells/kg. The proportion of patients proceeding to transplant was 62.1%. The median time to neutrophil and platelet engraftment was 12 days and 23 days, respectively. Conclusions For patients mobilized with G-CSF alone or chemotherapy ±G-CSF, a low platelet count prior to mobilization is a significant predictor of mobilization failure. These data demonstrate that in patients with thrombocytopenia who have failed prior mobilization attempts, remobilization with plerixafor plus G-CSF allows ∼65% of the patients to collect the minimal cell dose to proceed to transplantation. Thus, in patients predicted or proven to be poor mobilizers, addition of plerixafor may increase stem cell yields. Future studies should investigate the efficacy of plerixafor + G-CSF in front line mobilization in patients with low platelet counts prior to mobilization. Disclosures Micallef: Genzyme Corporation: Membership on an entity's Board of Directors or advisory committees, Research Funding. Jacobsen:Genzyme Corporation: Research Funding. Shaughnessy:Genzyme Corporation: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Marulkar:Genzyme Corporation: Employment, Equity Ownership. Mody:Genzyme Corporation: Employment, Equity Ownership. van Rhee:Genzyme Corporation: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1170-1170
Author(s):  
Alison M. Taylor ◽  
Jessica M. Humphries ◽  
Richard M. White ◽  
Ryan D. Murphey ◽  
Caroline E. Burns ◽  
...  

Abstract Abstract 1170 Diamond Blackfan anemia (DBA) is a rare congenital disease characterized by red cell aplasia and craniofacial abnormalities. Ribosomal protein genes are often mutated in patients with this disease, but the mechanism of action is still being investigated. To elucidate the effect of mutations in ribosomal proteins, we are studying a zebrafish rps29 mutant with hematopoietic and endothelial defects. Hematopoietic stem cells (HSCs) in rps29-/- embryos are significantly decreased, as assayed by runx1 and cmyb expression. Although the aorta and posterior cardinal vein form in the mutant, intersomitic vessel formation is affected. To test whether decreased p53 levels can rescue these defects, we crossed fish with mutated p53 into the rps29 background. In rps29-/-;p53-/- embryos, the vascular and HSC phenotypes are rescued, demonstrating that p53 may be required for these effects of rps29 knockdown. We performed a microarray comparing rps29-/- embryos and their siblings to identify genes that are differentially expressed in the mutant. Using gene set enrichment analysis (GSEA), we determined that the list of genes up-regulated in the rps29 mutant is enriched for genes up-regulated by p53 in response to irradiation. Many of the genes identified have known roles in apoptosis and stress response. We have also identified genes whose expression correlates with the number of wildtype copies of rps29. Orthopedia homolog a (otpa), which is specifically expressed in forebrain and hindbrain tissues at 24 hours post fertilization (hpf), is decreased in heterozygous siblings and further decreased in homozygous siblings. In addition, p53 knockdown partially increases otpa levels in the mutant. These data support a model where p53 activation is one of the critical downstream mediators of rps29 knockdown in several tissues, but the mechanism of tissue specificity remains unclear. The otpa phenotype suggests that regulation of some genes is dependent on rps29 levels. The zebrafish rps29 mutant will be a useful model for understanding how a decrease in ribosomal protein levels can cause specific defects in hematopoietic and neural tissues. Disclosures: Zon: FATE, Inc.: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties; Stemgent: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document