scholarly journals Evaluation of Peroxiredoxins (PRDX1, PRDX2 and PRDX6) Expression in Patients with Chronic Myeloid Leukemia (CML) Treated with Imatinib in First Line

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5545-5545
Author(s):  
Cintia Mascarenhas ◽  
Lara Woldmar ◽  
Maria Helena Almeida ◽  
Rosangela Vieira Andrade ◽  
Anderson Ferreira Cunha ◽  
...  

Abstract Introduction: Satisfactory response is present for the majority of chronic myeloid leukemia (CML) patients (pts) in chronic phase (CP) treated with tyrosine kinase inhibitors (ITK) . However, some pts exhibit suboptimal response or treatment failure. The probability of achieving optimal response may be related with several factors. The oxidative stress modulation is tightly related with the physiopathology of various hematologic diseases and can cause cell death, apoptosis and necrosis. Peroxiredoxins (Prdx) are a family of multifunctional antioxidant thioredoxin-dependent peroxidases that protect cells against oxidative stress and modulate signaling cell proliferation pathways and may influence the metabolism of ITKs.The aim of this study was to analyze PRDX1, PRDX2 and PRDX6 levels of CML pts and correlate with cytogenetics and molecular responses. Methods: PRDX1, PRDX2 and PRDX6 expression was evaluated in 20 blood donors, 18 newly diagnosed CML pts and 22 previously treated pts. Pts were treated with imatinib 400-600mg in first line. Samples were collected from peripheral blood at diagnosis or during treatment and RNA samples were submitted to the synthesis of complementary DNA (cDNA) using the kit RevertAid™ HMinus First Strand cDNA Synthesis Kit (Fermentas, Life Sciences). For cDNA synthesis, 3 ug of RNA was used and peroxiredoxins expression was evaluated by real-time PCR with Syber Green (Applied Biosystems) and endogenous (β-Actina and GAPDH) controls. The results were analyzed using 2-ΔΔCT. Statistical analysis were made by using Mann Withney’s T test. Cytogenetic analysis was performed at diagnosis, 3, 6, 12 and 18 months after starting therapy and then every 12-24 months thereafter if CCR was achieved. BCR-ABL transcripts were measured in peripheral blood at 3-month intervals using quantitative RQ-PCR. Results were expressed as BCR-ABL/ABL ratio, with conversion to the international scale (IS). Major molecular response (MMR) was defined as a transcript level ≤ 0.1% (IS). Results: 40 CML pts, 55% male, median age of 53 years (23-84) were evaluated, 60% in chronic phase (CP), 30% in accelerated phase (AP) and 10% in blast crisis (BC). The mean of PRDX transcript levels in the total group was (PRDX1: 0.006 and 10.10 / PRDX2: 0.002 and 16.26 / PRDX6: 0.003 and 49.97) respectively (PRDX1: 1.2 / PRDX2: 0.9 / PRDX6: 15.36). The results showed that there are a significantly difference (p<0.05) in the PRDX gene expression between pts and blood donors. All PRDX expression was reduced in responsive patients, and increase expression in pts resistant to TKI. The median duration of imatinib treatment was 29 months (1-104) and 97% achieved complete hematological response, 75% complete cytogenetic response and 65% major or complete molecular response. The analysis showed that higher levels of PRDX were maybe correlated with a no reduction of BCR-ABL transcripts (p<0.05). As well as, there was may influence of the PRDX levels at diagnosis in the response at 24 months of treatment. Conclusion:Is known that that the increase of ROS in CML leads to an increase of DNA damage, triggering genomic instability and resulting in accumulation of mutations and chromosomal aberrations, and contribute to the mechanism of acquisition of resistance to TKI inhibitors. The decrease of Peroxiredoxins expression observed in the responsive group, could contribute to this process, since the detoxification of these species are compromising and the effects caused by oxidative stress are even more drastic, leading to mutations that could be followed by TKi resistance. The relation between Prdx and CML not yet been elucidated. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4041-4041
Author(s):  
Cintia Do Couto Mascarenhas ◽  
Maria Helena Almeida ◽  
Eliana C M Miranda ◽  
Bruna Virgilio ◽  
Marcia Torresan Delamain ◽  
...  

Abstract Introduction The majority of chronic myeloid leukemia (CML) patients (pts) in chronic phase (CP), present satisfactory response to imatinib treatment. However, 25-30% of these pts exhibit suboptimal response or treatment failure. The probability of achieving optimal response may be related with several factors. The human organic cation transporter 1 (hOCT1, SLC22A1), an influx transporter, is responsible for the uptake of imatinib into chronic myeloid leukemia (CML) cells The aim of this study was to analyze hOCT-1 levels at diagnosis of CML patients and correlate with cytogenetics and molecular responses. Methods hOCT-1 expression was evaluated in 58 newly diagnosed CML pts. Pts were treated with imatinib 400-600mg in first line. Samples were collected from peripheral blood at diagnosis and RNA was obtained from total leucocytes. For cDNA synthesis, 3 ug of RNA was used. hOCT-1 expression was evaluated by real-time PCR with TaqMan probe SLC22A1 (Applied Biosystems) and endogenous GAPDH control. The results were analyzed using 2-ΔΔCT. Cytogenetic analysis was performed at diagnosis, 3, 6, 12 and 18 months after starting therapy and then every 12-24 months thereafter if CCR was achieved. BCR-ABL transcripts were measured in peripheral blood at 3-month intervals using quantitative RT-PCR (RQ-PCR). Results were expressed as BCR-ABL/ABL ratio, with conversion to the international scale (IS). Major molecular response (MMR) was defined as a transcript level ≤ 0.1%. Results 58 CML pts, 60% male, median age of 46 years (19-87) were evaluated, 71% in chronic phase (CP), 21% in accelerated phase (AP) and 5% in blast crisis (BC). The mean and median of hOCT-1 transcript levels in the total group was 2.03 and 0.961 respectively (0.008–19.039) and CP pts was 1.86 and 1.00 (0.008-10.34).The median duration of imatinib treatment was 27 months (1-109) and 96.6% achieved complete hematological response, 79.3% complete cytogenetic response and 69% major or complete molecular response. The regression analysis showed correlation between higher transcript levels of hOCT-1 and BCR-ABL transcripts<10%) at 3 months analysis (p<0.0001). Albeit, there was no influence of the hOCT-1 transcript levels at diagnosis in the achievement of cytogenetic and molecular response at 24 months of treatment. Conclusions In this report, we found that high hOCT-1 expression was predictive of BCR-ABL transcripts<10% at 3 months, although we did not find correlation between hOCT-1 levels at diagnosis and the achievement of molecular response at 24 months, studies show that there is correlation between BCR-ABL log reduction in the first months of treatment and the achievement of molecular response. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2592-2592
Author(s):  
Giovanna Rege-Cambrin ◽  
Carmen Fava ◽  
Enrico Gottardi ◽  
Filomena Daraio ◽  
Emilia Giugliano ◽  
...  

Abstract Background Consensus has been achieved that standardized molecular quantitative analysis (RQ-PCR) on peripheral blood (PB) is a suitable method for monitoring residual disease in chronic myeloid leukemia (CML). However, BM is still obtained at specific timepoints, and in a number of cases, only bone marrow (BM) sample collected for cytogenetic analysis is available. Being one of the laboratory involved in the standardization process of molecular monitoring for CML patients, we decided to perform a comparative analysis of BM and PB samples in order to evaluate the consistency of the results. Methods Between March 2009 and January 2013, 230 consecutive RQ-PCR tests to assess BCR-ABL transcript levels from simultaneously collected PB and BM samples were performed (for a total of 460 analysis) on 77 patients affected by Ph+ CML in chronic phase treated in our center. All samples were analyzed in the same laboratory following international guidelines (Cross N, Leukemia 2012) and results were expressed according to the International Scale; ABL1 was used as control gene. Time from blood-drawn to processing was within 3-4 hours. Results Among the 230 pairs, 3 were considered as not evaluable because of inadequate material; for the purpose of this study, the remaining 227 pairs were considered as “evaluable”. 204 pairs were classified as “fit” when both BM and PB ABL amplification resulted in more than 10.000 copies; 23 pairs were considered unfit for ABL1 <10.000 in either one of the two samples (21) or both (2). The mean number of ABL1 copies in all evaluable samples was 35.639 for BM (SD 21.465) and 30.958 for PB samples (SD 18.696). Correlation analysis was performed on the whole population and in 4 subgroups: No Complete Cytogenetic Response (CCyR, 22%), CCyR without Major Molecular Response (MMR), (21.6%), CCyR with MMR (excluding patients with MR4 or better,19.8%), and CCyR with MR4 – MR4.5 (32,6%). Cytogenetic response was not available in 9 BM samples (4%), not included in the subgroup analysis. Spearman correlation of BCR/ABL ratio values between PB versus BM paired samples resulted in a statistically significant correlation in all groups, both for evaluable and fit pairs. Correlation was stronger in samples that were not in MMR or better (table 1 and figure 1). The Wilcoxon test showed that the mean difference of BCR/ABL values between paired PB and BM samples was not significantly different from zero (in evaluable and fit pairs by considering the whole population). Concordance was further analyzed by the K test which resulted in a coefficient equal to 0.627, corresponding to a notable degree of concordance. For patients in CCyR, agreement on classification of response (MMR, MR4, MR4.5) between paired PB and BM samples was observed in 125/168 evaluable pairs; 22 out of the 43 evaluable cases of disagreement were due to technical failures (in 10 BM and 12 PB samples). In 14 of the remaining 21 cases, PB was more sensitive. Conclusions In a single center experience of molecular analysis, BCR/ABL ratio was highly consistent in BM and PB samples. In less than 10% of the cases a single test did not reach the required sensitivity of 10.000 ABL copies and the double testing allowed to obtain a valid result. This may be especially valuable in evaluating an early response (i.e. at 3 months), when the amount of disease has prognostic relevance. The analysis will be expanded to include samples coming from different centers to evaluate a possible role of timing and transport on data consistency. Disclosures: Saglio: Novartis: Consultancy, Honoraria; Bristol Myers Squibb: Consultancy, Honoraria; ARIAD: Consultancy, Honoraria; Celgene: Consultancy, Honoraria.


Blood ◽  
2011 ◽  
Vol 118 (12) ◽  
pp. 3228-3235 ◽  
Author(s):  
Bengt Simonsson ◽  
Tobias Gedde-Dahl ◽  
Berit Markevärn ◽  
Kari Remes ◽  
Jesper Stentoft ◽  
...  

Abstract Biologic and clinical observations suggest that combining imatinib with IFN-α may improve treatment outcome in chronic myeloid leukemia (CML). We randomized newly diagnosed chronic-phase CML patients with a low or intermediate Sokal risk score and in imatinib-induced complete hematologic remission either to receive a combination of pegylated IFN-α2b (Peg–IFN-α2b) 50 μg weekly and imatinib 400 mg daily (n = 56) or to receive imatinib 400 mg daily monotherapy (n = 56). The primary endpoint was the major molecular response (MMR) rate at 12 months after randomization. In both arms, 4 patients (7%) discontinued imatinib treatment (1 because of blastic transformation in imatinib arm). In addition, in the combination arm, 34 patients (61%) discontinued Peg–IFN-α2b, most because of toxicity. The MMR rate at 12 months was significantly higher in the imatinib plus Peg–IFN-α2b arm (82%) compared with the imatinib monotherapy arm (54%; intention-to-treat, P = .002). The MMR rate increased with the duration of Peg–IFN-α2b treatment (< 12-week MMR rate 67%, > 12-week MMR rate 91%). Thus, the addition of even relatively short periods of Peg–IFN-α2b to imatinib markedly increased the MMR rate at 12 months of therapy. Lower doses of Peg–IFN-α2b may enhance tolerability while retaining efficacy and could be considered in future protocols with curative intent.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 5160-5160
Author(s):  
Ji Yun Lee ◽  
Sung Hee Lim ◽  
Hae Su Kim ◽  
Kwai Han Yoo ◽  
Haa-Na Song ◽  
...  

Abstract Purpose The early molecular response (EMR, ≤ 10% BCR-ABL1 at 3 months) of tyrosine kinase inhibitor (TKI) treatment for patients with chronic myeloid leukemia (CML) in chronic phase (CP) has been reported to have strong correlation with long-term outcome. We aim to investigate the prognostic interaction of the EMR and major molecular response (MMR). Methods We retrospectively reviewed data for a total of 165 patients with newly diagnosed CML-CP who received TKIs (imatinib, nilotinib, or dasatinib) as first-line treatment between January 2003 and April 2013. Of the total 128 patients who were regularly monitored by peripheral blood molecular analysis, 85 had a BCR-ABL1 assessment at 3 months and were finally included in the analysis. Results The median age of all patients was 49 years and 87.1% received imatinib as first line treatment. High risk group by Sokal and EUTOS were 29.4% and 14.1%, respectively. Patients with EMR (n = 56, 65.9%) had a tendency to have low risk disease and to be treated with 2nd generation of TKIs. With a median follow-up duration of 53.6 months (range, 5.4-131.3), the 5-year OS, 5-year FFS, and 5-year EFS were 92.5%, 74.8%, and 68.0%, respectively. Median time to achieve MMR was 11.1 months (95%CI, 8.4 - 13.8). The outcomes at 5 year comparing patients whose BCR-ABL1 transcript levels ≤ 10% vs >10% at 3 months were as follows: OS, 92.2% (95% CI 84.9-99.1) vs 92.8% (95% CI 83.7-102.3), p = 0.819; FFS, 84.7% (95% CI, 75.6-94.4) vs 57.4% (95% CI, 39.0-75.0), p < 0.001; and EFS, 73.6% (95% CI 62.5-85.5) vs 57.8% (95% CI 40.0-76.0), p = 0.050. Six (10.7%) of 56 patients with BCR-ABL1 transcript levels ≤ 10% at 3 months failed to achieved an MMR and 18 (62.1%) of 29 patients with > 10% at 3 months achieved an MMR. Based on these heterogeneous clinical outcomes, we further explored subgroup analysis according to the achievement of MMR for refined discrimination of survival outcomes. There was no significant difference of clinical outcomes between ≤ 10% vs > 10% at 3 months among the patients who achieved MMR (OS, p = 0.376; FFS, p = 0.793; and EFS, p = 0.266). In patients who did not achieved MMR, only FFS was significantly difference between ≤ 10% vs > 10% at 3 months (OS, p = 0.489; FFS, p = 0.014; and EFS, p = 0.199). Conclusion Patients who failed to achieve EMR but finally reached MMR have excellent prognosis that whether we have to change TKI for EMR failure is to be addressed by ongoing prospective clinical trials. Disclosures Jang: Alexion Pharmaceuticals: Research Funding.


Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 4102
Author(s):  
Frédéric Millot ◽  
Meinolf Suttorp ◽  
Stéphanie Ragot ◽  
Guy Leverger ◽  
Jean-Hugues Dalle ◽  
...  

Within the International Registry of Childhood Chronic Myeloid Leukemia (CML), we identified 18 patients less than 18 years old at diagnosis of CML who were in the chronic phase and exhibiting a sustained deep molecular response (DMR) to imatinib defined as BCR-ABL1/ABL1 < 0.01% (MR4) for at least two years followed by discontinuation of imatinib. Before discontinuation, the median duration of imatinib was 73.2 months (range, 32–109) and the median duration of MR4 was 46.2 months (range, 23.9–98.6). Seven patients experienced loss of major molecular response (MMR) 4.1 months (range, 1.9–6.4) after stopping and so restarted imatinib. The median molecular follow-up after discontinuation was 51 months (range, 6–100) for the nine patients without molecular relapse. The molecular free remission rate was 61% (95% CI, 38–83%), 56% (95% CI, 33–79%) and 56% (95% CI, 33–79%) at 6, 12 and 36 months, respectively. Six of the seven children who experienced molecular relapse after discontinuation regained DMR (median, 4.7 months; range, 2.5–18) after restarting imatinib. No withdrawal syndrome was observed. In univariate analysis, age, sex, Sokal and ELTS scores, imatinib treatment and DMR durations before discontinuation had no influence on treatment free remission. These data suggest that imatinib can be safely discontinued in children with sustained MR4 for at least two years.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4563-4563
Author(s):  
Ronit Gurion ◽  
Liat Vidal ◽  
Avi Leader ◽  
Pia Raanani ◽  
Anat Gafter-Gvili

Abstract Background: Imatinib, nilotinib and dasatinib are all considered first line treatment in chronic phase (CP) chronic myeloid leukemia (CML) patients. The choice of the most suitable tyrosine kinase inhibitor (TKI) for an individual patient is influenced by multiple factors including disease characteristics, patient comorbidities and preferences, as well as each TKI's unique profile of adverse events. A meta-analysis of second generation TKIs as first line treatment for patients with CML was published by our group in 2011. In view of the recently published long term results of three of the trials included in the previous meta-analysis and data from two new trials, we decided to update our data. Objectives: To evaluate the efficacy and toxicity of different TKIs as first line treatment for patients with CML. Methods: Systematic review and meta-analysis of randomized controlled trials comparing first line treatment with the newer TKIs (nilotinib, dasatinib, bosutinib and ponatinib) to imatinib in patients with CP-CML. The MEDLINE, conference proceedings and references were searched until August 2014. Two reviewers appraised the quality of trials and extracted data. The following outcomes were assessed: complete cytogenetic response (CCyR); major molecular response (MMR); complete molecular response (CMR), defined as a 4.5 log reduction in BCR-ABL transcripts; early molecular response, defined as BCR-ABL transcript levels of 10% or less at 3 months; progression to accelerated phase (AP) / blastic crisis (BC); all-cause mortality (ACM) and toxicity. Relative risks (RR) were estimated and pooled. Random-effect model was used in all analysis. Results: Our search yielded six trials including 2,426 patients. These trials compared the effects of nilotinib, dasatinib, bosutinib or ponatinib to imatinib. Data from the six trials were available for analysis of MMR. Treatment with the newer TKIs significantly improved MMR at all-time points (3, 12, 18, 24 and 48 months) compared to imatinib (Table 1). Of note, the newer TKIs significantly increased the rate of CMR compared to imatinib at 12 months (RR 2.68, 95% CI 1.64-4.36, 5 trials, figure 1) and at 24 months (RR 2.04, 95% CI 1.62-2.57, 3 trials). Moreover, there was a statistically significant advantage in favor of the newer TKIs as compared to imatinib in terms of early molecular response at 3 months (RR 1.34, 95% CI 1.27-1.41, 5 trials). Importantly, progression rate to AP/BC at 24 months was significantly lower with the newer TKIs in comparison with imatinib (RR 0.35, 95% CI 0.20-0.61, 4 trials). However there was no difference in ACM (RR 0.73, 95% CI 0.46-1.15, 4 trials). We conducted a meta-analysis for specific adverse events according to the distinct toxicity profile of the different TKIs. Severe peripheral arterial occlusive disease occurs more frequently in the newer TKIs arm (i.e. nilotinib and ponatinib) (RR 8.13, 95% CI 1.51-43.83, 2 trials) than in the imatinib arm. In addition, pleural effusion requiring discontinuation occurs at a higher rate in the newer TKIs arm (RR 4.61, 95% CI 1.31-16.23, 4 trials; dasatinib and bosutinib vs. imatinib). Regarding hematologic toxicity including grade 3-4 anemia and neutropenia, there was no difference between the two arms (all newer TKIs vs. imatinib). However, regarding thrombocytopenia grade 3-4, there were more events with thrombocytopenia in the newer TKIs arm compared to imatinib (RR 1.41, 95% CI 1.01-1.97). Conclusions: With a longer follow-up of 4 years, the newer TKIs remain more potent than imatinib in terms of MMR, CMR and early molecular response. Yet, an effect on overall survival cannot be shown. Since CMR is a prerequisite for treatment discontinuation, the newer TKIs can potentially facilitate cessation of treatment more frequently than imatinib. These data should be taken into consideration in choosing treatment for a newly diagnosed CML patient. Table 1 – MMR at different time points Time point Relative risk 95% Confidence of interval No. of trials 3 months 6.63 2.31-19.01 5 12 months 1.68 1.48-1.89 6 18 months 1.37 1.18-1.59 4 24 months 1.28 1.06-1.54 4 48 months 1.20 1.05-1.38 3 Figure 1 – CMR at 12 months Figure 1 –. CMR at 12 months Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document