Integrative Genomics Reveals a Role for GNA13 in Lymphomagenesis within the Germinal Center Niche

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 782-782
Author(s):  
Jane Healy ◽  
Adrienne Greenough ◽  
Rachel Rempel ◽  
Moffitt Andrea ◽  
Izidore S Lossos ◽  
...  

Abstract Nonhodgkin Lymphoma (NHL) is among the most common cancer subtypes, with approximately >350,000 new cases diagnosed annually worldwide. The vast majority of NHLs arise from germinal center (GC) B cells. We and others have identified GNA13 as one of the most frequently mutated genes in GC-derived lymphomas, including ~30% of Burkitt Lymphoma and ~25% of Germinal Center B Cell-like (GCB) Diffuse Large B cell Lymphoma. Despite this association, the role of GNA13 in lymphomagenesis remains elusive. In human breast and prostate cancer, GNA13 behaves as an oncogene, with increased expression linked to cellular invasion and metastasis. Intriguingly, GNA13 mutations in GCB DLBCL and Burkitt Lymphoma are frequently inactivating, possessing a high number of nonsense and missense mutations in conserved domains. This suggests that GNA13 may function as a tumor suppressor in the context of lymphoma, in contrast to its role in solid tumors. The purpose of this study is to define the role of GNA13 in GC B cells and to clarify how GNA13 loss may contribute to lymphoma within the germinal center niche. We first investigated the expression pattern of GNA13 in lymphocyte populations from normal human tonsil. Our data demonstrated that GNA13 is enriched in GC B cells by quantitative PCR and immunohistochemistry. To determine the effect of GNA13 abundance on global mRNA expression patterns, we performed RNA sequencing on lymphoma derived cell lines. Using this method, we found that GNA13 knockdown and overexpression was highly correlated with GC dark and light zone gene signatures, respectively. We next devised a proteomics approach to identify potential GNA13 binding partners in GCs. Lysates from lymphoma-derived cell lines overexpressing FLAG-tagged GNA13 were subjected to immunoprecipitation with M2-antibody bound magnetic beads, followed by LC-MS/MS. Our results demonstrated an enrichment of proteins involved in focal adhesion, consistent with the known involvement of GNA13 in processes of cytoskeletal reorganization and cell migration. We next explored the role of GNA13 in vivo. Since GNA13 mutations are a unique feature of GC-derived lymphomas, we developed mouse models that would allow us study GNA13 exclusively in the germinal center context. We generated B cell and GC specific GNA13 knockout mice by crossing GNA13fl/fl mice with MB1-Cre and AID-Cre strains. After immunization with sheep red blood cells, both B cell and GC specific GNA13 deficient mice possessed normal levels of B, T and GC cells within secondary lymphoid sites including Peyer’s patches and spleen, suggesting that GNA13 is not essential for GC formation. GC B cells from both GNA13 deficient strains demonstrated enhanced cellular motility toward GC directed chemokines CXCL12, CXCL13 and S1P using in vitro transwell migration assays. Furthermore, B cells isolated from GNA13 deficient animals showed enhanced RhoA activity. These data suggested that GNA13 inhibits GC B cell migration and RhoA mediated cell motility in normal conditions. Loss of GNA13 may then deregulate normal chemokine gradient signaling, resulting in global increases in GC migration. We also demonstrated that GNA13 deficient B cells possess elevated levels of phosphorylated AKT, an effect potentiated by the addition of CXCL12 and S1P. AKT signaling is known to promote cell survival in a variety of cell types, which may further promote oncogenesis. In this study, we have synthesized the complementary approaches of next generation sequencing, proteomics and genetic mouse models to gain novel insight into the biological function of GNA13, a gene that is mutated in a high proportion of GC-derived lymphomas. As a whole, our work suggests that GNA13 serves as a tumor suppressor during the germinal center reaction. The acquisition of inactivating GNA13 mutations may promote lymphoma by allowing cells to physically escape the germinal center niche and evade apoptosis while continuing to express GC signature genes. Affected cells may be subjected to persistent somatic hypermutation, which, over time, could result in the accumulation of additional oncogenic mutations, culminating in development of GC-derived lymphoma. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 703-703
Author(s):  
Christof Schneider ◽  
Roy L Maute ◽  
Pavel Sumazin ◽  
Manisha Brahmachary ◽  
Manu Setty ◽  
...  

Abstract Abstract 703 In order to gain insights into the role of microRNA (miRNAs) in mature B cell function and lymphomagenesis, we performed a comprehensive miRNA expression profiling of normal mature B cells and of germinal center (GC)-derived lymphomas. miRNA expression profiles were generated using a commercial array platform designed to interrogate approximately 700 miRNAs. Normal GC B cells were isolated from tonsil tissue of 5 pediatric healthy donors and subjected to miRNA profiling in parallel with tumor specimens obtained from 10 Burkitt Lymphoma (BL), 16 Follicular Lymphoma (FL) and 20 Diffuse Large B Cell Lymphoma (DLBCL) patients. Each tumor type displayed a distinct miRNA profile and appeared to be clearly separated from the normal counterpart. Interestingly, a set of miRNAs was expressed in normal GC cells, but not in lymphoma samples, suggesting that structural and/or functional loss of miRNAs occur during lymphomagenesis. Among these, miR-28 was found to be up-regulated in GC B cells, while it was completely silenced in BL and significantly reduced in a large fraction of DLBCL and FL. Quantitative RT-PCR analysis confirmed miR-28 reduced expression in these GC-derived lymphoma subtypes including both primary biopsies and cell lines. MiR-28 is an intragenic miRNA encoded by the LPP gene locus, located on chromosome 3q28. Deletions affecting miR-28 and LPP were previously reported in FL (Schwaenen et al. Genes Chromosomes Cancer 2009; 48:39-54) and similarly we identified LPP deletions in about 9% of DLBCL investigated for copy number alterations by SNP arrays. Further FISH analyses performed in cell lines lacking miR-28 expression (12 DLBCL and 27 BL) failed to identify chromosomal aberrations in the LPP locus, suggesting that mechanisms other than genetic losses, possibly of epigenetic nature, are involved in miR-28 silencing in lymphomas. In order to investigate the effects of miR-28 in lymphoma cells, we generated stable lymphoma cell lines displaying inducible expression of miR-28. Re-expression of miR-28 in lymphoma cells led to a retarded growth due to a combination of G1-cell-cycle arrest and increased apoptosis. Furthermore, lymphoma cells expressing miR-28 lost their clonogenic properties as shown by their inability to form colonies in soft agar. Taken together these results suggest a tumor suppressor function for miR-28 in lymphoma cells. Toward the identification of the direct miR-28 target genes, we implemented computational target prediction methods with gene expression profiling data obtained from the miR-28 engineered cell lines. Approximately two thousand miR-28 direct candidate targets were computationally predicted, 88 of which displayed transcriptional down-regulation upon miR-28 induction, suggesting that miR-28 may affect the stability of the target transcript. The candidate targets included genes involved in the control of cell proliferation and apoptosis and in cell signaling, consistent with the phenotypic changes induced by miR-28 expression. In 4 out of 5 tested candidate targets, 3′-UTR reporter gene assay confirmed the direct effect of miR-28 on the target gene. Finally, we have generated a conditional, GC B cell-specific miR-28 knock-out mouse model, which will provide critical insights on the physiologic as well as the tumor suppressor role of miR-28 in vivo. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 12 ◽  
Author(s):  
Martin A. Rivas ◽  
Ceyda Durmaz ◽  
Andreas Kloetgen ◽  
Cristopher R. Chin ◽  
Zhengming Chen ◽  
...  

The cohesin complex plays critical roles in genomic stability and gene expression through effects on 3D architecture. Cohesin core subunit genes are mutated across a wide cross-section of cancers, but not in germinal center (GC) derived lymphomas. In spite of this, haploinsufficiency of cohesin ATPase subunit Smc3 was shown to contribute to malignant transformation of GC B-cells in mice. Herein we explored potential mechanisms and clinical relevance of Smc3 deficiency in GC lymphomagenesis. Transcriptional profiling of Smc3 haploinsufficient murine lymphomas revealed downregulation of genes repressed by loss of epigenetic tumor suppressors Tet2 and Kmt2d. Profiling 3D chromosomal interactions in lymphomas revealed impaired enhancer-promoter interactions affecting genes like Tet2, which was aberrantly downregulated in Smc3 deficient lymphomas. Tet2 plays important roles in B-cell exit from the GC reaction, and single cell RNA-seq profiles and phenotypic trajectory analysis in Smc3 mutant mice revealed a specific defect in commitment to the final steps of plasma cell differentiation. Although Smc3 deficiency resulted in structural abnormalities in GC B-cells, there was no increase of somatic mutations or structural variants in Smc3 haploinsufficient lymphomas, suggesting that cohesin deficiency largely induces lymphomas through disruption of enhancer-promoter interactions of terminal differentiation and tumor suppressor genes. Strikingly, the presence of the Smc3 haploinsufficient GC B-cell transcriptional signature in human patients with GC-derived diffuse large B-cell lymphoma (DLBCL) was linked to inferior clinical outcome and low expression of cohesin core subunits. Reciprocally, reduced expression of cohesin subunits was an independent risk factor for worse survival int DLBCL patient cohorts. Collectively, the data suggest that Smc3 functions as a bona fide tumor suppressor for lymphomas through non-genetic mechanisms, and drives disease by disrupting the commitment of GC B-cells to the plasma cell fate.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2614-2614
Author(s):  
Laura Pasqualucci ◽  
Mara Compagno ◽  
Jane Houldsworth ◽  
Stefano Monti ◽  
Adina Grunn ◽  
...  

Abstract PRDI-BF1/Blimp1 is a zinc finger transcriptional repressor expressed in post-germinal center (GC) B cells and required for terminal B cell differentiation. The PRDM1/BLIMP 1 locus lies on chromosomal band 6q21–q22.1, a region frequently deleted in B-cell non-Hodgkin’s lymphomas suggesting the existence of one or more tumor suppressor loci (Gaidano et al, Blood80:1781, 1992). To test whether genetic alterations affecting the BLIMP1 gene may be involved in DLBCL pathogenesis, we performed PCR amplification and direct sequencing of the BLIMP1 coding sequences in 136 cases, including 20 cell lines and 116 primary biopsies. Gene expression profiling analysis using the Affymetrix Gene Chip system was used in 93 cases to classify them as germinal center B-cell like (GCB, N=38), activated B-cell like (ABC, N=35) and type III (N=20). Nonsense mutations were found in 7 of 136 cases. Four of these mutations generated premature stop codons, predicting severely truncated proteins of 61 to 244 aminoacids; in three cases, a single bp substitution affecting the exon 2 splice donor site led to insertion of 101 nucleotides from intron 3 and a premature stop codon. One primary tumor case carried a mutation within the intron 3 splice acceptor site, and one cell line displayed a gene rearrangement in one allele with deletion of the second allele. Strikingly, 6 of the 7 nonsense mutations identified segregated with the ABC phenotype (the remaining case was not profiled), suggesting that these alterations may be common and specific in this subtype of DLBCL (6/35, 17%). In addition, missense mutations generating aminoacid substitutions were found in 8 additional cases, and complete lack of Blimp-1 protein expression was found in most ABC-type DLBCL cases. These observations suggest that inactivation of the BLIMP1 gene may occur also by other mechanisms, including the generation of dominant negative mutants, chromosomal deletion or epigenetic silencing, in a large fraction of DLBCL. Functional studies are currently being performed to corroborate these data. Overall, these results suggest that BLIMP1 may act as a tumor suppressor gene, whose loss or inactivation may contribute to lymphomagenesis by blocking post-GC differentiation of B cells toward plasma cells.


Author(s):  
Chiara Pighi ◽  
Taek-Chin Cheong ◽  
Mara Compagno ◽  
Enrico Patrucco ◽  
Maddalena Arigoni ◽  
...  

The expression of BCL6 in B cell lymphoma can be deregulated by chromosomal translocations, somatic mutations in the promoter regulatory regions or reduced proteasome-mediated degradation. FBXO11 was recently identified as a ubiquitin ligase involved in the degradation of BCL6 and is frequently inactivated in lymphoma or other tumors. Here, we show that FBXO11 mutations are found in 23% of Burkitt lymphoma (BL) patients. FBXO11 mutations impaired BCL6 degradation and the deletion of FBXO11 protein completely stabilized BCL6 levels in human BL cell lines. Conditional deletion of either one or two copies of the FBXO11 gene in mice cooperated with oncogenic MYC and accelerated B cell lymphoma onset, providing experimental evidence that FBXO11 is a haplo-insufficient oncosuppressor in B cell lymphoma. In WT and FBXO11-deficient BL mouse and human cell lines, targeting BCL6 via specific degrader or inhibitors partially impaired lymphoma growth in vitro and in vivo. Inhibition of MYC by the Omomyc mini-protein blocked cell proliferation and increased apoptosis, effects further increased by combined BCL6 targeting. Thus, by validating the functional role of FBXO11 mutations in BL we further highlight the key role of BCL6 in BL biology and provide evidence that innovative therapeutic approaches such as BCL6 degraders and direct MYC inhibition could be exploited as a targeted therapy for BL.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1574-1574
Author(s):  
Hiroto Horiguchi ◽  
Marioara Felicia Ciuculescu ◽  
Anja Troeger ◽  
Haiming Xu ◽  
Christian Brendel ◽  
...  

Abstract RHOH encodes a GTPase-deficient, hematopoietic-specific small GTPase first identified as a hypermutable gene in DLBCL (Pasqualucci et al. 2001). RhoH is critical for T cell receptor signaling and Rhoh-deficient (RhohKO) mice have T cell lymphopenia (Gu et al., 2006) and loss of function mutations of RHOH are associated with Epidermodysplasia Verruciformis (Crequer et al., 2012). However, the role of RhoH in the biology of DLBCL is still unknown and its role in B lymphoid development is incompletely studied. We investigated the role of RhoH in normal germinal center formation and in a murine model of DLBCL by crossing RhohKO mice with Iµ-HABcl-6 transgenic (Bcl-6Tg) mice (Cattoretti G, et al., 2005). In young RhohKOmice, deficient development of CXCR5+ follicular T helper (Tfh) cells results in defective germinal center (GC) formation and impaired immunoglobulin switching in vivo. In spite of this defect in GC formation, RhohKO; Bcl-6Tg (KOTg) mouse demonstrated accelerated lymphoma progression associated with larger spleens and significantly earlier death (Log-rank test p<0.01, Figure 1). Immunohistochemistry data suggested increased expression of IRF-4 and enhanced expression of BCL-6 in KOTg mice, findings confirmed by immunoblot and consistent with an activated B-cell (ABC)-DLBCL phenotype. To analyze the mechanism underlying these results, B cell lymphoma cell lines from KOTg lymphoma mice were established. Multiple attempts to establish RhohWT lymphoma cell lines failed, although we also successfully established a lymphoma cell line from RhohKO; Bcl-6(ntg) (KONtg) mice. Re-expression of RhoH in these lines via retrovirus mediated gene transfer led to significantly decreased proliferation (5.9x106±9.6x105 cells vs 8.6x106±9.6x105 cells after 5-days culture; KOTg vs KOTg-RhoH, mean±SEM, p<0.05) that was associated with clear reduction in BCL-6 expression. These data suggest that BCL-6 is a direct or an indirect transcriptional target of RhoH. Our laboratory previously reported that KAISO, a dual-specific, Broad complex, Trantrak, Bric-a-brac/Pox virus, Zinc finger (POZ-ZF) transcription factor interacts and colocalizes with RhoH in the nucleus, whereas knockdown of RhoH inhibits the nuclear localization of KAISO in Jurkat cells (Mino A, et al., 2016). In addition, Kaiso has been shown to be a key regulator of spleen germinal center formation by repressing Bcl-6 expression in splenocytes (Koh D, et al., 2013). We hypothesized that the deletion of Rhoh may lead to the decreased nuclear localization of KAISO and result in increased the expression of Bcl-6. We first confirmed that RhoH bound KAISO in RhoH-transduced KO lymphoma cells by co-immunoprecipitation. Further immunoblot analysis and quantitative PCR (qPCR) demonstrated decreased BCL-6 expression in lymphoma cells in which RhoH was re-expressed (KOTg-RhoH and KONtg-RhoH) compared with empty vector-transduced lymphoma cell lines. Interestingly, p53 a BCL-6 target was increased in RhoH-transduced lymphoma cell lines. These data indicate that RhoH affects BCL-6 expression in B cell lymphoma cell lines and suggest that RhoH may be involved in DLBCL development by co-regulating BCL-6 expression affecting downstream targets via interaction with KAISO. Figure. Figure. Disclosures Williams: Bluebird Bio: Research Funding.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3733-3733 ◽  
Author(s):  
Jennifer E Amengual ◽  
Matko Kalac ◽  
Luigi Scotto ◽  
Patrick A Sleckman ◽  
Enrica Marchi ◽  
...  

Abstract Abstract 3733 Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin's Lymphoma. Despite advances in treatment, 1/3 of patients die from their disease. Gene expression profiling has delineated three subtypes with different genetic features known to be prognostic: the Activated B-cell (ABC), Germinal Center (GC), and grey zone types. For example, ABC DLBCL is addicted to NFkB over-expression. The oncogene, BCL6, encodes a transcription factor that functions as a transcriptional repressor within normal germinal center B-cells. Constitutive activation of Bcl-6 leads to GC-type DLBCL by turning off genes expressing cell cycle dependent kinase inhibitors, and essential tumor suppressor genes, like p53. There is a critical inverse relationship between Bcl-6 and p53, the functional status of which is linked to each transcription factor's degree of acetylation. Deacetylation of Bcl-6 is required for maintaining its effects as a transcriptional repressor. Conversely, acetylation of p53 is activating when class III histone deacetylases (HDAC), also known as sirtuins, are inhibited by drugs such as niacinamide. HDAC inhibitors are presently approved for T-cell lymphoma and may require the targeting of additional pathways to be effective in B-cell lymphomas. Trichostatin A and niacinamide modulate Bcl-6 in lymphoma cell lines. One therapeutic strategy that could favorably shift the relationship between oncogenes and tumor suppressors is the pharmacologic modification of Bcl-6 and p53 using HDAC inhibitors. Eight DLBCL cell lines were screened (4 ABC: Su-DHL2, HBL-1, OCI-Ly10, RIVA; 4 GC:OCI-Ly1, OCI-Ly7, Su-DHL6, Su-DHL4) with four class I/II HDAC inhibitors (romidepsin, vorinostat, panobinostat and belinostat) in combination with niacinamide (sirtuin inhibitor) at two dose levels each at three time points. Cell growth inhibition was measured by luminescence cell viability and apoptosis flow cytometry assays. Synergy was measured by the relative risk ratio (RRR) calculation where values <1 represent synergy. Synergy was achieved in significantly greater number and intensity in the GC versus ABC cell lines. Specifically, romidepsin in combination with niacinamide achieved the greatest synergy. To analyze mechanism of action, DLBCL cell lines were treated with combinations of class I/II HDAC inhibitors and niacinamide. Cells of both GC and ABC subtypes treated with the combination resulted in increased acetylation of p53, and increased p21 and BLIMP-1 content compared to controls. These results did not correlate with cytotoxicity as the ABC cell lines did not achieve the same synergy as the GC cells. GC cells treated with the same combinations resulted in acetylation of Bcl-6 compared with controls as measured by immunoprecipitation and Western blotting assays; ABC cells do not express Bcl-6. This finding correlated with cytotoxicity implying that a rational second pathway must be targeted to shift the balance between oncogene and tumor suppressor activity to achieve effective cell kill. p300 content was also increased suggesting that treatment with HDAC inhibitors recruit or upregulate its production and activity leading to increased acetylation. Using a novel double transgenic mouse model of aggressive spontaneous B-cell lymphoma (l-myc overexpressing crossed with CD19-tagged mCherry luciferase), in vivo effects of the drug combination were studied. These mice express equal basal amounts of Bcl-6 and p53 as GC cell lines. Mice treated with niacinamide 20 mg/kg and romidepsin 2.3mg/kg IP for 5 hours achieved increased acetylation of Bcl-6 and p53, and accumulation of p21 and BLIMP1 compared with controls. Importantly, mice treated with the combination of niacinamide 40 mg/kg and romidepsin 2.3 mg/kg IP achieved decreased tumor burden as measured by bioluminescence signal intensity compared to mice treated with each drug alone and controls. Presently, we are translating these concepts and observations in a proof-of-principle phase I trial evaluating the safety of vorinostat plus niacinamide in lymphoid malignancies. By targeting the specific pathogenetic features of DLBCL, it may be possible to tailor future treatment platforms for discrete subtypes of DLBCL. Disclosures: Off Label Use: The drugs evaluated are not approved for use in DLBCL. O'Connor:Celgene: Consultancy, Research Funding; Merck: Research Funding; Novartis: Research Funding; Spectrum: Research Funding.


Blood ◽  
2010 ◽  
Vol 116 (9) ◽  
pp. 1469-1478 ◽  
Author(s):  
Hanfeng Guan ◽  
Linka Xie ◽  
Frank Leithäuser ◽  
Lucia Flossbach ◽  
Peter Möller ◽  
...  

The transcription factor KLF4 may act both as an oncogene and a tumor suppressor in a tissue-depending manner. In T- and pre-B-cell lymphoma, KLF4 was found to act as tumor suppressor. We found the KLF4 promoter methylated in B-cell lymphoma cell lines and in primary cases of B-cell lymphomas, namely, follicular lymphoma, diffuse large B-cell lymphoma, Burkitt lymphoma, and in classic Hodgkin lymphoma (cHL) cases. Promoter hypermethylation was associated with silencing of KLF4 expression. Conditional overexpression of KLF4 in Burkitt lymphoma cell lines moderately retarded proliferation, via cell-cycle arrest in G0/G1. In the cHL cell lines, KLF4 induced massive cell death that could partially be inhibited with Z-VAD.fmk. A quantitative reverse-transcribed polymerase chain reaction array revealed KLF4 target genes, including the proapoptotic gene BAK1. Using an shRNA-mediated knock-down approach, we found that BAK1 is largely responsible for KLF4-induced apoptosis. In addition, we found that KLF4 negatively regulates CXCL10, CD86, and MSC/ABF-1 genes. These genes are specifically up-regulated in HRS cells of cHL and known to be involved in establishing the cHL phenotype. We conclude that epigenetic silencing of KLF4 in B-cell lymphomas and particularly in cHL may favor lymphoma survival by loosening cell-cycle control and protecting from apoptosis.


Blood ◽  
2006 ◽  
Vol 109 (4) ◽  
pp. 1636-1642 ◽  
Author(s):  
Yasodha Natkunam ◽  
Shuchun Zhao ◽  
David Y. Mason ◽  
Jun Chen ◽  
Behnaz Taidi ◽  
...  

Abstract We previously developed a multivariate model based on the RNA expression of 6 genes (LMO2, BCL6, FN1, CCND2, SCYA3, and BCL2) that predicts survival in diffuse large B-cell lymphoma (DLBCL) patients. Since LMO2 emerged as the strongest predictor of superior outcome, we generated a monoclonal anti-LMO2 antibody in order to study its tissue expression pattern. Immunohistologic analysis of over 1200 normal and neoplastic tissue and cell lines showed that LMO2 protein is expressed as a nuclear marker in normal germinal-center (GC) B cells and GC-derived B-cell lines and in a subset of GC-derived B-cell lymphomas. LMO2 was also expressed in erythroid and myeloid precursors and in megakaryocytes and also in lymphoblastic and acute myeloid leukemias. It was rarely expressed in mature T, natural killer (NK), and plasma cell neoplasms and was absent from nonhematolymphoid tissues except for endothelial cells. Hierarchical cluster analysis of immunohistologic data in DLBCL demonstrated that the expression profile of the LMO2 protein was similar to that of other GC-associated proteins (HGAL, BCL6, and CD10) but different from that of non-GC proteins (MUM1/IRF4 and BCL2). Our results warrant inclusion of LMO2 in multivariate analyses to construct a clinically applicable immunohistologic algorithm for predicting survival in patients with DLBCL.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3787-3787
Author(s):  
Zhizhou Xia ◽  
Xiuli Zhang ◽  
Ping Liu ◽  
Bo Jiao ◽  
Ruibao Ren

GNA13, encoding G alpha subunit 13 protein, is a major tumor suppressor gene frequently mutated in germinal center B-cell-like diffuse large B-cell lymphoma (GCB-DLBCL) and Burkitt's lymphoma (BL). GNA13 is one of the key mediators of sphingosine-1-phosphate (S1P) signaling to confine B cells in germinal center. Inactivation of GNA13 coupled signaling could release tumor B cells from germinal center of lymphoid organs to peripheral blood and promote lymphomagenesis. Due to the "undruggable" nature of GNA13 as a tumor suppressor, targeted therapy remains an unsolved clinical issue. Protein palmitoylation is a unique post-translational lipid modification in regulating protein trafficking, stability and functionality. Emerging evidence reveals that palmitoylation plays vital roles in control of G-protein-coupled receptor (GPCR) signaling transduction. In this study, we discovered that GNA13 protein relies on amino-terminal palmitoylation for its membrane association and signal transduction, which is essential for its tumor suppressor activities. By using a Isobaric iodoTMT switch labeling based mass spectrometry method, we firstly identified that palmitoylation mainly occurs on two cysteine residues, Cys14 and Cys18, one of which site was also found mutated in DLBCL patients. To validate this result, we genetically mutated the cysteine to serine residues on these two potential palmitoylation sites, respectively. We found that both single and double mutants could largely reduce the palmitoylation level of GNA13. We also found that the loss of palmitoylation dissociates GNA13 protein from cell plasma membrane. Similar results were obtained using a pan-palmitoylation inhibitor, 2-bromopalmitate (2-BP). In order to examine the role of GNA13 palmitoylation in human DLBCL cells, we reintroduced either wildtype (wt) GNA13 or palmitoylation mutant GNA13 into Su-DHL-4 lymphoma cells after knocking down the endogenous wt GNA13 expression with short hairpin RNA interference. Our data show that the loss of palmitoylation promotes GCB-DLBCL cell proliferation and tumor growth both in vitro and in vivo, indicating that palmitoylation of GNA13 is essential to its tumor suppressor function. Mechanically, inactivation of GNA13, either by knocking down GNA13 expression or mutating the palmitoylation sites of GNA13, leads to phosphoinositide 3-kinase (PI3K)/AKT activation and BCL2 overexpression. Consistent to the increased BCL2 expression, we found that BCL2 inhibitors are among the most effective drugs to kill GNA13-deficient cells in a high-throughput chemical screen. Furthermore, we show that inhibition of palmitoylation by 2-BP enhances the drug sensitivity of GNA13 wildtype GCB-DLBCL cells to BCL2 inhibitors. These results indicate that the palmitoylation of GNA13 could serve as a target for treating B-cell lymphoma in combination with a BCL2 inhibitor. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3353-3353
Author(s):  
Cassandra L. Jacobs ◽  
Anand S. Lagoo ◽  
Raj C Dash ◽  
Adekunle Raji ◽  
Andrew M Evens ◽  
...  

Abstract Background: Burkitt lymphoma (BL) is a highly aggressive lymphoma that can be cured in up to 80% of patients when treated with intensive multi-agent chemotherapy. The distinction between BL and diffuse large B-cell lymphoma (DLBCL) is critical because there are important differences in their clinical management. However, the distinction can be difficult because of an overlap between DLBCL and BL in morphology, immunophenotype and cytogenetics. Previous work has shown that gene expression profiling can distinguish these entities with a high degree of certainty. Our previous work has demonstrated that microRNAs play a direct role in regulating key transcription factors in normal and malignant B cells. We investigated whether microRNA expression could be used to reliably distinguish BL from DLBCL. Methods: Biopsy samples were collected from 104 patients with a diagnosis of either sporadic BL (N=25) or DLBCL (N=79). All cases were reviewed for pathology diagnosis and profiled for microRNA expression using microarrays. Using the 30 most highly differentially expressed microRNAs with the highest t-statistic, we applied singular value decomposition to identify the 10 most predictive microRNAs. Using those 10 microRNAs, we constructed a Bayesian predictor to distinguish BL from DLBCL. The predictor performance was tested using leave-one-out cross-validation. We further applied gene expression profiling to 52 cases of DLBCL to identify the molecular subsets of DLBCL: activated B cell type and germinal center B cell type DLBCL. We constructed a Bayesian predictor to distinguish these molecular subsets based upon their gene expression. A separate predictor was created from the microRNA profiles of these DLBCL subsets and tested using leave-one-out cross-validation. In order to understand the effects of lineage-specific microRNAs in B cell lymphomas, we applied FACS-sorting to isolate mature B cell subsets including naïve B cells, germinal center B cells, plasma cells and memory cells. We compared the microRNAs involved in germinal center differentiation to those expressed highly in Burkitt lymphoma. Results: The predictor constructed based on microRNA expression was 90% accurate in distinguishing Burkitt lymphoma from DLBCL, using pathology diagnosis as the standard. The microRNA-based predictor was also over 90% accurate in the distinction of the molecular subsets of DLBCL, compared to the gold standard of gene expression-profiling. Further, we found that the Burkitt lymphoma cases consistently expressed microRNAs related to normal germinal center B cell differentiation, suggesting that they also maintain expression of B cell stage-specific microRNAs. Conclusion: This study demonstrates that the microRNA expression profiles can be used to accurately distinguish Burkitt lymphoma from DLBCL. The ability of the predictor to identify the molecular subsets of patients with DLBCL and those with BL suggests that it will be useful in the diagnosis and management of patients with Burkitt lymphoma. Further, the patterns of microRNA expression and their target genes suggests a role for microRNAs in the pathophysiology of these tumors.


Sign in / Sign up

Export Citation Format

Share Document