scholarly journals In Chronic Myeloid Leukemia Patients on 2nd-Line Tyrosine Kinase Inhibitor Therapy, Deep Sequencing at the Time of Warning May Allow Sensitive Detection of Emerging BCR-ABL1 Mutants

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 815-815
Author(s):  
Simona Soverini ◽  
Caterina De Benedittis ◽  
Luca Zazzeroni ◽  
Katerina Machova Polakova ◽  
Fausto Castagnetti ◽  
...  

Abstract Background and Aims: Next generation amplicon-based deep sequencing (DS) on the Roche, Illumina or Ion Torrent instruments is becoming accessible to a wider and wider number of diagnostic laboratories. Although conventional sequencing is still the gold standard, DS has been hailed by many as the future of diagnostic BCR-ABL1 kinase domain (KD) mutation screening. BCR-ABL1 KD mutations are infrequent in newly diagnosed chronic myeloid leukemia (CML) patients (pts) receiving 1st-line TKI therapy, but remain a challenge in relapsed pts, who usually display a greater genetic instability. Indeed, pts already harboring BCR-ABL1 KD mutations have a higher likelihood of developing additional, dasatinib (DAS)- or nilotinib (NIL)-resistant mutations – which is defined as a ‘failure’ by the 2013 European LeukemiaNet (ELN) recommendations. Taking advantage of a next-generation amplicon sequencing design and protocol set up and validated in the framework of the IRON-II international study, we aimed to assess whether DS may allow a larger window of detection of emerging BCR-ABL1 KD mutants predicting for an impending relapse. Methods: among the imatinib (IM)-resistant CML pts who switched to 2nd-line TKI therapy and were referred to our laboratory for routine BCR-ABL1 transcript level monitoring and KD mutation screening by conventional sequencing, 51 acquired DAS- or NIL-resistant mutations after a median of 9 months (range, 3-27 months) of therapy and had leftover cDNA available at previous timepoints. To reconstruct the dynamics of mutation emergence, resequencing on a Roche GS Junior instrument was performed from the time of failure and mutation detection by conventional sequencing backwards. Runs were designed to achieve high sequencing depth, allowing reliable detection of variants down to 1% abundance. BCR-ABL1/ABL1%IS transcript levels and/or cytogenetic response, whichever available, were used to define whether the patient had an ‘optimal response’, ‘warning’ or ‘failure’ at the time of first mutation detection by DS. Results: baseline mutation status, as assessed by conventional sequencing, was available for all the 51 CML pts included in this retrospective study; 29/51 pts were positive for BCR-ABL1 KD mutations, with switch to NIL or DAS selected accordingly. Twenty-six pts were later found to have acquired DAS-resistant mutations (T315I, n=13; F317L/V, n=10; V299L, n=3) and 25 pts were later found to have acquired NIL-resistant mutations (T315I, n=4; F359V/I/C, n=7; Y253H, n=6; E255K, n=9; one patient acquired two mutations). DS was able to backtrack the DAS- or NIL-resistant mutations to the previous sample(s) in 23/51 (45%) pts. Median mutation burden at the time of first detection by DS was 5% (range, 1-17%); median interval between detection by DS and detection by conventional sequencing was 3 months (range, 3-9 months). In 5 cases, the mutations were traceable at baseline; in the remaining cases, correlation with response at the time mutations were first detected by DS revealed a ‘warning’ according to the 2013 ELN definitions of response to 2nd-line therapy in 13 cases; an ‘optimal response’ in one case; a ‘failure’ in 4 cases. As a control, we used DS to explore BCR-ABL1 KD mutation status in 10 randomly selected pts with ‘warning’ at various timepoints, that later turned into optimal responses; no DAS- or NIL-resistant mutations were detected. Conclusions: the 2011 ELN recommendations for mutation analysis suggest BCR-ABL1 KD to be screened by conventional sequencing in case of ‘failure’ of 2nd-line TKI therapy – according to the provisional definitions available at the time. Earlier detection of emerging BCR-ABL1 KD mutations allows a greater leeway in tackling drug resistance and enhancing therapeutic efficacy. Data presented herein indicate that: 1) DS may reliably pick TKI-resistant mutations earlier than conventional sequencing in a proportion of pts, and that 2) the recently introduced definitions of ‘warning’ may provide a rational trigger, besides ‘failure’, for DS-based BCR-ABL1 KD mutation screening in CML pts on 2nd-line TKI therapy. A prospective cost-benefits evaluation of using DS in this and other settings is warranted, and will contribute useful information to the revision of the ELN recommendations for BCR-ABL1 KD mutation analysis. Supported by: European LeukemiaNet, AIL, AIRC, FP7 NGS-PTL project, Progetto Regione-Università 2010-12 (L. Bolondi). Disclosures Soverini: Novartis: Consultancy; Bristol-Meyers Squibb: Consultancy; Ariad: Consultancy. Castagnetti:Novartis Farma: Consultancy, Honoraria; Bristol Myers Squibb: Consultancy, Honoraria; Pfizer: Consultancy. Gugliotta:Novartis: Consultancy, Honoraria; Bristol Myers Squibb: Consultancy, Honoraria. Bonifacio:Amgen Inc.: Consultancy. Rosti:Novartis: Consultancy; Bristol-Myers Squibb: Consultancy. Baccarani:Novartis: Consultancy; Bristol-Myers Squibb: Consultancy; Ariad: Consultancy; Pfizer: Consultancy. Martinelli:NOVARTIS: Consultancy, Speakers Bureau; BMS: Consultancy, Speakers Bureau; PFIZER: Consultancy; ARIAD: Consultancy.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1654-1654
Author(s):  
Jayachandran PK ◽  
Trivadi S Ganesan ◽  
Nikita Mehra ◽  
Krishnarathinam Kannan ◽  
Manikandan Dhanushkodi ◽  
...  

Background: Imatinib resistance mutation analysis (IRMA) or abl kinase domain mutation analysis is performed in patients with Chronic myeloid leukemia (CML) whenever the response to treatment is inadequate. We have analyzed the reports of IRMA at our centre. Methods: The clinical details of 71 patients with CML on Imatinib, who underwent IRMA testing during the period of January 2017 to March 2019 were collected from the patient records and analyzed. IRMA was performed for failure or warning or progression, anytime during the course of treatment. IRMA was done by either Sanger sequencing (n=45) or next generation sequencing (n=26, Illumina, NGS). The associations between variables were tested using Chi - Square test. Results: Median age at diagnosis of 71 patients was 44 years (Range 18 - 71 years). Males constituted 70% (n=50). At diagnosis, 92% (n=65) of patients were in chronic phase and the remainder were in accelerated phase (n=4) or blast crisis (n=2). Mutations in the abl kinase domain were detected in 26 patients (37%). Next Generation Sequencing (NGS) could identify more mutations (13/26 - 50%) compared to conventional Sanger Sequencing (13/45 - 29%), but the difference was not significant (p=0.07). NGS could identify three or more mutations in 5 patients in contrast to Sanger. All the mutations detected were those previously described except for an insertion of 35bp near the C-Terminal which was identified in 3 patients. E459K translocation was identified in 6 patients. E355G translocation was identified in 4 patients. F359V, M351T, Y253H, G250E, H396R, T315I translocations were identified in 3 patients each. Patients who were not compliant to therapy had increased frequency of mutations (14/26 - 54%) compared to those who were compliant (12/45 - 27%), which was significantly different (p=0.02). Patients who had loss of complete hematological response (CHR) had significantly higher frequency of mutations (14/21- 67%) compared to other reasons for performing the test (p=0.001). Patients who had failure to achieve targets at various time points had a significantly lower frequency of mutations (4/23 - 17%, p=0.02) compared to other reasons for performing the test. Conclusion: Patients who were not compliant for treatment were more likely to have mutations. Loss of CHR showed an increased frequency compared to other reasons. NGS could identify mutations in more number of patients. NGS identified numerically higher mutations in patients. Larger prospective data are needed to confirm these observations. Table Disclosures No relevant conflicts of interest to declare.


2021 ◽  
pp. 106728
Author(s):  
Hyunkyung Park ◽  
Inho Kim ◽  
Hyeong-Joon Kim ◽  
Dong-Yeop Shin ◽  
Sung-Yeoun Lee ◽  
...  

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 884-884
Author(s):  
Vera Grossmann ◽  
Christiane Eder ◽  
Sonja Schindela ◽  
Alexander Kohlmann ◽  
Sandra Wille ◽  
...  

Abstract Abstract 884 Blast crisis is the terminal phase of chronic myeloid leukemia (CML) with a short median survival of approximately six months. At present, little is known about molecular mechanisms underlying disease progression. We hypothesized that mutations occurring in other myeloid and lymphatic malignancies are acquired during disease progression from chronic phase to blast crisis. Here, in total 40 blast crisis CML cases (n=25 myeloid, n=10 lymphoid, n=5 not specified) were analyzed, all diagnosed between 9/2005 and 7/2009. First, all cases were investigated for IKZF1 deletions by PCR using specific primer pairs for the common intragenic deletions spanning from exon 2–7, or exon 4–7 as published by Iacobucci et al. (Blood, 114:2159-67, 2009). In total, in 17.5% (7/40) of cases intragenic IKZF1 deletions were detected. Secondly, next-generation deep-sequencing (454 Life Sciences, Branford, CT) was used to investigate 11 candidate genes in all 40 patients for a broad molecular screening. Known hotspot regions were sequenced for CBL (exons 8 and 9), NRAS (exons 2 and 3), KRAS (exons 2 and 3), IDH1 (exon 4), IDH2 (exon 4), and NPM1 (exon 12). Complete coding regions were analyzed for RUNX1, TET2, WT1, and TP53. To perform this comprehensive study, amplicon-based deep-sequencing was applied using the small volume Titanium chemistry assay. To cope with the great number of amplicons, in total 59, 48.48 Access Arrays were applied (Fluidigm, South San Francisco, CA), amplifying and barcode-tagging 48 amplicons across 48 samples in one single array (2,304 reactions). In median, 430 reads per amplicon were obtained, thus yielding sufficient coverage for detection of mutations with high sensitivity. Further, ASXL1 exon 12 aberrations were investigated by Sanger sequencing. In summary, after excluding known polymorphisms and silent mutations in 33/40 patients 53 mutations were identified: RUNX1 (16/40; 40.0%), ASXL1 (12/40; 30.0%), WT1 (6/40; 15.0%), NRAS (2/40; 5.0%), KRAS (2/40; 5.0%), TET2 (3/40; 7.5%), CBL (1/40; 2.5%), TP53 (1/40; 2.5%), IDH1 (3/40; 7.5%), IDH2 (0/40), and NPM1 (0/40). Thus, 82.5% of blast crisis CML patients harbored at least one molecular aberration. In median, one affected gene per patient was observed (range 1–5). In detail, RUNX1 was associated with additional mutations in other genes, i.e. 9/16 cases were harboring additional mutations in combination with RUNX1. Similarly, in 8/12 patients with ASXL1 mutations additional aberrations were detected. With respect to myeloid or lymphoid features ASXL1 mutations (n=11) were exclusively observed in patients with myeloid blast crisis (n=1 not specified), in contrast 5/7 IKZF1 cases were detected in cases with lymphoid features (n=1 myeloid, n=1 not specified). Interestingly, besides IKZF1 (n=5) and RUNX1 (n=3) alterations there was no other mutated gene occurring in lymphoid blast crisis CML. In addition, no aberration was detected in NPM1, and in contrast to published data, in our cohort only one patient harbored a mutation in TP53. Moreover, for 8 patients with mutations in IKZF1 (n=3), RUNX1 (n=3), ASXL1 (n=1), WT1 (n=2), and IDH1 (n=2), matched DNA from the initial diagnosis at chronic state was available. In these specimens respective IKZF1 deletions, RUNX1, and ASXL1 mutations were not detectable indicating that IKZF1, RUNX1, and ASXL1 mutations had been developed during disease progression and act as driver mutations in these cases. WT1 and IDH1 mutations occurred at first diagnosis in one case each, indicating these genes would constitute passenger mutations. In conclusion, this comprehensive study on 12 molecular markers enabled to characterize for the first time that 82.5% of blast crisis CML cases harbor specific molecular mutations. IKZF1 and RUNX1 alterations were identified as important markers of disease progression from chronic state to blast crisis. Moreover, technically, a novel combination of a high-throughput sample preparation assay for targeted PCR-based next-generation deep-sequencing was developed and allowed to broaden our molecular understanding in blast crisis CML. Disclosures: Grossmann: MLL Munich Leukemia Laboratory: Employment. Eder:MLL Munich Leukemia Laboratory: Employment. Schindela:MLL Munich Leukemia Laboratory: Employment. Kohlmann:MLL Munich Leukemia Laboratory: Employment. Wille:MLL Munich Leukemia Laboratory: Employment. Schnittger:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Kern:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership, Research Funding.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Shunqiao Feng ◽  
Lin Han ◽  
Mei Yue ◽  
Dixiao Zhong ◽  
Jing Cao ◽  
...  

Abstract Background Langerhans cell histiocytosis (LCH) is a rare neoplastic disease that occurs in both children and adults, and BRAF V600E is detected in up to 64% of the patients. Several studies have discussed the associations between BRAF V600E mutation and clinicopathological manifestations, but no clear conclusions have been drawn regarding the clinical significance of the mutation in pediatric patients. Results We retrieved the clinical information for 148 pediatric LCH patients and investigated the BRAF V600E mutation using next-generation sequencing alone or with droplet digital PCR. The overall positive rate of BRAF V600E was 60/148 (41%). The type of sample (peripheral blood and formalin-fixed paraffin-embedded tissue) used for testing was significantly associated with the BRAF V600E mutation status (p-value = 0.000 and 0.000). The risk of recurrence declined in patients who received targeted therapy (p-value = 0.006; hazard ratio 0.164, 95%CI: 0.046 to 0.583). However, no correlation was found between the BRAF V600E status and gender, age, stage, specific organ affected, TP53 mutation status, masses close to the lesion or recurrence. Conclusions This is the largest pediatric LCH study conducted with a Chinese population to date. BRAF V600E in LCH may occur less in East Asian populations than in other ethnic groups, regardless of age. Biopsy tissue is a more sensitive sample for BRAF mutation screening because not all of circulating DNA is tumoral. Approaches with low limit of detection or high sensitivity are recommended for mutation screening to avoid type I and II errors.


Blood ◽  
2011 ◽  
Vol 118 (5) ◽  
pp. 1208-1215 ◽  
Author(s):  
Simona Soverini ◽  
Andreas Hochhaus ◽  
Franck E. Nicolini ◽  
Franz Gruber ◽  
Thoralf Lange ◽  
...  

AbstractMutations in the Bcr-Abl kinase domain may cause, or contribute to, resistance to tyrosine kinase inhibitors (TKIs) in chronic myeloid leukemia patients. Recommendations aimed to rationalize the use of BCR-ABL mutation testing in chronic myeloid leukemia have been compiled by a panel of experts appointed by the European LeukemiaNet (ELN) and European Treatment and Outcome Study and are here reported. Based on a critical review of the literature and, whenever necessary, on panelists' experience, key issues were identified and discussed concerning: (1) when to perform mutation analysis, (2) how to perform it, and (3) how to translate results into clinical practice. In chronic phase patients receiving imatinib first-line, mutation analysis is recommended only in case of failure or suboptimal response according to the ELN criteria. In imatinib-resistant patients receiving an alternative TKI, mutation analysis is recommended in case of hematologic or cytogenetic failure as provisionally defined by the ELN. The recommended methodology is direct sequencing, although it may be preceded by screening with other techniques, such as denaturing-high performance liquid chromatography. In all the cases outlined within this abstract, a positive result is an indication for therapeutic change. Some specific mutations weigh on TKI selection.


Sign in / Sign up

Export Citation Format

Share Document