scholarly journals Animal Models of Arterial and Venous Thrombosis

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. SCI-2-SCI-2
Author(s):  
Bruce Furie ◽  
Barbara C. Furie ◽  
Robert Flaumenhaft ◽  
Jeffrey I. Zwicker

The intersection of the availability of genetically altered mice, new technologies for intravital microscopy and high speed computing systems has led to the use of animal models to build on the concepts that have emerged from in vitro studies of the molecular and cellular biology of hemostasis and thrombosis. In an effort to improve the understanding of the etiology and pathogenesis of thrombosis, thrombus formation has been initiated in experimental systems via mechanical disruption, laser-induced, photochemical-induced and ferric chloride-induced injury to the vessel wall, among others. None of these methods are physiologic, and as such, remain models that require extrapolation from a living animal – a mouse – to human biology. We have focused on laser-induced injury of the arteriole vessel wall in the cremasteric muscle of the mouse. Using high speed digital imaging of fluorescently labeled components and real time intravital microscopy, our group has been able to demonstrate that platelet accumulation and fibrin generation during thrombus formation occur simultaneously, that tissue factor and collagen are independent initiators of platelet activation, and that monocyte-derived microparticles deliver tissue factor to the site of thrombus development. Perhaps the most important and unanticipated observation has been that thiol isomerases, thought only to be involved in protein biosynthesis via the formation of disulfide bonds in the endoplasmic reticulum, play a critical role in thrombus formation. Protein disulfide isomerase (PDI), ERp5 and ERp57 are among the vascular thiol isomerases that are known to be important for the initiation of thrombus formation. Laser-induced thrombosis in mice is associated with PDI, ERp5 and ERp57 secretion by platelets and endothelium. Inhibition of these thiol isomerases blocks platelet thrombus formation and fibrin generation. The integrins αIIbβ3 and αVβ3 play a key role in this process, binding directly with the secreted thiol isomerases and capturing them in the vicinity of vessel wall injury. These enzymes are required for the initiation of platelet thrombus formation and fibrin generation, but the mechanism by which they function remains to be elucidated. At present, it would appear that there is an electron transfer pathway involving these enzymes that regulates the initiation of thrombus formation. The mechanism by which PDI participates in thrombus generation is being evaluated by using trapping mutant forms to identify substrates of PDI that participate in the network pathways linking thiol isomerases, platelet receptor activation and fibrin generation. Several proteins, including vitronectin, thrombospondin and Factor V, have been identified as forming covalent disulfide intermediates with PDI. We are currently exploring PDI as an antithrombotic target using isoquercetin and quercetin 3-rutinoside, inhibitors of PDI identified by high throughput screening. Tail bleeding times are equivalent for mice treated with quercetin-3-rutinoside and isoquercetin compared to untreated mice. In an in vivo mouse pulmonary embolism model, PDI inhibitors rescue a high percentage of mice from death. The b-domain of PDI binds to quercetin-3-rutinoside, and infusion of the isolated b’ domain into a mouse treated with quercetin-3-rutinoside restores thrombus formation. This suggests a method for reversal of bleeding if these PDI inhibitors are found to be complicated by bleeding. The antithrombotic properties of quercetin and isoquercetin in humans have been tested. A pharmacokinetic study with quercetin and isoquercetin determined optimal oral delivery with isoquercetin. The effectiveness of these PDI inhibitors in human studies is being evaluated in a clinical trial evaluating prophylaxis of thromboembolic events in patients with cancer-associated thrombosis. PDI is a novel target for antithrombotic therapy and is unique in that its inhibition simultaneously blocks platelet thrombus formation and fibrin generation. Disclosures Zwicker: Quercegen Pharma: Research Funding.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 146-146
Author(s):  
Ariela Arad ◽  
Richard A Furie ◽  
Barbara C Furie ◽  
Bruce Furie

Abstract Abstract 146 Antiphospholipid syndrome (APS) is characterized by thrombosis, recurrent fetal loss and the presence of the lupus anticoagulant, anticardiolipin antibodies or anti-beta-2 glycoprotein 1 antibodies. Sera from patients with APS contain polyclonal antibodies that bind to various plasma proteins including beta-2 glycoprotein 1. Although beta-2 glycoprotein 1 antibodies have been well-documented as a biomarker for the diagnosis of APS, their direct role in the pathogenesis of thrombosis is unknown. Here, we have demonstrated using intravital microscopy that purified anti-beta-2 glycoprotein 1 antibodies isolated from the serum of a patient with APS greatly amplify thrombus size following laser-induced vessel wall injury in live mice. A patient with systemic lupus and APS complicated by pulmonary embolism was studied. IgG was isolated from serum by affinity chromatography using a Protein A/G column. Anti-beta-2 glycoprotein 1 antibodies in the IgG fraction were affinity-purified using homogeneous beta-2 glycoprotein 1 covalently bound to CNBr-activated agarose beads. Purified anti-beta-2 glycoprotein 1 antibodies were eluted at low pH. Patient IgG depleted of anti-beta-2 glycoprotein 1 antibodies was obtained by repeated chromatography over the beta-2 glycoprotein 1 column. The effects of (a) purified anti-beta-2 glycoprotein 1 antibodies, (b) anti-beta-2 glycoprotein 1 antibody-depleted patient IgG, and (c) IgG from normal human sera on thrombus formation were studied quantitatively in the live mouse. Intravital microscopy was performed using the cremaster muscle as a vascular window, and thrombus formation was initiated by laser injury to the arteriolar wall. Five minutes prior to vessel wall injury, purified anti-beta-2 glycoprotein 1 antibodies, anti-beta-2 glycoprotein 1 antibody-depleted patient IgG, or normal human IgG were infused via a jugular catheter. Platelet thrombus size was determined by widefield microscopy and Alexa 647-conjugated Fab fragments of an anti-CD 41 monoclonal antibody. Up to 10 thrombi were generated per mouse, and the median integrated fluorescence for 25-30 thrombi determined. Infusion of anti-beta-2 glycoprotein 1 antibodies increased thrombus size in a dose-dependent manner. Infusion of purified anti-beta-2 glycoprotein 1 antibodies at 0.12 μg/g mouse and 0.40 μg/g mouse increased thrombus size by about 18-fold and 122-fold respectively over thrombi formed in untreated mice. However, anti-beta-2 glycoprotein 1 antibody-depleted patient IgG and normal human IgG did not affect platelet thrombus size. These results indicate that the anti-beta-2 glycoprotein 1 antibodies isolated from APS patient serum are responsible for markedly increased thrombus size in this thrombosis model. The target cellular antigen of the anti-beta-2 glycoprotein 1 antibodies and the mechanism of enhanced thrombus formation remain unknown. However, these results provide evidence that anti-beta-2 glycoprotein 1 antibodies are not only a marker but are directly involved in the pathogenesis of thrombosis. This in vivo animal model offers an approach to identifying inhibitors of anti-beta-2 glycoprotein 1-mediated thrombosis. Disclosures: No relevant conflicts of interest to declare.


1967 ◽  
Vol 18 (03/04) ◽  
pp. 592-604 ◽  
Author(s):  
H. R Baumgartner ◽  
J. P Tranzer ◽  
A Studer

SummaryElectron microscopic and histologic examination of rabbit ear vein segments 4 and 30 min after slight endothelial damage have yielded the following findings :1. Platelets do not adhere to damaged endothelial cells.2. If the vessel wall is denuded of the whole endothelial cell, platelets adhere to the intimai basement lamina as do endothelial cells.3. The distance between adherent platelets as well as endothelial cells and intimai basement lamina measures 10 to 20 mµ, whereas the distance between aggregated platelets is 30 to 60 mµ.4. 5-hydroxytryptamine (5-HT) is released from platelets during viscous metamorphosis at least in part as 5-HT organelles.It should be noted that the presence of collagen fibers is not necessary for platelet thrombus formation in vivo.


2003 ◽  
Vol 197 (11) ◽  
pp. 1585-1598 ◽  
Author(s):  
Shahrokh Falati ◽  
Qingde Liu ◽  
Peter Gross ◽  
Glenn Merrill-Skoloff ◽  
Janet Chou ◽  
...  

Using a laser-induced endothelial injury model, we examined thrombus formation in the microcirculation of wild-type and genetically altered mice by real-time in vivo microscopy to analyze this complex physiologic process in a system that includes the vessel wall, the presence of flowing blood, and the absence of anticoagulants. We observe P-selectin expression, tissue factor accumulation, and fibrin generation after platelet localization in the developing thrombus in arterioles of wild-type mice. However, mice lacking P-selectin glycoprotein ligand 1 (PSGL-1) or P-selectin, or wild-type mice infused with blocking P-selectin antibodies, developed platelet thrombi containing minimal tissue factor and fibrin. To explore the delivery of tissue factor into a developing thrombus, we identified monocyte-derived microparticles in human platelet–poor plasma that express tissue factor, PSGL-1, and CD14. Fluorescently labeled mouse microparticles infused into a recipient mouse localized within the developing thrombus, indicating that one pathway for the initiation of blood coagulation in vivo involves the accumulation of tissue factor– and PSGL-1–containing microparticles in the platelet thrombus expressing P-selectin. These monocyte-derived microparticles bind to activated platelets in an interaction mediated by platelet P-selectin and microparticle PSGL-1. We propose that PSGL-1 plays a role in blood coagulation in addition to its known role in leukocyte trafficking.


1981 ◽  
Author(s):  
Y C Chen ◽  
K K Wu ◽  
E R Hall ◽  
D L Venton ◽  
G C Le Breton

It is well recognized that thromboxane A2(TXA2) plays an important role in platelet reactivity. To determine the role of TXA2 in platelet-vessel wall (P-V) interaction, the effect of 1-benzylimidazole (1-BI), a specific inhibitor of thromboxane synthetase, and 13-azaprostanoic acid (APA), a TXA2 antagonist, on platelet thrombus formation was evaluated in vivo in NZW male rabbits using the autologous indium-111 (111In) labeled platelet technique. Rabbits were treated with intravenous 1-BI or APA or vehicles. After injection of autologous 111In-platelets, de-endothelialization of the abdominal aorta was created by a balloon catheter technique. At 3 hrs, blood samples were obtained and the animals were sacrificed. The aortae were removed and the injured and uninjured segments were dissected. Radioactivity counts and dry weight of the tissues and blood were determined. The vascular radioactivity counts were converted to platelet numbers by using a standard linear calibration curve. As small numbers of platelets adhered to normal vessel wall nonspecifically, this number was subtracted to obtain specific platelet accumulation at the injured sites. 1-BI at 10mg/kg reduced the specific platelet accumulation significantly (n=5, 12.3±S.D.I.5×106 pl/gm tissue; p<0.01) when compared with the controls (n=10, 33.0±5.1×106 pl/gm tissue). Platelet accumulation was further reduced by increasing the dosage to 30mg/kg. By contrast, APA injection (10mg/kg) had no significant effect. However, when APA was given by constant infusion at 250μg/kg/min 1 hr prior to injury, the APA-treated animals had an 80% reduction of platelet accumulation relative to controls. These findings indicate that TXA2 plays an important role in P-V interaction and specific inhibition of TXA2 appears to be efficacious in eliminating platelet thrombus formation.


Blood ◽  
2005 ◽  
Vol 105 (1) ◽  
pp. 192-198 ◽  
Author(s):  
Sharlene M. Day ◽  
Jennifer L. Reeve ◽  
Brian Pedersen ◽  
Diana M Farris ◽  
Daniel D. Myers ◽  
...  

Abstract Leukocytes and leukocyte-derived microparticles contain low levels of tissue factor (TF) and incorporate into forming thrombi. Although this circulating pool of TF has been proposed to play a key role in thrombosis, its functional significance relative to that of vascular wall TF is poorly defined. We tested the hypothesis that leukocyte-derived TF contributes to thrombus formation in vivo. Compared to wild-type mice, mice with severe TF deficiency (ie, TF–/–, hTF-Tg+, or “low-TF”) demonstrated markedly impaired thrombus formation after carotid artery injury or inferior vena cava ligation. A bone marrow transplantation strategy was used to modulate levels of leukocyte-derived TF. Transplantation of low-TF marrow into wild-type mice did not suppress arterial or venous thrombus formation. Similarly, transplantation of wild-type marrow into low-TF mice did not accelerate thrombosis. In vitro analyses revealed that TF activity in the blood was very low and was markedly exceeded by that present in the vessel wall. Therefore, our results suggest that thrombus formation in the arterial and venous macrovasculature is driven primarily by TF derived from the blood vessel wall as opposed to leukocytes.


Blood ◽  
2003 ◽  
Vol 102 (10) ◽  
pp. 3652-3657 ◽  
Author(s):  
Li He ◽  
Loretta K. Pappan ◽  
David G. Grenache ◽  
Zhengzhi Li ◽  
Douglas M. Tollefsen ◽  
...  

AbstractThe α2β1 integrin serves as a receptor for collagens, laminin, and several other nonmatrix ligands. Many studies have suggested that the α2β1 integrin is a critical mediator of platelet adhesion to collagen within the vessel wall after vascular injury and that the interactions of the platelet α2β1 integrin with subendothelial collagen after vascular injury are required for proper hemostasis. We have used the α2β1 integrin-deficient mouse to evaluate the contributions of the α2β1 integrin in 2 in vivo models of thrombosis. Studies using a model of endothelial injury to the carotid artery reveal that the α2β1 integrin plays a critical role in vascular thrombosis at the blood-vessel wall interface under flow conditions. In contrast, the α2β1 integrin is not required for the formation of thrombi and pulmonary emboli following intravascular injection of collagen. Our results are the first to document a critical in vivo role for the α2β1 integrin in thrombus formation at the vessel wall under conditions of shear following vascular injury. (Blood. 2003;102:3652-3657)


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 292-292 ◽  
Author(s):  
Jaehyung Cho ◽  
Barbara C. Furie ◽  
Shaun R. Coughlin ◽  
Bruce Furie

Abstract Thiol isomerases catalyze disulfide oxidation, reduction and isomerization, playing an important role during protein synthesis. Recent studies suggest a role for protein disulfide isomerase (PDI), a prototype of the thiol isomerase family, in platelet function and regulation of tissue factor activity (Essex and Li. Curr Drug Targets. 2006; Chen and Hogg. J Thromb Haemost. 2006). To determine the role of intravascular PDI during thrombus formation, PDI expression, platelet accumulation, and fibrin generation were monitored following laser-induced arteriolar injury in the mouse cremaster muscle by intravital fluorescence microscopy. PDI antigen exhibited a time-dependent increase in the developing thrombus after vessel wall injury and remained associated with the thrombus. Infusion of bacitracin, a non-specific inhibitor of thiol isomerases, into the circulation inhibited platelet thrombus formation and fibrin generation in a dose-dependent manner. Infusion of a function-blocking monoclonal antibody to PDI (RL90) into the circulation of a wild type mouse also resulted in dose-dependent inhibition of platelet accumulation and fibrin generation. To determine whether PDI inhibits fibrin formation by blocking tissue factor activation, or by preventing platelet activation and the development of the membrane surface that is required for assembly of the tenase and the prothrombinase complex in vivo, we explored fibrin formation in mice lacking protease-activated receptor-4 (Par4). Although there is no stable accumulation of platelets and no platelet activation, fibrin formation is normal in the Par4 null mouse (Vandendries et al, Proc Natl Acad Sci USA. 2007), suggesting that fibrin generation in the laser-induced vessel injury model is independent of platelet activation. Infusion of the function-blocking anti-PDI antibody (RL90) into the circulation of a Par4 null mouse prior to vessel wall injury inhibited fibrin generation. These results indicate that PDI is required to generate tissue factor in a form that leads to thrombin generation and fibrin formation during thrombus development and is required for thrombus formation.


1995 ◽  
Vol 15 (1) ◽  
pp. 11-16 ◽  
Author(s):  
R. Marius Barstad ◽  
Maria J. A. G. Hamers ◽  
Peter Kierulf ◽  
Åse-Britt Westvik ◽  
Kjell S. Sakariassen

2001 ◽  
Vol 85 (06) ◽  
pp. 1097-1103 ◽  
Author(s):  
Kjell Sakariassen ◽  
Hélène Grandjean ◽  
Claire Thalamas ◽  
Bernard Boneu ◽  
Pierre Sié ◽  
...  

SummaryA number of studies have reported conflicting data on the association of the PlA1/PlA2 polymorphism of the GPIIIa gene and coronary syndromes. We have investigated the effect of this polymorphism on experimental platelet thrombus formation in man. Forty healthy male volunteers were genotyped for the PlA1/PlA2 polymorphism. Thrombus formation was induced ex vivo by exposing a tissue factor (TF) or a collagencoated coverslip in a parallel plate perfusion chamber to native blood for 2 and 4 min. The shear rates at these surfaces were 650 and 2,600 s–1. Platelet and fibrin deposition was quantified by immunoenzymatic methods. The frequencies of PlA1/PlA1 and PlA1/PlA2 genotypes were 52.5% and 47.5%, respectively. Ex vivo deposition of fibrin on TF was not affected by the PlA1/PlA2 polymorphism. However, the ex vivo platelet deposition at 650 s–1 was higher in blood from PlA1/PlA1 individuals than in PlA1/PlA2 individuals (P = 0.008 at 4 min). On collagen, neither fibrin nor platelet deposition was significantly affected by the PlA1/PlA2 polymorphism. Platelet thrombus formation is significantly influenced by genetic variations in the GPIIIa platelet receptor. This effect depends on the blood flow properties and the nature of the thrombogenic stimulus.


Sign in / Sign up

Export Citation Format

Share Document