In Vitro and In Vivo Anti-Leukemic Effects of KPT-9274, a Reported PAK4 Allosteric Modulator, in Acute Myeloid Leukemia: Promising Results Justifying Further Development in This Disease

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2471-2471
Author(s):  
Shaneice Mitchell ◽  
Shelley Orwick ◽  
Matthew Cannon ◽  
Virginia M. Goettl ◽  
Taylor D. LaFollette ◽  
...  

Abstract Acute Myeloid Leukemia (AML) is the most common adult acute leukemia and is characterized by numerous driver mutations and/or cytogenetic rearrangements that promote disruption of stem cell/early myeloid progenitor differentiation, apoptosis, and proliferation. Identification of both personalized targets specific to a mutation or genomic abnormality and also global ubiquitous tumor-related targets relevant to AML represents a high priority to improve therapy. p21 protein (Cdc42/Rac)-activated kinase 4 (PAK4) is involved in disease progression for several solid tumors but its expression and contribution to disease pathogenesis in AML has not been examined. Since multiple cellular pathways important in AML (e.g., RAS and Wnt/β-catenin) are regulated by PAKs, we hypothesized PAK4 (and other family members) could represent an attractive pharmacologic target. We first evaluated the expression of PAK4 in AML cell lines and patient blasts (55 patients) using RNA sequencing and Western blot confirmation. This demonstrated PAK4 to be abundantly expressed at the mRNA and protein level in virtually all the analyzed samples. We then tested the in vitro effects of the PAK4 allosteric modulators (PAMs) KPT-9274 (clinical candidate) and KPT-9331 (tool compound) on AML cell lines. These included MV4-11, HL-60, THP-1 and Kasumi-1. Cell lines were treated for 24, 48 and 72 with PAMs KPT-9274 and KPT-9331 at dosages ranging from 1nM to 10uM. Proliferation was measured by MTS assay. All cell lines showed a dose-and time- dependent decrease in cell proliferation with IC50 ranging from 0.14 to 0.28 µM for both compounds. Cell lines with low protein and mRNA expression of PAK4, such as HL-60, were sensitive to PAM treatment suggesting possible alternative targets of these agents. To determine the effect of PAMs on apoptosis, MV4-11 and THP-1 cell lines were treated with KPT-9331 at IC50 concentration (~0.25 µM) and cell death was measured via Annexin-V/PI flow cytometric analysis after 24, 48h and 72h treatment. KPT-9331 induced a time dependent increase in apoptosis in both cell lines. In MV4-11 cells, KPT-9331 caused cell cycle arrest and inhibition of proliferation after 24hrs. We also tested the effect of PAMs in primary AML cells. Patient samples cocultured with a human stromal cell lines were treated with PAMs for 96 hours. IC50 values ranged from 0.14 - 0.19 µM. A dose dependent decrease in proliferation following PAM treatment was observed in all the five analyzed samples irrespective of genetic subtype. PAMs treatment for 48hrs using a whole blood viability assay from normal donors showed no significant cytotoxic effect on T and NK cells, but modest toxicity to normal B cells. Normal hematopoietic colony forming cell assays are being initiated and will be presented. We next utilized a human AML leukemia xenograft model with MV4-11 cells to assess the in vivo activity of KPT-9274. Mice were dosed once daily via oral gavage with KPT-9274 (150 mg/kg) or vehicle control. KPT-9274 dramatically inhibited tumor growth, prevented invasion of MV4-11 cells, and improved overall survival with all mice (n=7) being alive (median not reached) at day 49 of experiment as compared to 1 out of 7 vehicle-treated mice (median survival 36 days) being alive at this time. In summary, KPT-9274 demonstrates promising activity in pre-clinical AML models and warrants further investigation in this disease. Ongoing efforts include validating the specificity of the reported target in AML (versus alternative targets), in vivo exploration in primary human AML xenograft models, and understanding the effects of this compound on normal hematopoiesis and function. Disclosures Baloglu: Karyopharm Therapeutics Inc.: Employment, Equity Ownership. Senapedis:Karyopharm Therapeutics, Inc.: Employment, Patents & Royalties. Blum:Gilead Sciences: Research Funding. Byrd:Acerta Pharma BV: Research Funding.

Author(s):  
Yudi Miao ◽  
Behnam Mahdavi ◽  
Mohammad Zangeneh

IntroductionThe present study investigated the anti-acute myeloid leukemia effects of Ziziphora clinopodides Lam leaf aqueous extract conjugated cadmium nanoparticles.Material and methodsTo synthesize CdNPs, Z. clinopodides aqueous extract was mixed with Cd(NO3)2 .4H2O. The characterization of the biosynthesized cadmium nanoparticles was carried out using many various techniques such as UV-Vis. and FT-IR spectroscopy, XRD, FE-SEM, and EDS.ResultsThe uniform spherical morphology of NPs was proved by FE-SEM images with NPs the average size of 26.78cnm. For investigating the antioxidant properties of Cd(NO3)2, Z. clinopodides, CdNPs, and Daunorubicin, the DPPH test was used. The cadmium nanoparticles inhibited half of the DPPH molecules in a concentration of 196 µg/mL. To survey the cytotoxicity and anti-acute myeloid leukemia effects of Cd(NO3)2, Z. clinopodides, CdNPs, and Daunorubicin, MTT assay was used on the human acute myeloid leukemia cell lines i.e., Murine C1498, 32D-FLT3-ITD, and Human HL-60/vcr. The IC50 of the cadmium nanoparticles was 168, 205, and 210 µg/mL against Murine C1498, 32D-FLT3-ITD, and Human HL-60/vcr cell lines, respectively. In the part of in vivo study, DMBA was used for inducing acute myeloid leukemia in mice. CdNPs similar to daunorubicin ameliorated significantly (p≤0.01) the biochemical, inflammatory, RBC, WBC, platelet, stereological, histopathological, and cellular-molecular parameters compared to the other groups.ConclusionsAs mentioned, the cadmium nanoparticles had significant anti-acute myeloid leukemia effects. After approving the above results in the clinical trial studies, these cadmium nanoparticles can be used as a chemotherapeutic drug to treat acute myeloid leukemia in humans.


2019 ◽  
Author(s):  
Yusuke Tarumoto ◽  
Shan Lin ◽  
Jinhua Wang ◽  
Joseph P. Milazzo ◽  
Yali Xu ◽  
...  

AbstractLineage-defining transcription factors (TFs) are compelling targets for leukemia therapy, yet they are among the most challenging proteins to modulate directly with small molecules. We previously used CRISPR screening to identify a Salt-Inducible Kinase 3 (SIK3) requirement for the growth of acute myeloid leukemia (AML) cell lines that overexpress the lineage TF MEF2C. In this context, SIK3 maintains MEF2C function by directly phosphorylating histone deacetylase 4 (HDAC4), a repressive cofactor of MEF2C. Here, we evaluated whether inhibition of SIK3 with the tool compound YKL-05-099 can suppress MEF2C function and attenuate disease progression in animal models of AML. Genetic targeting of SIK3 or MEF2C selectively suppressed the growth of transformed hematopoietic cells underin vitroandin vivoconditions. Similar phenotypes were obtained when exposing cells to YKL-05-099, which caused cell cycle arrest and apoptosis in MEF2C-expressing AML cell lines. An epigenomic analysis revealed that YKL-05-099 rapidly suppressed MEF2C function by altering the phosphorylation state and nuclear localization of HDAC4. Using a gatekeeper allele ofSIK3, we found that the anti-proliferative effects of YKL-05-099 occurred through on-target inhibition of SIK3 kinase activity. Based on these findings, we treated two different mouse models of MLL-AF9 AML with YKL-05-099, which attenuated disease progressionin vivoand extended animal survival at well-tolerated doses. These findings validate SIK3 as a therapeutic target in MEF2C-positive AML and provide a rationale for developing drug-like inhibitors of SIK3 for definitive pre-clinical investigation and for studies in human patients with leukemia.Key PointsAML cells are uniquely sensitive to genetic or chemical inhibition of Salt-Inducible Kinase 3in vitroandin vivo.A SIK inhibitor YKL-05-099 suppresses MEF2C function and AMLin vivo.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 8-9
Author(s):  
Sujan Piya ◽  
Marla Weetall ◽  
Josephine Sheedy ◽  
Balmiki Ray ◽  
Huaxian Ma ◽  
...  

Introduction: Acute myeloid leukemia (AML) is characterized by both aberrant proliferation and differentiation arrest at hematopoietic progenitor stages 1,2. AML relies upon de novo nucleotide synthesis to meet a dynamic metabolic landscape and to provide a sufficient supply of nucleotides and other macromolecules 3,4. Hence, we hypothesized that inhibition of de novo nucleotide synthesis would lead to depletion of the nucleotide pool and pyrimidine starvation in leukemic cells compared to their non-malignant counterparts and impact proliferative and differentiation inhibition pathways. PTC299 is an inhibitor of dihydroorotate dehydrogenase (DHODH), a rate limiting enzyme for de novo pyrimidine nucleotide synthesis that is currently in a clinical trial for the treatment of AML. Aim: We investigated the pre-clinical activity of PTC299 against AML in primary AML blasts and cytarabine-resistant cell lines. To confirm that PTC299 effects are due to inhibition of de novo pyrimidine nucleotide synthesis for leukemic growth, we specifically tested the impact of uridine and orotate rescue. In addition, a comprehensive analysis of alteration of metabolic signaling in PI3K/AKT pathways, apoptotic signatures and DNA damage responses were analyzed by Mass cytometry based proteomic analysis (CyTOF) and immunoblotting. The potential clinical relevance of DHODH inhibition was confirmed in an AML-PDX model. Results: The IC50s for all tested cell lines (at 3 day) and primary blasts (at 5-7 day) were in a very low nanomolar range: OCI-AML3 -4.43 nM, HL60 -59.7 nM and primary samples -18-90 nM. Treatment of AML in cytarabine-resistant cells demonstrated that PTC299 induced apoptosis, differentiation, and reduced proliferation with corresponding increase in Annexin V and CD14 positive cells (Fig.1). PTC299-induced apoptosis and inhibition of proliferation was rescued by uridine and orotate. To gain more mechanistic insights, we used an immunoblotting and mass cytometry (CyTOF) based approach to analyze changes in apoptotic and cell signaling proteins in OCI-AML3 cells. Apoptotic pathways were induced (cleaved PARP, cleaved Caspase-3) and DNA damage responses (TP53, γH2AX) and the PI3/AKT pathway were downregulated in response to PTC299. In isogenic cell lines, p53-wildtype cells were sustained and an increased DNA damage response with corresponding increase in apoptosis in comparison to p53-deficient cells was shown. (Fig.2) In a PDX mouse model of human AML, PTC299 treatment improved survival compared to mice treated with vehicle (median survival 40 days vs. 30 days, P=0.0002) (Fig.3). This corresponded with a reduction in the bone marrow burden of leukemia with increased expression of differentiation markers in mice treated with PTC299 (Fig.3). Conclusion: PTC299 is a novel dihydroorotate dehydrogenase (DHODH) inhibitor that triggers differentiation, apoptosis and/or inhibition of proliferation in AML and is being tested in a clinical trials for the treatment of acute myeloid malignancies. Reference: 1. Thomas D, Majeti R. Biology and relevance of human acute myeloid leukemia stem cells. Blood 2017; 129(12): 1577-1585. e-pub ahead of print 2017/02/06; doi: 10.1182/blood-2016-10-696054 2. Quek L, Otto GW, Garnett C, Lhermitte L, Karamitros D, Stoilova B et al. Genetically distinct leukemic stem cells in human CD34- acute myeloid leukemia are arrested at a hemopoietic precursor-like stage. The Journal of experimental medicine 2016; 213(8): 1513-1535. e-pub ahead of print 2016/07/06; doi: 10.1084/jem.20151775 3. Villa E, Ali ES, Sahu U, Ben-Sahra I. Cancer Cells Tune the Signaling Pathways to Empower de Novo Synthesis of Nucleotides. Cancers (Basel) 2019; 11(5). e-pub ahead of print 2019/05/22; doi: 10.3390/cancers11050688 4. DeBerardinis RJ, Chandel NS. Fundamentals of cancer metabolism. Sci Adv 2016; 2(5): e1600200. e-pub ahead of print 2016/07/08; doi: 10.1126/sciadv.1600200 Disclosures Weetall: PTC Therapeutic: Current Employment. Sheedy:PTC therapeutics: Current Employment. Ray:PTC Therapeutics Inc.: Current Employment. Konopleva:Genentech: Consultancy, Research Funding; Rafael Pharmaceutical: Research Funding; Ablynx: Research Funding; Ascentage: Research Funding; Agios: Research Funding; Kisoji: Consultancy; Eli Lilly: Research Funding; AstraZeneca: Research Funding; Reata Pharmaceutical Inc.;: Patents & Royalties: patents and royalties with patent US 7,795,305 B2 on CDDO-compounds and combination therapies, licensed to Reata Pharmaceutical; AbbVie: Consultancy, Research Funding; Calithera: Research Funding; Cellectis: Research Funding; Amgen: Consultancy; Stemline Therapeutics: Consultancy, Research Funding; Forty-Seven: Consultancy, Research Funding; F. Hoffmann La-Roche: Consultancy, Research Funding; Sanofi: Research Funding. Andreeff:Amgen: Research Funding; Daiichi-Sankyo; Jazz Pharmaceuticals; Celgene; Amgen; AstraZeneca; 6 Dimensions Capital: Consultancy; Daiichi-Sankyo; Breast Cancer Research Foundation; CPRIT; NIH/NCI; Amgen; AstraZeneca: Research Funding; Centre for Drug Research & Development; Cancer UK; NCI-CTEP; German Research Council; Leukemia Lymphoma Foundation (LLS); NCI-RDCRN (Rare Disease Clin Network); CLL Founcdation; BioLineRx; SentiBio; Aptose Biosciences, Inc: Membership on an entity's Board of Directors or advisory committees. Borthakur:BioLine Rx: Consultancy; BioTherix: Consultancy; Nkarta Therapeutics: Consultancy; Treadwell Therapeutics: Consultancy; Xbiotech USA: Research Funding; Polaris: Research Funding; AstraZeneca: Research Funding; BMS: Research Funding; BioLine Rx: Research Funding; Cyclacel: Research Funding; GSK: Research Funding; Jannsen: Research Funding; Abbvie: Research Funding; Novartis: Research Funding; Incyte: Research Funding; PTC Therapeutics: Research Funding; FTC Therapeutics: Consultancy; Curio Science LLC: Consultancy; PTC Therapeutics: Consultancy; Argenx: Consultancy; Oncoceutics: Research Funding.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 915-915
Author(s):  
Stuart A Rushworth ◽  
Lyubov Zaitseva ◽  
Megan Y Murray ◽  
Matthew J Lawes ◽  
David J MacEwan ◽  
...  

Abstract Introduction Despite recent significant progress in the understanding of the biology of acute myeloid leukemia (AML) the clinical outcomes for the majority of patients diagnosed with AML presently remain poor. Consequently, there is an urgent need to identify pharmacological strategies in AML, which are not only effective but can be tolerated by the older, less well patient. Recently our group and others have shown that there is high Bruton’s Tyrosine Kinase (BTK) phosphorylation and RNA expression in AML. Moreover, our recent study described for the first time that ibrutinib and BTK-targeted RNA interference reduced factor-induced proliferation of both AML cell lines and primary AML blasts, as well as reducing AML blast adhesion to bone marrow stromal cells. Inhibition of BTK has been shown to regulate chronic lymphocytic leukemia, mantle cell lymphoma and multiple myeloma cell migration by inhibiting SDF1 (stromal derived factor 1) induced CXCR4 regulated cell trafficking. Here we report that in human AML ibrutinib in addition functions in a similar way to inhibit SDF1/CXCR4-mediated AML migration at concentrations achievable in vivo. Methods To investigate the role of BTK in regulating AML migration we used both pharmacological inhibitor ibrutinib and genetic knockdown using a lentivirus mediated BTK targeted miRNA in primary AML blasts and AML cell lines. We examined migration of AML blasts and AML cells to SDF-1 using Transwell permeable plates with 8.0µM pores. Western blotting was used to examine the role of SDF-1 in regulating BTK, AKT and MAPK activation in primary AML blasts. Results We initially examined the expression of CXCR4 in human AML cell lines and found that 4/4 cell lines were positive for CXCR4 expression. Next we examined the effects of ibrutinib on the migration of the AML cell lines U937, MV4-11, HL60 and THP-1 in response to SDF1. We found that ibrutinib can inhibit the migration of all AML cell lines tested. We tested the in-vitro activity of ibrutinib on SDF-1 induced migration in a spectrum of primary AML blasts from a wide age spectrum of adult patients and across a range of WHO AML subclasses and found that ibrutinib significantly inhibits primary AML blast migration (n=12). Next we found that ibrutinib can inhibit SDF-1 induced BTK phosphorylation and downstream MAPK and AKT signalling in primary AML blast. Finally to eliminate the problems associated with off target ibrutinib activity we evaluated migration of AML cells lines using genetic inhibition of BTK. The introduction of BTK-specific miRNA dramatically inhibited the expression of BTK in THP-1 and HL60 and reduced SDF1 mediated migration confirming that BTK is involved in regulating AML migration in response to SDF1. Conclusions These results reported here provide a molecular mechanistic rationale for clinically evaluating BTK inhibition in AML patients and suggests that in some AML patients the blasts count may initially rise in response to ibrutinib therapy, analgous to similar clinical observations in CLL. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2083-2083
Author(s):  
Bing Xu ◽  
Yuanfei Shi ◽  
Long Liu ◽  
Bing Z Carter

BCL-2 inhibition exerts effective pro-apoptotic activities in acute myeloid leukemia (AML) but clinical efficacy as a monotherapy was limited in part due to the treatment-induced MCL-1 increase. Triptolide (TPL) exhibits anti-tumor activities in part by upregulating pro-apoptotic BCL-2 proteins and decreasing MCL-1 expression in various malignant cells. We hypothesized that combined BCL-2 inhibition and TPL exert synergistic anti-leukemia activities and prevent the resistance to BCL-2 inhibition in AML. We here report that TPL combined with BCL-2 inhibitor ABT-199 synergistically induced apoptosis in leukemic cells regardless of p53 status through activating the intrinsic mitochondrial apoptotic pathway in vitro. Although ABT-199 or TPL alone inhibited AML growth in vivo, the combination therapy demonstrated a significantly stronger anti-leukemic effect. Mechanistically, TPL significantly upregulated BH3 only proteins including PUMA, NOXA, BID and BIM and decreased MCL-1 but upregulated BCL-2 expression in both p53 wild type and p53 mutant AML cell lines, while the combination decreased both BCL-2 and MCL-1 and further increased BH3 only BCL-2 proteins. MCL-1 and BCL-2 increases associated with respective ABT-199 and TPL treatment and resistance were also observed in vivo. Significantly downregulating MCL-1 and elevating BH3 only proteins by TPL could not only potentially block MCL-1-mediated resistance but also enhance anti-leukemic efficacy of ABT-199. Conversely, BCL-2 inhibition counteracted the potential resistance of TPL mediated by upregulation of BCL-2. The combination further amplified the effect, which likely contributed to the synthetic lethality. This mutual blockade of potential resistance provides a rational basis for the promising clinical application of TPL and BCL-2 inhibition in AML independent of p53 status. Disclosures Carter: Amgen: Research Funding; AstraZeneca: Research Funding; Ascentage: Research Funding.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3298-3298
Author(s):  
Lili Feng ◽  
Haohai Zhang ◽  
Paola de Andrade Mello ◽  
Dina Stroopinsky ◽  
Wenda Gao ◽  
...  

Abstract Corresponding author: Dr. Simon. C. Robson ([email protected]). Introduction: CD39/ENTPD1 (ectonucleoside triphosphate diphosphohydrolase-1) is the prototypic member of the GDA1-CD39 superfamily of ectonucleotidases and modulates purinergic signaling pathways. CD39 expression has been noted in human acute myeloid leukemia (AML) and likely contributes to chemoresistance [1]. Our study reported here elucidates the impact of Cd39 on engraftment and invasiveness of AML TIB-49 cells using an immunocompetent murine experimental model. Methods: Wild-type (WT) mice and Cd39 -/- mice on C57BL/6 background were bred at Beth Israel Deaconess Medical Center. The syngeneic murine AML cell line TIB-49 (Cd39 negative in vitro) was purchased from American Type Culture Collection. For bioluminescence imaging experiments, TIB-49 cells were transduced with luciferase/mCherry using a lentiviral vector. For AML model, mice were administered with 1×10 6 TIB-49-luciferase cells intravenously via tail vein injection. For chloroma model, mice were subcutaneously inoculated with 1×10 6 TIB-49 cells in the right flank. Bioluminescence imaging of TIB-49-luciferase bearing mice was conducted with the IVIS TM 50 Imaging System. Blood, spleen and bone marrow (BM) were also collected from TIB-49 bearing AML mice for FACS (fluorescence activated cell sorting) analysis. To explore Cd39 in TIB engraftment and invasiveness, TIB-49 cells were further transduced with a lentiviral vector overexpressing mCd39 with TdTomato. WT mice were intravenously inoculated with 1×10 6 of either TIB-49-TdTomato cells or TIB-49-mCd39-TdTomato cells, and the above read-outs were determined. To investigate the potential of CD39 as a therapeutic target, we engineered anti-mouse Cd39 antibodies (αCd39 mAb) with isotype selection and removal of fucose to further promote Fc receptor (FcR) interactions. Results: Bioluminescence imaging results indicated that TIB-49 engraftment was decreased in global Cd39 -/- mice with decreased disease burdens noted relative to WT (Figure 1A). FACS analysis of blood, spleen and BM-derived cells from TIB-49 bearing AML-model mice (day 31) confirmed higher engraftment of TIB-49 cells (TdTomato+) at all sites in WT compared to Cd39 -/- mice (Figure 1B). TIB-49 cells did not express Cd39 in vitro, but TIB-49 cells harvested from spleen and BM of WT but not Cd39 -/- mice displayed high levels of Cd39. This indicated TIB-49 cells acquired Cd39 from host cells, in a process of antibody-independent trogocytosis (Figure 1C), as RT-PCR did not detect Cd39 mRNA expression in TIB-49 cells in vivo. Additionally, circulating TIB-49 cells from the blood of WT mice were Cd39 negative (Figure 1C), suggesting a role for the tumor microenvironment in mediating trogocytosis. TIB-49 cells expressing host Cd39 in WT mice spleen and BM lost Cd39 after being exposed to αCd39 mAb treatment. Cd39 translocated from TIB-49 cells to effector cells, at least in part, dependent on FcR mediated trogocytosis (Figure 1D). When Cd39 was overexpressed on TIB-49 cells (TIB-49-mCd39-TdTomato), the engraftment was boosted in WT mice in vivo when compared to TIB-49-TdTomato cells (day 19, Figure 1E) with higher levels of Cd39 expression than that observed on TIB-49-TdTomato cells in spleen and BM (day 26) (Figure 1F). Moreover, TIB-49-mCd39-TdTomato bearing mice displayed shorter survival times, when compared with TIB-49-TdTomato bearing AML mice (Figure 1G). The αCd39 mAb monotherapy had no effect on TIB-49 chloroma model growth. However, pretreatment with αCd39 mAb effectively boosted daunorubicin chemotherapeutic effects in vivo (Figure 1H and 1I). Conclusions: Our study suggests bidirectional trogocytosis between TIB-49 AML and host immune cells, which is further modulated by FcR interaction. Re-distribution of Cd39 from host to TIB-49 cells or induced high level expression contributes to engraftment and invasiveness, resulting in decreased survival. Targeting CD39 is a potential therapeutic approach, operational not only by boosting chemosensitivity but furthering anti-leukemic effects in experimental models. Disclosures: No relevant conflicts of interest to declare. References: [1] Nesrine Aroua, Emeline Boet, Margherita Ghisi, et al. Extracellular ATP and CD39 Activate cAMP-Mediated Mitochondrial Stress Response to Promote Cytarabine Resistance in Acute Myeloid Leukemia. Cancer Discov. 2020. Figure 1 Figure 1. Disclosures Stroopinsky: The Blackstone Group: Consultancy. Avigan: Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Pharmacyclics: Research Funding; Kite Pharma: Consultancy, Research Funding; Juno: Membership on an entity's Board of Directors or advisory committees; Partner Tx: Membership on an entity's Board of Directors or advisory committees; Karyopharm: Membership on an entity's Board of Directors or advisory committees; Bristol-Myers Squibb: Membership on an entity's Board of Directors or advisory committees; Aviv MedTech Ltd: Membership on an entity's Board of Directors or advisory committees; Takeda: Membership on an entity's Board of Directors or advisory committees; Legend Biotech: Membership on an entity's Board of Directors or advisory committees; Chugai: Membership on an entity's Board of Directors or advisory committees; Janssen: Consultancy; Parexcel: Consultancy; Takeda: Consultancy; Sanofi: Consultancy.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3302-3302
Author(s):  
Timothy Pardee ◽  
Evan Gomes ◽  
Jamie Jennings-Gee ◽  
David L. Caudell ◽  
William Gmeiner

Abstract Abstract 3302 Acute Myeloid Leukemia (AML) is an aggressive myeloid malignancy that leads to marrow failure and death. This disease affects approximately 12,000 people per year in the United States, causing 9,000 deaths. Despite decades of research, therapy remains essentially unchanged and outcomes are poor. In patients over the age of 60 less then 10% of patients survive 5 years from diagnosis. There is a desperate need for the identification of new active agents with favorable toxicity profiles. The novel polymeric fluoropyrimidine (FP) FdUMP[10] is an oligodeoxynucleotide pro-drug of the thymidylate synthase (TS)-inhibitory FP metabolite 5-fluoro-2'-deoxyuridine-5`-O-monophosphate (FdUMP). The observation that this compound was highly active against several leukemia lines in the NCI 60 cell line screen prompted us to evaluate its activity in several preclinical models of AML. In vitro, FdUMP[10] exhibited remarkable activity against 3 human acute leukemia cell lines, HL60, Jurkat and THP-1, with IC50 values of 3.378 nM (95% CI 2.984 to 3.825), 5.438 nM (4.609 to 6.417) and 4.093 nM (3.413 to 4.907) respectively. We next tested its efficacy against a more genetically defined murine model of AML driven by expression of MLL-ENL. FdUMP[10] exhibited even greater activity against all murine lines tested. The IC50 values of FdUMP[10] against two MLL-ENL driven murine AML cell lines were 214 pM (95%CI 178.9 to 255.9) and 292.3 pM (251.8 to 339.4). The IC50 values observed for FdUMP[10] for all the murine lines tested were lower than both Ara-C (30-40 nM) and doxorubicin (2-4 nM). We then determined the cytotoxic mechanism for FdUMP[10] in vitro. Upon treatment with FdUMP[10] both the human and murine cell lines undergo extensive apoptosis as indicated by Annexin V and propidium iodide staining. Treated cells developed γH2AX foci, rapid and complete TS inhibition and display trapped Topoisomerase I (Topo I) cleavage complexes. FdUMP[10]-mediated induction of apoptosis was p53 independent as murine AML cells that had p53 knocked down by RNAi demonstrated resistance to both Ara-C and doxorubicin, but not to FdUMP[10]. We next tested the efficacy of FdUMP[10] in vivo. The MLL-ENL driven murine AML model results in blasts that can be transplanted into sublethally irradiated, immunocompetent, syngeneic recipients. The recipients develop a fatal and therapy-resistant AML. Lines were generated that expressed a luciferase reporter. Animals were imaged 6–7 days after injection of the leukemias to ensure engraftment and then began treatment with either the combination of Ara-C plus doxorubicin, single-agent FdUMP[10], or observation. Studies were performed using 2 doses of FdUMP[10] at 150 or 300 mg/kg injected on days 1 and 3 and compared to animals treated with 100 mg/kg Ara-C and 3mg/kg doxorubicin injected on days 1 through 5. Both treatments resulted in a statistically significant survival advantage over observation. A preliminary toxicology study compared FdUMP[10], 150 mg/kg daily, to 5-fluorouracil (5 FU), 150 mg/kg daily, or the combination of Ara-C at 100 mg/kg plus doxorubicin at 3 mg/kg daily. All groups were treated for 3, 4 or 5 days. On day 6 animals were sacrificed and organs harvested, sectioned, and stained. Slides were then reviewed by a veterinary pathologist. Tissues most affected were the small intestine, colon, and the bone marrow. The 5FU-treated animals had severe villous blunting and fusion with crypt necrosis in both large and small intestine. In contrast, FdUMP[10]-treated animals had only mild crypt epithelial apoptosis with mitoses. The 5 FU and Ara-C plus doxorubicin groups had a severe pan-cytopenia in the marrow compared to FdUMP[10] treated animals that showed only minimal to mild apoptosis. These data support the assertion that FdUMP[10] has lower toxicity then either Ara-C plus doxorubicin or identically dosed 5 FU. In summary FdUMP[10] exhibited remarkable activity against AML cells in vitro and in vivo. Additionally, FdUMP[10] had decreased toxicity compared to treatment with either single agent 5 FU or combination treatment with Ara-C plus doxorubicin. Disclosures: Gmeiner: Salzburg Therapeutics: Equity Ownership.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3726-3726
Author(s):  
Daniel Olive ◽  
Audrey Benyamine ◽  
Aude Le Roy ◽  
Rémy Castellano ◽  
Julie Gertner-Dardenne ◽  
...  

Abstract As they can kill Acute Myeloid Leukemia (AML) blasts in vitro and in vivo, Vg9Vd2T cells are key players in the design of new strategies of immunotherapy. AminoBisphonates (NBP) can enhance their activation in vitro and in vivo. Their combination with low-dose IL2 has shown promising results in 2 patients with AML who underwent partial remission. NBP treatment of blasts inhibits the Mevalonate pathway. The subsequent accumulation of Isopentenyl Diphosphate sensitize AML blasts to Vg9Vd2T cells killing but some AML cell lines blasts are resistant to this TCR mediated-lysis. Butyrophilin 3 A1 (BTN3A1) has been shown to be involved in IPP recognition and Vg9Vd2 T cells activation. Agonist monoclonal antibodies (mAb) recognizing the 3 isoforms of BTN3, can trigger BTN3 on tumor cell lines and sensitize them to Vg9Vd2 T cells lysis. We show that primary AML blasts from patient at diagnosis are heterogeneously killed by allogenic-IL-2-NBP-expanded Vg9Vd2 T. Some are resistant to this lysis and/or poorly sensitized by NBP. BTN3 molecules are highly expressed by blasts of AML cell lines and primary AML samples. We show that treatment of primary AML blasts with agonist anti-BTN3 mAb can overcome the resistance to Vg9Vd2 cells lysis in vitro. We assess this effect in vivo, showing that the addition of agonist anti-BTN3 mAb to Vg9Vd2 cells infusion decreased the tumor burden and increased the survival of NOG mice xenografted with luciferase-transduced U937 cell line. We confirm this effect in a model of mice xenografted with primary AML blasts, showing that treatment with anti-BTN3 mAb added to Vg9Vd2 cells infusion can decrease the number of blastic cells in the spleen, bone marrow and the blood, without requiring additional cytokine infusion. This drastic effect on sensitization of primary AML blasts to Vg9Vd2T cells killing could be of great interest especially in cases of refractory or relapsing AML. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5216-5216
Author(s):  
Laura M Desbourdes ◽  
Adam J Guess ◽  
Suheyla Hasgur ◽  
Kathleen M Overholt ◽  
Minjun Yu ◽  
...  

Abstract Introduction The 5-year survival for patients with acute myeloid leukemia (AML) has stagnated for over two decades at about 60% for children, 40% for young adults, and <15% for elderly patients. While most patients achieve remission, approximately 50% will relapse which is generally attributed to the persistence of leukemic stem cells. Interferon α (IFNα) is an effective therapy for patients with AML due to multiple mechanisms of action. However, high serum levels are associated with many adverse effects. In this proof-of-concept study, we used engineered mesenchymal stem/stromal cells (MSC) to deliver high concentrations of IFNα locally to an AML chloroma, potentially diminishing the poorly tolerated systemic side-effects. Methods Bone marrow MSCs from C57BL/6 mouse were isolated and transduced with a lentiviral vector expressing murine IFNα (IFNα-MSCs) and/or GFP (GFP MSCs). After measuring IFNα secretion by ELISA and confirming activity by the induction of the MHC I expression on the transduced cells, the anti-AML activity of these transduced MSCs was assessed by co-culture with the C57BL/6 AML cell line c1498 which expresses DsRed and firefly luciferase (FFluc). Apoptotic cell frequencies and cell cycle phase distributions of leukemia cells with or without MSCs were assessed by flow cytometry. The in vivo validation has been performed by subcutaneous injection of c1498 cells (chloroma) with or without GFP MSCs or IFNα MSCs in C57BL/6 mice. Tumor growth was monitored by bioluminescence imaging every 3 or 4 days. Results Flow cytometric analysis and ELISA confirmed the secretion of bio-active of IFNα by transduced MSCs (41.5 ng/1E06 MSCs/24h). In co-cultures, the presence of IFNα MSCs at the ratio 100:1 (c1498: MSC) significantly decreased the population of c1498 cells mainly by inducing apoptosis compared to MSC-free or GFP MSC co-cultures while no effect was observed on cell cycle distribution. The pro-apoptotic effect of IFNα MSCs was then investigated in vivo by subcutaneous injection of c1498 cells with or without MSCs (ratio 10:1) in C57BL/6 mice.The presence of IFNα MSCs significantly decreased leukemic cell mass as shown by the bioluminescence of the DsRed+ FFLuc+ c1498 cells. This result was confirmed by flow cytometric analysis of the percentage of DsRed + cells in the chloroma. Conclusions This study shows that IFNα MSCs present a strong anti-leukemic effect in vitro and in vivo promoting apoptosis and thus decreasing the leukemic burden. Further experiments will focus on a potential synergetic effect with Cytarabine treatment and a preclinical study using human IFNα MSCs in a xenograft murine model. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2312-2312 ◽  
Author(s):  
Cedric Dos Santos ◽  
Shan Xiaochuan ◽  
Zhou Chenghui ◽  
Georges Habineza Ndikuyeze ◽  
Joshua Glover ◽  
...  

Abstract Daratumumab is a human antibody that binds to CD38 on the cell surface and induces cell killing by multiple mechanisms including complement mediated cytotoxicity (CDC), antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cell phagocytosis (ADCP) and apoptosis. In pre-clinical and clinical studies, daratumumab has been shown to effectively kill multiple myeloma (MM) cells and to enhance the potency of other treatments against MM. The purpose of the study was to investigate in vitro and in vivo efficacy of daratumumab against 9 acute myeloid leukemia (AML) cell lines and patient-derived samples. First, we evaluated the expression of CD38, complement inhibitory proteins (CIP) CD46, CD55, CD59, and FcgR1 (CD64) on AML cell lines (n=9), AML patient cells (n=10) and healthy donor bone marrow using flow cytometry. CD38 enumeration showed a substantial variation between cell lines (12,827±19, 320 molecules/cell) and between AML patients (11,560±8, 175 molecules/cell), while CD38 expression was more consistent in bone marrow (BM) from healthy donors (1,176±355 molecules/cell). The daratumumab-induced apoptosis observed in cell lines (MOLM-13, MOLM-16, MV-4-11, NB4) in vitro was not correlated with CD38 expression levels. Daratumumab induced minimal ADCC (5-20%) and low levels of (2-5%) CDC mediated cell killing in 6 AML cell lines tested. We did not observe a direct correlation between CD38 expression and ADCC, CDC, nor between CDC and CIP expression. Interestingly, treatment of two human Acute Promyelocytic Leukemia (M3) cell lines HL-60 and NB-4 with all-trans retinoic acid (ATRA) induced a 10-30-fold increase in CD38 expression, suggesting that ATRA could be used in combination with daratumumab. While we, and others, have shown that pre-incubation of primary AML cells with anti-CD38 antibodies inhibits engraftment in NSG mice, we aimed at evaluating the anti-leukemic activity of daratumumab in a therapeutic xenograft model using 3 different AML patients. NSG mice (10/group/patient) were transplanted with T cell-depleted AML cells and BM aspirates were collected 4-6 weeks later to assess leukemia burden in each mouse prior to treatment. Animals were untreated (Ctrl) or received daratumumab (10 mg/kg), or IgG1 isotype once a week for five weeks. We assessed AML burden (% huCD45+ CD33+) in BM, spleen (SPL) and peripheral blood (PB) within 5 days after the last treatment. First, we evaluated an AML (#3406, FLT3-ITD, see figure) with high expression of CD38 (13,445 molecules/cell) and low CD64 (489/cell) was evaluated. Daratumumab significantly reduced leukemia burden in SPL and PB, but had no effect in BM. The same daratumumab-induced reduction in peripheral blasts and lack of effect in BM was observed in 2 other AML patient xenografts (#7577, M1 IDH mutant/FLT3-ITD with 6,529 CD38 molecules/cell; #8096, M2 with 335 CD38 molecules/cell). Interestingly, we observed that daratumumab treatment led to a drastic reduction in CD38 surface expression in AML blasts including in BM, indicating that daratumumab efficiently targeted CD38 in bone marrow blasts. Our results suggest that the bone marrow microenvironment can impair the anti-leukemic activity of daratumumab observed in other tissues. Ongoing xenograft studies are testing whether induction with chemotherapy (Ara-C+doxorubicin), or with other agents disrupting the bone marrow microenvironment, can enhance the anti-leukemic activity of daratumumab. Figure 1: Effect of daratumumab treatment on AML 3406 leukemia burden: Figure 1:. Effect of daratumumab treatment on AML 3406 leukemia burden: Disclosures Dos Santos: Janssen R&D: Research Funding. Xiaochuan:Janssen R&D: Research Funding. Doshi:Janssen R&D: Employment. Sasser:Janssen R&D: Employment. Danet-Desnoyers:Janssen R&D: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document