A Potential Novel Application of Eltrombopag: A Combination Agent to Enhance Iron Chelation Therapy

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3357-3357 ◽  
Author(s):  
Evangelia Vlachodimitropoulou Koumoutsea ◽  
John B Porter ◽  
Nichola Cooper ◽  
Bethan Psaila ◽  
Martha Sola-Visner

Abstract INTRODUCTION Eltrombopag (ELT) is an orally available, non-peptide, small-molecule thrombopoietin receptor (TPO-R) agonist approved for the treatment of chronic immune thrombocytopenic purpura (ITP). Additionally ELT appears to bind intracellular iron (Roth et al, 2012, Blood) and our group has previously demonstrated its ability to progressively mobilize iron from cardiomyocytes in vitro. (Vlachodimitropoulou et al, Blood 2014, Volume 124, 21). The ELT concentrations at which iron was mobilized were substantially less (1µM) than with the clinically available iron chelators Desferrioxamine (DFO), Deferiprone (DFP) and Deferasirox (DFX), where 30µM iron binding equivalents (ibe) were required to achieve similar effects (Vlachodimitropoulou et al, 2014. Blood, Volume 124, 21). Importantly , the 1µM effective concentration of ELT for mobilizing cellular iron is nearly twenty-fold less than peak plasma concentrations reported clinically, even with low doses (30mg) of ELT (Gabianski, Journal of Clinical Pharmacology, 2011;51:842-856). At this low dose, increments in platelet counts do not typically exceed 1.2 x the baseline values in healthy volunteers with repeat dosing (Jenkins et al 2007, Blood, 109; 11 ). Hence it is predicted that effective chelating doses of ELT could be given without promoting unacceptable thombocytosis. In principle, still lower concentrations could be used for iron chelation if combined with another iron chelator. Here we explore and compare the concentrations at which effective cellular chelation is achieved with ELT alone or in combination with another chelator. METHODS As cardiomyocytes are a target tissue for transfusional iron overload and provide a particular therapeutic challenge once iron has accumulated in them, the cardiomyocyte cell line H9C2, derived from embryonic rat ventricle, was chosen for investigation. As hepatocytes represent the cell type with the largest quantity of iron deposition, a human hepatocarcinoma HuH7 cell line was also evaluated. Cellular iron loading and iron mobilization were measured as a decrease in cellular iron content using the ferrozine assay (Vlachodimitropoulou et al 2015, British Journal of Haematology). The cells loaded with iron using 10% FBS containing media and then exposed to iron chelators/ELT. Cells were then lysed and intracellular iron concentration determined via the ferrozine assay, normalized against protein content. Acridine Orange/Propidium Iodide staining was used to ensure viability was consistently >98% during experiments, and to assess the toxicity of ELT on the cardiomyocyte and hepatocyte cell lines. RESULTS Monotherapy with 1µM ELT removed 42% of total cardiomyocyte iron following 8 hours of treatment. This was notably more efficient than in hepatocytes, where only 7% of cellular iron was removed with 1µM ELT monotherapy (Table 1). In Table 1 we can see the difference in iron removal between ELT monotherapy and combination with chelators after 8 hours. The effect in combination with all chelators was substantial. Viability was unaffected by combinations of 1µM ELT with other chelators. The hydrophilic hydroxypridinone iron chelator CP40, which has no iron mobilizing effects when used alone, enhanced iron mobilization by ELT, indicating that ELT can shuttle iron from cells onto a second chelator. CONCLUSION Remarkably low concentrations of ELT monotherapy mobilize cellular iron from cardiomyocytes compared with conventional iron chelators. Furthermore, when used at as little as 1μΜ, in combination with standard therapeutic concentrations of DFO, DFP and DFX, the percentage of iron mobilized from cardiomyocytes more than doubled. Experiments with CP40 indicate that ELT acts as a shuttle molecule for chelated iron onto a second 'sink chelator' and that this is the likely mechanism for the enhanced iron mobilization with other iron chelators. While the action of ELT on the TPO-R is highly species-specific and occurs only in humans and primates, we found effective iron mobilization from both rat cardiomyocytes and human hepatocyte cell lines. This is consistent with an iron chelating mechanismdistinct from the TPO-R downstream signaling mechanism of ELT. The concentrations of ELT used to achieve iron mobilization in combination are clinically achievable and are unlikely to increase platelet counts in patients without thrombocytopaenia. Disclosures Porter: Celgene: Consultancy; Shire: Consultancy, Honoraria; Novartis: Consultancy, Honoraria, Research Funding.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1353-1353 ◽  
Author(s):  
Evangelia Vlachodimitropoulou Koumoutsea ◽  
Nichola Cooper ◽  
Bethan Psaila ◽  
Martha Sola-Visner ◽  
John B Porter

Abstract INTRODUCTION Eltrombopag (EP) is an orally bioavailable thrombopoietin receptor agonist developed to increase platelet production in a range of conditions associated with thrombocytopaenia. The finding that EP, in addition to increasing platelet counts in myelodysplastic syndromes (MDS), also slowed progression to acute myeloid leukemia has been linked to antiproliferative effects potentially mediated by chelation of labile intracellular iron pools in leukaemia cell lines (Roth et al, 2012, Blood). However, the ability of EP to progressively decrease total cellular iron and its relative efficacy in this regard compared with clinically available iron chelators such as Desferrioxamine (DFO), Deferiprone (DFP) and Deferasirox (DFX) have not been reported. Using a cell based assay system for total cellular iron we therefore compared cellular iron mobilization with EP to that achieved with clinically established iron chelators. METHODS The permanent cardiomyocyte cell line H9C2 derived from embryonic rat ventricle was chosen to model iron mobilization, as heart failure secondary to iron overload is the most common cause of death among patients with transfusion-dependent anaemias. Iron concentration was determined using the ferrozine assay (Riemer et al. Anal Biochem. 2004). A two fold increase of intracellular iron compared to control was obtained by serially treating cells with 10% FBS DMEM media. The cells were then exposed to iron chelators/EP, lysed, and intracellular iron concentration determined via the ferrozine assay, normalized against protein content. The LDH enzymatic viability assay was used to ensure viability was consistently >98% during experiments, and to assess the toxicity of EP on the cardiomyocyte cell line. RESULTS EP induced both dose and time dependent cellular iron removal from cells at 1, 2, 4 and 8 hours. At 1µM, EP was able to remove 42% of total cellular iron following 8 hours of treatment, and 60.1% and 65.62% at 10µM and 30µM respectively (Figure 1). Figure 2 shows that cell viability is compromised at concentrations of 10µM and 30µM to 96% and 92% respectively with eltrombopag, but not with the commercially used iron chelators, DFO, DFP and DFX. However, at 1µM EP the viability of the monolayer is maintained at >98%. The high effects of iron release noted in figure 1 by EP at 10µM and 30µM could be partially attributed to toxicity of the drug on the monolayer. In table 1 the difference in iron removal between EP and commercially used iron chelators after 8 hours of treatment is shown. Interestingly, with EP at only 1µM, 42.9% of cellular iron was removed, compared to 22.7 %, 34.9% and 19.3% in the case of DFO, DFX and DFP respectively, all at higher concentrations of 30µM iron binding equivalents (IBE). DISCUSSION AND CONCLUSION­­ Remarkably low concentrations of EP (1µM) are required to mobilize cellular iron in our cell system while maintaining cell viability at this concentration. This concentration is achievable clinically (Cmax 2-3 µM two to six hours post administration of 75mg orally) (Neito et al, Haematologica, 2011; Deng et al, Drug Metabolism and Disposition, 2011), and when considered alongside with the long plasma half life and elimination in urine and feces, could render it an effective iron chelator for other indications, particularly if combined with existing iron chelation regimes. It would be of interest to explore how EP performed in an animal iron overloaded/MDS model in isolation or as an adjunct to established chelation therapies. Figure 1: Percentage of intracellular iron removed from cardiomyocytes by increasing concentrations of Eltrombopag at different time points up until 8 hours Figure 1:. Percentage of intracellular iron removed from cardiomyocytes by increasing concentrations of Eltrombopag at different time points up until 8 hours Figure 2: Percentage cytotoxicity of cardiomyocyte monolayer following 8 hours of treatment with Eltrombopag and commercially used iron chelators Figure 2:. Percentage cytotoxicity of cardiomyocyte monolayer following 8 hours of treatment with Eltrombopag and commercially used iron chelators Table 1: Comparison of iron mobilization by Eltrombopag and commercially used iron chelators following 8 hours of treatment. Chelator Iron/protein (nmol/mg) SD % iron removal control 26.78 2.5 - DFO 30μM ibe 20.70 2.2 22.70 DFP 30μM ibe 17.43 1.4 34.89 DFX 30μM ibe 21.61 1.0 19.28 Eltrombopag 1μM 15.53 1.9 42.94 Eltrombopag 10μM 10.70 1.2 60.06 Eltrombopag 30μM 9.21 0.3 65.62 Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1278-1278 ◽  
Author(s):  
Evangelia Vlachodimitropoulou Koumoutsea ◽  
Pimpisid Koonyosying ◽  
John B. Porter ◽  
Nichola Cooper ◽  
Bethan Psaila ◽  
...  

Abstract Introduction: Eltrombopag (ELT) is an orally active, nonpeptide, small-molecule thrombopoietin receptor agonist (TPO-R), used to treat chronic immune thrombocytopenic purpura (ITP). We have recently reported its ability to mobilise cellular iron, and act as an iron shuttle when combined with currently licensed chelation therapies (Vlachodimitropoulou et al, Blood 2014, Volume 124, 21). Tissue damage induced by ROS production in iron overload conditions includes endocrine dysfunction including type I diabetes. We have developed a model where iron overload of the pancreatic cell line (RINm5F) inhibits insulin secretion. We investigated the ability of ELT, compared with clinically licensed iron chelators, to reverse ROS production and concomitant suppression of insulin production by iron loading of these cells. Methods: Cell line: RINm5F is a clonal rat pancreatic b cell line (LGC ATCC Sales, UK). These cells secrete insulin following a glucose challenge (Praz et al., 1983, Biochemistry J). Intracellular Iron: Cellular iron loading and mobilisation were measured as a decrease in cellular iron content using the ferrozine assay (Vlachodimitropoulou et al. 2015, British Journal of Haematology). A four-fold increase in intracellular iron compared to control was obtained by serially treating cells with 10% Fetal Bovine Serum (FBS) RPMI media in pancreatic cells over two ten hour periods (Figure 1A). The cells were then exposed to iron chelators/ELT, lysed and intracellular iron concentration determined, normalised against protein content. Reactive oxygen species (ROS) estimation: A cell-permeable oxidation-sensitive fluorescent probe 5,6-carboxy-2',7'- dichlorofluorescein diacetate (DCFH-DA); (Molecular Probes, Leiden, Netherlands) was used to measure intracellular ROS. Following iron loading, the cells were pre-incubated with 6 mM H2DCF-DA for 30 minutes at 37°C. Chelators were added and the fluorescence of control and treated cells was read throughout the treatment period in the plate reader (excitation 504 nm, emission 526 nm). Insulin quantification: Following iron loading and chelator treatment, the cells were challenged with Kreb's Ringer Buffer twice, for one hour at a time, containing 2.8mM and 16.7mM glucose (Lu et al. 2010, Toxicology letter). The supernatant was then collected and insulin concentration determined using a standard rat insulin ELISA kit (Life Technologies Limited, UK). Viability: The Sulforhodamide B (SRB) viability assay was used to ensure viability >98% and assess the toxicity on the pancreatic cell line. It is commonly used to measure drug-induced cytotoxicity and is a colorimetric assay dependent on healthy adherent cells. Results: Pancreatic cell iron loading was achieved with serial changes of media containing 10% FBS. This loading method was comparable to treating cells with ferric ammonium citrate (FAC) for 24 hours, which was not adopted as FAC adheres to the extracellular surface and produces bias to our intracellular iron quantification system when using iron chelators (Figure 1A). When cells were then treated with increasing ELT concentrations, a dose-dependent cellular iron removal were demonstrated so that at 10μΜ for 8hours, approximately 40% of total cellular iron was mobilised (Figure 3A). Iron mobilisation by ELT was further enhanced by combination with DFO, DFX or DFP (Figure 3). For example, when 10μΜ DFP is combined with 3μΜ ELT, iron mobilisation increases by a further 17% when compared to DFP treatment alone (Figure 3C). ROS production was also decreased in iron-loaded cells in a concentration-dependent manner by increasing ELT concentrations (Figure 2). These reductions in ROS and cellular iron were associated with restoration of insulin secretion, which was reduced by 2.6 fold following iron loading (Figure 1B). The levels of insulin secretion returned back to higher than baseline levels (better than with DFX 1μΜ) (Figure 1C). Conclusions: This is the first demonstration of a link between cellular iron overload and reduced insulin secretion using pancreatic b-cell line. This is also the first demonstration of improved pancreatic b-cell function, evidenced by restoration of insulin secretion, when iron is chelated and ROS decreased by ELT and other iron chelators. ELT may be useful alone or in combination with other chelators for decreasing iron-mediated ROS induced damage to pancreatic b-cells. Disclosures Porter: Novartis: Consultancy, Honoraria, Research Funding; Bluebird Bio: Consultancy; Agios Pharmaceuticals: Consultancy, Honoraria; Celegene: Consultancy.


Blood ◽  
1988 ◽  
Vol 72 (5) ◽  
pp. 1497-1503
Author(s):  
JB Porter ◽  
M Gyparaki ◽  
LC Burke ◽  
ER Huehns ◽  
P Sarpong ◽  
...  

A series of bidentate hydroxypyridinone iron chelators that have therapeutic potential as oral iron chelators, have been studied systematically to determine which properties are the most critical for the mobilization of hepatocyte iron. The relationship between lipid solubility of the free and complexed forms of each chelator and hepatocyte iron release has been investigated as well as the contribution of the binding constant for iron (III). Hydroxypyridin-4- ones that were approximately equally soluble in lipid and aqueous phases were the most active compounds, the partition coefficient of the free chelator appearing to be more critical in determining iron release than that of the iron-complexed form. Highly hydrophilic chelators did not mobilize intracellular iron pools, whereas highly lipophilic compounds were toxic to hepatocytes. The contribution of the binding constant for iron (III) to cellular iron release was assessed by comparing hydroxypyridin-4-ones (log beta 3 = 36) and hydroxypyridin-2- ones (log beta 3 = 32), which possess similar partition coefficients. The results show that the binding for iron (III) is particularly important at low concentrations of chelator (less than 100 mumol/L) and that at higher concentrations (greater than 500 mumol/L) iron mobilization is limited by the available chelatable pool. Measurement of iron release with other chelators confirms the importance of both the lipid solubilities and iron (III)-binding constants to iron mobilization. The most active hydroxypyridin-4-ones released more hepatocyte iron than did deferoxamine when compared at equimolar concentrations. The results suggest that the ability of an iron chelator to enter the cell is crucial for effective iron mobilization and that once within the cell the binding constant of the chelator for iron (III) becomes a dominant factor.


Blood ◽  
1988 ◽  
Vol 72 (5) ◽  
pp. 1497-1503 ◽  
Author(s):  
JB Porter ◽  
M Gyparaki ◽  
LC Burke ◽  
ER Huehns ◽  
P Sarpong ◽  
...  

Abstract A series of bidentate hydroxypyridinone iron chelators that have therapeutic potential as oral iron chelators, have been studied systematically to determine which properties are the most critical for the mobilization of hepatocyte iron. The relationship between lipid solubility of the free and complexed forms of each chelator and hepatocyte iron release has been investigated as well as the contribution of the binding constant for iron (III). Hydroxypyridin-4- ones that were approximately equally soluble in lipid and aqueous phases were the most active compounds, the partition coefficient of the free chelator appearing to be more critical in determining iron release than that of the iron-complexed form. Highly hydrophilic chelators did not mobilize intracellular iron pools, whereas highly lipophilic compounds were toxic to hepatocytes. The contribution of the binding constant for iron (III) to cellular iron release was assessed by comparing hydroxypyridin-4-ones (log beta 3 = 36) and hydroxypyridin-2- ones (log beta 3 = 32), which possess similar partition coefficients. The results show that the binding for iron (III) is particularly important at low concentrations of chelator (less than 100 mumol/L) and that at higher concentrations (greater than 500 mumol/L) iron mobilization is limited by the available chelatable pool. Measurement of iron release with other chelators confirms the importance of both the lipid solubilities and iron (III)-binding constants to iron mobilization. The most active hydroxypyridin-4-ones released more hepatocyte iron than did deferoxamine when compared at equimolar concentrations. The results suggest that the ability of an iron chelator to enter the cell is crucial for effective iron mobilization and that once within the cell the binding constant of the chelator for iron (III) becomes a dominant factor.


Blood ◽  
2017 ◽  
Vol 130 (17) ◽  
pp. 1923-1933 ◽  
Author(s):  
Evangelia Vlachodimitropoulou ◽  
Yu-Lin Chen ◽  
Maciej Garbowski ◽  
Pimpisid Koonyosying ◽  
Bethan Psaila ◽  
...  

Key PointsELT is a powerful iron chelator, mobilizing iron and ferritin, reducing ROS, and restoring insulin production at clinically achievable levels. ELT enhances cellular iron chelation when combined with clinically available iron chelators through the shuttling of iron(III).


Blood ◽  
1999 ◽  
Vol 94 (6) ◽  
pp. 2128-2134 ◽  
Author(s):  
Abraham M. Konijn ◽  
Hava Glickstein ◽  
Boris Vaisman ◽  
Esther G. Meyron-Holtz ◽  
Itzchak N. Slotki ◽  
...  

Abstract The labile iron pool (LIP) harbors the metabolically active and regulatory forms of cellular iron. We assessed the role of intracellular ferritin in the maintenance of intracellular LIP levels. Treating K562 cells with the permeant chelator isonicotinoyl salicylaldehyde hydrazone reduced the LIP from 0.8 to 0.2 μmol/L, as monitored by the metalo-sensing probe calcein. When cells were reincubated in serum-free and chelator-free medium, the LIP partially recovered in a complex pattern. The first component of the LIP to reappear was relatively small and occurred within 1 hour, whereas the second was larger and relatively slow to occur, paralleling the decline in intracellular ferritin level (t½= 8 hours). Protease inhibitors such as leupeptin suppressed both the changes in ferritin levels and cellular LIP recovery after chelation. The changes in the LIP were also inversely reflected in the activity of iron regulatory protein (IRP). The 2 ferritin subunits, H and L, behaved qualitatively similarly in response to long-term treatments with the iron chelator deferoxamine, although L-ferritin declined more rapidly, resulting in a 4-fold higher H/L-ferritin ratio. The decline in L-ferritin, but not H-ferritin, was partially attenuated by the lysosomotrophic agent, chloroquine; on the other hand, antiproteases inhibited the degradation of both subunits to the same extent. These findings indicate that, after acute LIP depletion with fast-acting chelators, iron can be mobilized into the LIP from intracellular sources. The underlying mechanisms can be kinetically analyzed into components associated with fast release from accessible cellular sources and slow release from cytosolic ferritin via proteolysis. Because these iron forms are known to be redox-active, our studies are important for understanding the biological effects of cellular iron chelation.


2020 ◽  
Vol 25 (01) ◽  
pp. 10-18
Author(s):  
Fatma Yurt ◽  
Ece Tugba Saka ◽  
Zekeriya Biyiklioglu ◽  
Ayça Tunçel ◽  
Derya Ozel ◽  
...  

In this study, two SiPcs have been selected and the photodynamic therapy potentials were evaluated of the Pcs. Synthesis of Axially 2-decyn-1-oxy disubstituted Es-SiPc-2 was newly synthesized by the reaction of SiPcCl2 with 2-decyn-1-ol in the presence of NaH in toluene. Furthermore, their nuclear imaging potentials were evaluated in human colon adenocarcinoma (HT-29) and human lung fibroblast cell (WI-38) cell lines. The uptake results have indicated that Es-SiPc labeled with [Formula: see text]I radionuclide ([Formula: see text]I-Es-SiPc) was approximately 2-fold higher in the HT-29 cell line than the WI-38 cell line. In other words, the target/non-target tissue ratio is defined as two in the HT-29/WI-38 cell lines. Besides, the uptake values of [Formula: see text]I-Es-SiPc were found to be higher than [Formula: see text]I-Es-SiPc-2. [Formula: see text]I-Es-SiPc and [Formula: see text]I-Es-SiPc-2 are promising for imaging or treating colon adenocarcinoma. In vitrophotodynamic therapy (PDT) studies have shown that both compounds are suitable and can be used in this field. Also, Es-SiPc has been shown to have higher phototoxicity than Es-SiPc-2.


Blood ◽  
1994 ◽  
Vol 84 (3) ◽  
pp. 910-915 ◽  
Author(s):  
SD Lytton ◽  
B Mester ◽  
J Libman ◽  
A Shanzer ◽  
ZI Cabantchik

Abstract Iron chelation treatment of red blood cells infected with Plasmodium falciparum selectively intervenes with iron-dependent metabolism of malaria parasites and inhibits their development. Highly permeant hydroxamate iron chelator RSFileum2 affects all parasite stages when cultures are continuously exposed to drug, but affects primarily ring stages when assessed for irreversible effects, ie, sustained inhibition remaining after drug removal. On the other hand, the hydrophilic and poorly permeant desferrioxamine (DFO) affects primarily trophozoite/schizont stages when tested either in the continuous mode or irreversible mode. Unlike parasites, mammalian cells subjected to similar drug treatment show complete growth recovery once drugs are removed. Our studies indicate that parasites display a limited capacity to recover from intracellular iron depletion evoked by iron chelators. Based on these findings we provide a working model in which the irreversible effects of RSFs on rings are explained by the absence of pathways for iron acquisition/utilization by early forms of parasites. Trophozoite/schizonts can partially recover from RSFileum2 treatments, but show no DNA synthesis following DFO treatment even after drug removal and iron replenishment by permeant iron carriers. At trophozoite stage, the parasite uses a limited pathway for refurnishing its iron-containing enzymes, thus overcoming iron deprivation caused by permeant RSFileum2, but not by DFO because this latter drug is not easily removable from parasites. Their DNA synthesis is blocked by the hydroxamate iron chelators probably by affecting synthesis of ribonucleotide reductase (RNRase). Presumably in parasites, prolonged repression of the enzyme leads also to irreversible loss of activity. The action profiles of RSFileum2 and DFO presented in this study have implications for improved chemotherapeutic performance by combined drug treatment and future drug design based on specific intervention at parasite DNA synthesis.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1550-1550
Author(s):  
Tatyana Ammosova ◽  
Zufan Debebe ◽  
Xiaomei Niu ◽  
Des R. Richardson ◽  
Marina Jerebtsova ◽  
...  

Abstract Iron chelation leads to reduced cell cycle-dependent kinase 2 (CDK2) activity (reviewed in Biochim Biophys Acta2002;1603:31–46). Elongation of HIV-1 transcription is mediated by the interaction of HIV Tat with host cell cycle-dependent kinase 9 (CDK9)/cyclin T1, which phosphorylates the C-terminal domain of RNA polymerase II, and our recent studies indicate that CDK2 is also required for Tat-dependent transcription. We hypothesized that iron chelation may inhibit HIV transcription via reduced activity of cell cycle-dependent kinases. We utilized 2-hydroxy-1-naphthylaldehyde isonicotinoyl hydrazone (311; previously shown to inhibit CDK2 expression) and 4-[3,5-bis-(hydroxyphenyl) -1,2,4-triazol-1-yl]-benzoic acid (ICL670) to chelate intracellular iron. We analyzed the effect of these chelators on HIV-1 transcription using HeLa MAGI and CEM-GFP T-cells containing an integrated HIV-1 promoter and infected with adenovirus expressing HIV-1 Tat protein. Both chelators inhibited Tat-induced HIV-1 transcription, most profoundly in CEM-GFP T-cells. The chelators also inhibited one round of HIV-1 replication in CEM-T cells infected with pseudotyped HIV-1 virus. Treatment of HeLa MAGI and CEM-GFP T-cells with iron chelators decreased CDK9 protein levels and, to a lesser extent, CDK2 protein levels. Our findings provide evidence that iron chelators may inhibit HIV-1 transcription by altering expression of CDK9 and CDK2.


Blood ◽  
1994 ◽  
Vol 84 (3) ◽  
pp. 910-915
Author(s):  
SD Lytton ◽  
B Mester ◽  
J Libman ◽  
A Shanzer ◽  
ZI Cabantchik

Iron chelation treatment of red blood cells infected with Plasmodium falciparum selectively intervenes with iron-dependent metabolism of malaria parasites and inhibits their development. Highly permeant hydroxamate iron chelator RSFileum2 affects all parasite stages when cultures are continuously exposed to drug, but affects primarily ring stages when assessed for irreversible effects, ie, sustained inhibition remaining after drug removal. On the other hand, the hydrophilic and poorly permeant desferrioxamine (DFO) affects primarily trophozoite/schizont stages when tested either in the continuous mode or irreversible mode. Unlike parasites, mammalian cells subjected to similar drug treatment show complete growth recovery once drugs are removed. Our studies indicate that parasites display a limited capacity to recover from intracellular iron depletion evoked by iron chelators. Based on these findings we provide a working model in which the irreversible effects of RSFs on rings are explained by the absence of pathways for iron acquisition/utilization by early forms of parasites. Trophozoite/schizonts can partially recover from RSFileum2 treatments, but show no DNA synthesis following DFO treatment even after drug removal and iron replenishment by permeant iron carriers. At trophozoite stage, the parasite uses a limited pathway for refurnishing its iron-containing enzymes, thus overcoming iron deprivation caused by permeant RSFileum2, but not by DFO because this latter drug is not easily removable from parasites. Their DNA synthesis is blocked by the hydroxamate iron chelators probably by affecting synthesis of ribonucleotide reductase (RNRase). Presumably in parasites, prolonged repression of the enzyme leads also to irreversible loss of activity. The action profiles of RSFileum2 and DFO presented in this study have implications for improved chemotherapeutic performance by combined drug treatment and future drug design based on specific intervention at parasite DNA synthesis.


Sign in / Sign up

Export Citation Format

Share Document