Analysis of Myelodysplastic Syndrome Stem Cells at Single Cell Resolution during DNA Methyltransferase Inhibitor Therapy

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4101-4101
Author(s):  
Stephen S. Chung ◽  
Priyanka Vijay ◽  
Diana L. Stern ◽  
Deirdre O'Sullivan ◽  
Virginia M. Klimek ◽  
...  

Abstract The myelodysplastic syndromes (MDS) arise in and are maintained by hematopoietic stem cells (HSCs). Serial sampling of patients treated with DNA methyltransferase inhibitors (DNMTIs) and lenalidomide has demonstrated that disease HSCs (MDS HSCs) persist at significant levels even in patients achieving complete clinical and cytogenetic responses. As MDS HSCs are the functional unit of clonal selection both during therapy and subsequent disease progression, we hypothesized that the molecular heterogeneity of MDS HSCs may underlie therapeutic resistance. We therefore sought to perform single cell RNA-sequencing (RNA-seq) on MDS HSCs from patients with known responses to therapy, with the intention of identifying novel therapeutic vulnerabilities. To characterize MDS HSC heterogeneity, we FACS-purified HSCs (Lin-CD34+CD38-CD90+CD45RA-) from paired bone marrow (BM) specimens taken from four MDS patients before and after two to four 28-day cycles of the DNMTI decitabine, as well as two patients who were not treated due to stable disease, and two normal age matched controls. Specimens from both responding and non-responding patients were included. We captured and sequenced a total of 869 single cells from 14 samples, sequencing to an average depth of 4.8 million reads. In a subset of samples (n=7) we also performed bulk RNA-seq (average 1500 cells) for comparison. The sequencing data was of high quality, with an average of 80% mapped reads. We confirmed our ability to accurately quantify transcript levels using ERCC spike-in controls, observing a linear correlation between expected concentration and observed FPKM (fragments per kilobase per million). Single cell RNA-seq revealed vast intratumoral heterogeneity in MDS HSCs that was otherwise missed by bulk RNA-seq, as evidenced by the presence of transcripts variably expressed among cells from the same specimen (Fig. 1A). Despite this intratumoral heterogeneity, single cell transcriptomes were able to completely separate individual MDS patients using principal components analysis and hierarchical clustering, consistent with the known heterogeneity of MDS. MDS HSCs further clustered separately from normal age-matched HSCs, with the top 10% of genes contributing to this separation enriched for Gene Ontology (GO) categories including pathways implicated in MDS biology such as "mRNA splicing," "nonsense mediated decay," and "P53 mediated DNA Damage Response" (all P<1e-9). Unsupervised hierarchical clustering of all pre-treatment MDS HSCs revealed clustering of cells from responders separately from non-responders (Fig. 1B). Differential gene expression analysis identified a cluster of genes (FDR<0.01) enriched for GO categories including "translational termination," "SRP dependent co-translational protein targeting to membrane," and "nonsense mediated decay" (all P<1e-9). Notably, this cluster included 60 ribosomal proteins, all of which were decreased in non-responders (t-test, P<1e-16), with responders demonstrating levels of expression closer to but still lower than normal controls (t-test, P<1e-3). Thus, defective ribosomal biogenesis, a hallmark of MDS pathogenesis, may also contribute to therapeutic resistance. Finally, within each sample we measured the spread of gene expression using dispersion (log[variance/mean]) within bins based on expression levels, defining variable genes as those with a dispersion >1.75 at a mean FPKM >2. The highest number of variable genes were in normal HSCs (mean=141), with the next highest in responders prior to treatment (mean=80), and the least number of variable genes in non-responders prior to treatment (mean=9.5). We speculate that the low number of variable genes in non-responders reflects a higher degree of clonal dominance. All post-treatment MDS HSCs demonstrated a relatively low number of variable genes (mean=25), suggesting that therapy induces clonal selection. In sum, our data illustrate the robustness of single cell RNA-seq to define the intrinsic variability of individual MDS HSCs, implicating perturbed ribosomal biogenesis and transcriptional variability as novel predictors of response to therapy. As we expand our data set with additional patients, we expect to identify additional pathways that mediate therapeutic response and resistance, as well as mutations and variably expressed genes that are selected for during therapy and drive disease progression. Figure 1. Figure 1. Disclosures No relevant conflicts of interest to declare.

2019 ◽  
Author(s):  
Wei Wang ◽  
Gang Ren ◽  
Ni Hong ◽  
Wenfei Jin

Abstract Background: CCCTC-Binding Factor (CTCF), also known as 11-zinc finger protein, participates in many cellular processes, including insulator activity, transcriptional regulation and organization of chromatin architecture. Based on single cell flow cytometry and single cell RNA-FISH analyses, our previous study showed that deletion of CTCF binding site led to a significantly increase of cellular variation of its target gene. However, the effect of CTCF on genome-wide landscape of cell-to-cell variation is unclear. Results: We knocked down CTCF in EL4 cells using shRNA, and conducted single cell RNA-seq on both wild type (WT) cells and CTCF-Knockdown (CTCF-KD) cells using Fluidigm C1 system. Principal component analysis of single cell RNA-seq data showed that WT and CTCF-KD cells concentrated in two different clusters on PC1, indicating gene expression profiles of WT and CTCF-KD cells were systematically different. Interestingly, GO terms including regulation of transcription, DNA binding, Zinc finger and transcription factor binding were significantly enriched in CTCF-KD-specific highly variable genes, indicating tissue-specific genes such as transcription factors were highly sensitive to CTCF level. The dysregulation of transcription factors potentially explain why knockdown of CTCF lead to systematic change of gene expression. In contrast, housekeeping genes such as rRNA processing, DNA repair and tRNA processing were significantly enriched in WT-specific highly variable genes, potentially due to a higher cellular variation of cell activity in WT cells compared to CTCF-KD cells. We further found cellular variation-increased genes were significantly enriched in down-regulated genes, indicating CTCF knockdown simultaneously reduced the expression levels and increased the expression noise of its regulated genes. Conclusions: To our knowledge, this is the first attempt to explore genome-wide landscape of cellular variation after CTCF knockdown. Our study not only advances our understanding of CTCF function in maintaining gene expression and reducing expression noise, but also provides a framework for examining gene function.


2018 ◽  
Author(s):  
Abhishek K. Sarkar ◽  
Po-Yuan Tung ◽  
John D. Blischak ◽  
Jonathan E. Burnett ◽  
Yang I. Li ◽  
...  

AbstractQuantification of gene expression levels at the single cell level has revealed that gene expression can vary substantially even across a population of homogeneous cells. However, it is currently unclear what genomic features control variation in gene expression levels, and whether common genetic variants may impact gene expression variation. Here, we take a genome-wide approach to identify expression variance quantitative trait loci (vQTLs). To this end, we generated single cell RNA-seq (scRNA-seq) data from induced pluripotent stem cells (iPSCs) derived from 53 Yoruba individuals. We collected data for a median of 95 cells per individual and a total of 5,447 single cells, and identified 241 mean expression QTLs (eQTLs) at 10% FDR, of which 82% replicate in bulk RNA-seq data from the same individuals. We further identified 14 vQTLs at 10% FDR, but demonstrate that these can also be explained as effects on mean expression. Our study suggests that dispersion QTLs (dQTLs) which could alter the variance of expression independently of the mean can have larger fold changes, but explain less phenotypic variance than eQTLs. We estimate 424 individuals as a lower bound to achieve 80% power to detect the strongest dQTLs in iPSCs. These results will guide the design of future studies on understanding the genetic control of gene expression variance.Author summaryCommon genetic variation can alter the level of average gene expression in human tissues, and through changes in gene expression have downstream consequences on cell function, human development, and human disease. However, human tissues are composed of many cells, each with its own level of gene expression. With advances in single cell sequencing technologies, we can now go beyond simply measuring the average level of gene expression in a tissue sample and directly measure cell-to-cell variance in gene expression. We hypothesized that genetic variation could also alter gene expression variance, potentially revealing new insights into human development and disease. To test this hypothesis, we used single cell RNA sequencing to directly measure gene expression variance in multiple individuals, and then associated the gene expression variance with genetic variation in those same individuals. Our results suggest that effects on gene expression variance are smaller than effects on mean expression, relative to how much the phenotypes vary between individuals, and will require much larger studies than previously thought to detect.


2016 ◽  
Author(s):  
Steven Xijin Ge

AbstractBackgroundInstead of testing predefined hypotheses, the goal of exploratory data analysis (EDA) is to find what data can tell us. Following this strategy, we re-analyzed a large body of genomic data to investigate how the early mouse embryos develop from fertilized eggs through a complex, poorly understood process.ResultsStarting with a single-cell RNA-seq dataset of 259 mouse embryonic cells from zygote to blastocyst stages, we reconstructed the temporal and spatial dynamics of gene expression. Our analyses revealed similarities in the expression patterns of regular genes and those of retrotransposons, and the enrichment of transposable elements in the promoters of corresponding genes. Long Terminal Repeats (LTRs) are associated with transient, strong induction of many nearby genes at the 2-4 cell stages, probably by providing binding sites for Obox and other homeobox factors. The presence of B1 and B2 SINEs (Short Interspersed Nuclear Elements) in promoters is highly correlated with broad upregulation of intracellular genes in a dosage-and distance-dependent manner. Such enhancer-like effects are also found for human Alu and bovine tRNA SINEs. Promoters for genes specifically expressed in embryonic stem cells (ESCs) are rich in B1 and B2 SINEs, but low in CpG islands.ConclusionsOur results provide evidence that transposable elements may play a significant role in establishing the expression landscape in early embryos and stem cells. This study also demonstrates that open-ended, exploratory analysis aimed at a broad understanding of a complex process can pinpoint specific mechanisms for further study.Major findingSingle-cell RNA-seq data enables estimation of retrotransposon expression during PDSimilar expression dynamics of retrotransposons and regular genes during PDLong terminal repeats may be essential for the 1st wave of gene expressionObox homeobox factors are possible regulators of PD, upstream of Zscan4SINE repeats predict expression of nearby genes in murine, human and bovine embryosExploratory analysis of large single-cell data pinpoints developmental pathways


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Wei Wang ◽  
Gang Ren ◽  
Ni Hong ◽  
Wenfei Jin

Abstract Background CCCTC-Binding Factor (CTCF), also known as 11-zinc finger protein, participates in many cellular processes, including insulator activity, transcriptional regulation and organization of chromatin architecture. Based on single cell flow cytometry and single cell RNA-FISH analyses, our previous study showed that deletion of CTCF binding site led to a significantly increase of cellular variation of its target gene. However, the effect of CTCF on genome-wide landscape of cell-to-cell variation remains unclear. Results We knocked down CTCF in EL4 cells using shRNA, and conducted single cell RNA-seq on both wild type (WT) cells and CTCF-Knockdown (CTCF-KD) cells using Fluidigm C1 system. Principal component analysis of single cell RNA-seq data showed that WT and CTCF-KD cells concentrated in two different clusters on PC1, indicating that gene expression profiles of WT and CTCF-KD cells were systematically different. Interestingly, GO terms including regulation of transcription, DNA binding, zinc finger and transcription factor binding were significantly enriched in CTCF-KD-specific highly variable genes, implying tissue-specific genes such as transcription factors were highly sensitive to CTCF level. The dysregulation of transcription factors potentially explains why knockdown of CTCF leads to systematic change of gene expression. In contrast, housekeeping genes such as rRNA processing, DNA repair and tRNA processing were significantly enriched in WT-specific highly variable genes, potentially due to a higher cellular variation of cell activity in WT cells compared to CTCF-KD cells. We further found that cellular variation-increased genes were significantly enriched in down-regulated genes, indicating CTCF knockdown simultaneously reduced the expression levels and increased the expression noise of its regulated genes. Conclusions To our knowledge, this is the first attempt to explore genome-wide landscape of cellular variation after CTCF knockdown. Our study not only advances our understanding of CTCF function in maintaining gene expression and reducing expression noise, but also provides a framework for examining gene function.


2019 ◽  
Author(s):  
Wei Wang ◽  
Gang Ren ◽  
Ni Hong ◽  
Wenfei Jin

AbstractBackgroundCCCTC-Binding Factor (CTCF), also known as 11-zinc finger protein, participates in many cellular processes, including insulator activity, transcriptional regulation and organization of chromatin architecture. Based on single cell flow cytometry and single cell RNA-FISH analyses, our previous study showed that deletion of CTCF binding site led to a significantly increase of cellular variation of its target gene. However, the effect of CTCF on genome-wide landscape of cell-to-cell variation is unclear.ResultsWe knocked down CTCF in EL4 cells using shRNA, and conducted single cell RNA-seq on both wild type (WT) cells and CTCF-Knockdown (CTCF-KD) cells using Fluidigm C1 system. Principal component analysis of single cell RNA-seq data showed that WT and CTCF-KD cells concentrated in two different clusters on PC1, indicating gene expression profiles of WT and CTCF-KD cells were systematically different. Interestingly, GO terms including regulation of transcription, DNA binding, Zinc finger and transcription factor binding were significantly enriched in CTCF-KD-specific highly variable genes, indicating tissue-specific genes such as transcription factors were highly sensitive to CTCF level. The dysregulation of transcription factors potentially explain why knockdown of CTCF lead to systematic change of gene expression. In contrast, housekeeping genes such as rRNA processing, DNA repair and tRNA processing were significantly enriched in WT-specific highly variable genes, potentially due to a higher cellular variation of cell activity in WT cells compared to CTCF-KD cells. We further found cellular variation-increased genes were significantly enriched in down-regulated genes, indicating CTCF knockdown simultaneously reduced the expression levels and increased the expression noise of its regulated genes.ConclusionsTo our knowledge, this is the first attempt to explore genome-wide landscape of cellular variation after CTCF knockdown. Our study not only advances our understanding of CTCF function in maintaining gene expression and reducing expression noise, but also provides a framework for examining gene function.


2019 ◽  
Author(s):  
Wei Wang ◽  
Gang Ren ◽  
Ni Hong ◽  
Wenfei Jin

Abstract Background: CCCTC-Binding Factor (CTCF), also known as 11-zinc finger protein, participates in many cellular processes, including insulator activity, transcriptional regulation and organization of chromatin architecture. Based on single cell flow cytometry and single cell RNA-FISH analyses, our previous study showed that deletion of CTCF binding site led to a significantly increase of cellular variation of its target gene. However, the effect of CTCF on genome-wide landscape of cell-to-cell variation is unclear. Results: We knocked down CTCF in EL4 cells using shRNA, and conducted single cell RNA-seq on both wild type (WT) cells and CTCF-Knockdown (CTCF-KD) cells using Fluidigm C1 system. Principal component analysis of single cell RNA-seq data showed that WT and CTCF-KD cells concentrated in two different clusters on PC1, indicating gene expression profiles of WT and CTCF-KD cells were systematically different. Interestingly, GO terms including regulation of transcription, DNA binding, Zinc finger and transcription factor binding were significantly enriched in CTCF-KD-specific highly variable genes, indicating tissue-specific genes such as transcription factors were highly sensitive to CTCF level. The dysregulation of transcription factors potentially explain why knockdown of CTCF lead to systematic change of gene expression. In contrast, housekeeping genes such as rRNA processing, DNA repair and tRNA processing were significantly enriched in WT-specific highly variable genes, potentially due to a higher cellular variation of cell activity in WT cells compared to CTCF-KD cells. We further found cellular variation-increased genes were significantly enriched in down-regulated genes, indicating CTCF knockdown simultaneously reduced the expression levels and increased the expression noise of its regulated genes. Conclusions: To our knowledge, this is the first attempt to explore genome-wide landscape of cellular variation after CTCF knockdown. Our study not only advances our understanding of CTCF function in maintaining gene expression and reducing expression noise, but also provides a framework for examining gene function.


2021 ◽  
Vol 2 (2) ◽  
pp. 100426
Author(s):  
Celia Alda-Catalinas ◽  
Melanie A. Eckersley-Maslin ◽  
Wolf Reik

PLoS ONE ◽  
2015 ◽  
Vol 10 (9) ◽  
pp. e0136199 ◽  
Author(s):  
Brian T. Freeman ◽  
Jangwook P. Jung ◽  
Brenda M. Ogle

Sign in / Sign up

Export Citation Format

Share Document