Expression of Sequence Variants Identified in Type 1 VWD Subjects in the Zimmerman Program Study Reveals Defects in VWF Secretion and Multimerization

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1398-1398
Author(s):  
Azza Abdelaal ◽  
David Jakab ◽  
Pamela A Christopherson ◽  
Robert R Montgomery ◽  
Sandra L Haberichter

Abstract von Willebrand Disease (VWD) is the most prevalent inherited bleeding disorder. Type 1 is the most common form of VWD and results in a partial quantitative deficiency of von Willebrand Factor (VWF). The mechanisms underlying type 1 VWD are still not very well understood although reduced VWF secretion and increased VWF clearance have been implicated in causing VWD. We aimed to characterize novel sequence variants (SV) identified in the VWF gene in type 1 VWD patients recruited through the Zimmerman Program for the Molecular and Clinical Biology of VWD in order to define the underlying mechanism and explore if SV in a particular domain are mechanistically similar. We utilized homozygous expression in human embryonic kidney cells (HEK-293T) to study the effect of VWF SV on VWF secretion, intracellular retention, multimerization, and function. Novel SV have been identified throughout the entire VWF protein. We introduced the following variants into a VWF-mycHis plasmid vector: V86M, W199X, C524Y, M947V, R960P, G994D, C996W, R1204W, Q1353X, E1660X, R1763Q, C2199Y, Q2256H, T2282I, P2524L, A2569E, C2693F, C2701Y, and C2754Y. Sequence variants were confirmed by Sanger sequencing. Variant VWF cDNA is transfected homozygously into HEK-293T cells. The supernatants and cell lysates from 3 independent transfections are collected and analyzed by ELISA for VWF:Ag and VWF binding to collagen type III (VWF:CB). VWF multimer structure is analyzed by SDS-agarose gel electrophoresis and western blotting. The genotype-phenotype patient data is correlated with the data from expression studies to explore a model to predict the impact of the SV on the VWD phenotype. Variants V86M, M947V, R1204W, R1763Q, Q2256H, T2282I, P2524L, A2569E, and C2693F demonstrated secretion comparable to that of wild type (WT)-VWF. In contrast, VWF variants R960P and C2701Y showed reduced VWF secretion (<50% of WT) with increased VWF in the cell lysate. VWF variants W199X, C524Y, G994D, C996W, Q1353X, E1660X, C2199Y, and C2754Y demonstrated a complete absence of secreted VWF. Not unexpectedly, homozygous expression of stop codon variants W199X, Q1353X, and E1660X demonstrated no VWF in the cell lysate. However, non-secreted VWF variants C524Y, G994D, C996W, C2199Y, and C2754Y showed intracellular retention with detectable VWF in the cell lysate. SV occurring at cysteine residues (C524Y, C996W, C2199Y, C2701Y, and C2754Y) all had reduced secretion and increased intracellular retention, consistent with altered conformation leading to increased intracellular chaperone interaction and proteasomal degradation. VWF binding to collagen is dependent on the presence of high molecular weight multimers (HMWM). VWF:CB/VWF:Ag is used to predict multimer structure with VWF:CB/VWF:Ag < 0.7 indicative of loss of the HMWM. VWF variants V86M, M947V, R1763Q, Q2256H, P2524L, C2701Y had VWF:CB/VWF:Ag ≥ 0.7 consistent with normal multimer structure, while variants R960P, R1204W, T2282I, A2569E, and C2693F had VWF:CB/VWF:Ag < 0.7 indicating abnormal multimer structure. 47.3% of the 19 VWF variants studied had normal VWF secretion, 10.5% had reduced secretion with increased intracellular retention, and 26.3% revealed absent secretion with intracellular retention. Variants with a premature stop codon did not synthesize VWF at all. Some SV had normal secretion and multimerization (V86M, M947V, R1204W, R1763Q, Q2256H, T2282I, P2524L, A2569E, and C2693F) implying that the VWD phenotype in these patients results from yet unidentified mechanisms and may not be associated with these SV. Reduced plasma survival is unlikely as these patients had normal VWFpp/VWF:Ag level consistent with normal VWF clearance. Among the VWF variants with normal or decreased secretion, 45.4% had reduced VWF:CB/VWF:Ag consistent with abnormal multimer structure. Heterozygous expression, as observed in the patient, is expected to normalize these multimerization defects. The decreased or absent secretion observed for 52.7% of the variants studied correlates with the patient phenotype, indicating reduced secretion is the mechanism underlying these patients' type 1 VWD phenotype. No domain-specific correlation of VWF secretion or multimer abnormality was observed. In summary, VWF expression studies confirmed the causative nature of many, but not all of the novel sequence variants identified in type 1 VWD subjects in the Zimmerman Program. Disclosures No relevant conflicts of interest to declare.

2006 ◽  
Vol 96 (12) ◽  
pp. 711-716 ◽  
Author(s):  
Lisa Gallinaro ◽  
Francesca Sartorello ◽  
Elena Pontara ◽  
Maria Cattini ◽  
Antonella Bertomoro ◽  
...  

SummaryWe describe the complex picture associated with a mutated splice junction in intron 13 of von Willebrand factor (VWF) gene. The proband, characterized by a marked decrease in plasma and platelet VWF and near normal multimer organization, was classified as recessive type 1 von Willebrand disease (VWD). Genetic analysis demonstrated that he was homozygous for the 1534–3C>A mutation in the consensus sequence of the acceptor splicing site of intron 13 of the VWF gene. Platelet mRNA analysis documented three VWF transcripts: a wild type generated by the correct recognition of the mutated splice site, a smaller transcript not containing exon 14, and a longer one that, in addition to exons 13 and 14, included a 62bp fragment corresponding to the end of intron 13. The small transcript derives from the skipping of exon 14, the long one from the activation of a cryptic splice site in intron 13; both show a premature stop codon inVWF propeptide, so the probandVWF derives entirely from the correct splice site recognition. Combined incomplete exon skipping and cryptic splice site activation are first recognized in VWD. Since the 1534–3C>A mutation does not abolish the normal processing of mRNA, it is unlikely to be found in type 3VWD. This mutation therefore appears to be peculiar to type 1 VWD.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 541-541
Author(s):  
Giancarlo Castaman ◽  
Sofia Helene Giacomelli ◽  
Paula M. Jacobi ◽  
Tobias Obser ◽  
Reinhard Schneppenheim ◽  
...  

Abstract Abstract 541 Background. Von Willebrand Disease (VWD) is caused by mutations in von Willebrand factor (VWF) that have different pathophysiologic effect in causing low plasma VWF levels. Type 1 VWD includes patients with quantitative plasma VWF deficiency with normal VWF structure and function. Aim of the study. We report three different novel type 1 VWF mutations (A1716P, C2190Y and R2663C) which although located in different VWF domains are associated with reduced secretion and lack of formation of Weibel-Palade body-like granules. Methods. Transient expression of recombinant mutant full-length VWF in 293 EBNA cells was performed and secretion, collagen binding, and GpIb binding assessed in comparison to wild-type VWF. Furthermore, expression was also examined in HEK293 cells that form Weibel-Palade body (WPB)-like granules when transfected with wt VWF. Results. The multimer analysis of plasma VWF was compatible with type 1 VWD. The results of 3 different expression experiments showed a slightly reduced VWF synthesis and drastically impaired secretion into the medium with homozygous expression. In HEK293 cells, homozygous A1716P and C2190Y VWF variants failed to form WPB-like granules, while R2663C was capable of forming granules, but had fewer cells with granules and more with ER-localized VWF. Heterozygous expression of A1716P and C2160Y VWF variants had a negative impact on wild-type VWF and WPB-like granules were observed in transfected cells. Conclusions. Our results demonstrate that homozygous and heterozygous quantitative VWF deficiency caused by missense VWF mutations can be associated with inability to form endothelial Weibel-Palade-like granules and mutations in different VWF domains can affect the formation of these organelles. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 99-99 ◽  
Author(s):  
Reinhard Schneppenheim ◽  
Ulrich Budde ◽  
Javier Batlle ◽  
Giancarlo Castaman ◽  
Jeroen C. J. Eikenboom ◽  
...  

Abstract Abstract 99 Background: Von Willebrand disease (VWD) type 1 is characterized by a partial reduction of structurally and functionally normal VWF with normal VWF multimers. As part of a large European study (Molecular and Clinical Markers for the Diagnosis and Management of Type 1 von Willebrand Disease (MCMDM-1VWD) patients previously diagnosed with VWD type 1 were studied systematically to assess the phenotypic and genotypic spectrum. Objective: To confirm the pathogenicity of VWF gene mutations and to elucidate the molecular mechanisms of VWD type 1. Patients and methods: VWD type 1 patients were recruited by twelve expert centers in nine European countries. VWF genotyping was performed in all index cases (IC). The eight mutations studied here are located in the VWF D'-D3 domain and corresponded to 57 patients from 19 families. They were reproduced by recombinant expression with subsequent phenotypic characterization, two of them in cis and one in trans with a second mutation. Results and Discussion: Intracellular VWF:Ag of all mutants was normal or near normal suggesting normal expression levels. However, seven mutations (p.M771I, p.I1094T, p.C1130R, p.C1130G, p.C1130F, p.W1144G and p.Y1146C) caused intracellular retention and impaired VWF secretion. In addition, we observed a major loss of high molecular weight multimers as in type 2A and a novel finding of a severe VWF:FVIII binding defect in most of the homozygously expressed mutants. Additional mutations either in cis or in trans had no modifying effect. The recombinant VWD type 1 Vicenza mutation p.R1205H with or without the allelic variant p.M740I seen in three Italian IC was secreted normally and had normal function leaving enhanced clearance of mutant VWF as the only pathomechanism. In conclusion, the majority of mutations in the D3 domain impair VWF multimerization, cause intracellular retention and correlate with defective FVIII binding. An elevated ratio of VWF propeptide to VWF:Ag suggests enhanced VWF clearance as an important pathomechanism of most mutations and particularly of p.R1205H. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2003 ◽  
Vol 102 (2) ◽  
pp. 549-557 ◽  
Author(s):  
Lee A. O'Brien ◽  
Paula D. James ◽  
Maha Othman ◽  
Ergul Berber ◽  
Cherie Cameron ◽  
...  

AbstractTo date, no dominant mutation has been identified in a significant proportion of patients with type 1 von Willebrand disease (VWD). In this study, we examined 70 families as part of the Canadian Type 1 VWD Study. The entire VWF gene was sequenced for 1 index case, revealing 2 sequence variations: intron 30 (5312—19A&gt;C) and exon 28 at Tyr1584Cys (4751A&gt;G). The Tyr1584Cys variation was identified in 14.3% (10 of 70) of the families and was in phase with the 5312—19A&gt;C variation in 7 (10.0%) families. Both variants were observed in 2 of 10 UK families with type 1 VWD, but neither variant was found in 200 and 100 healthy, unrelated persons, respectively. Mean von Willebrand factor antigen (VWF:Ag), VWF ristocetin cofactor (VWF:RCo), and factor VIII coagulant activity (FVIII:C) for the index cases in these families are 0.4 U/mL, 0.36 U/mL, and 0.54 U/mL, respectively, and VWF multimer patterns show no qualitative abnormalities. Aberrant VWF splicing was not observed in these patients, and both alleles of the VWF gene are expressed as RNA. Molecular dynamic simulation was performed on a homology model of the VWF-A2 domain containing the Tyr1584Cys mutation. This showed that no significant structural changes occur as a result of the substitution but that a new solvent-exposed reactive thiol group is apparent. Expression studies revealed that the Tyr1584Cys mutation results in increased intracellular retention of the VWF protein. We demonstrate that all the families with the Tyr1584Cys mutation share a common, evolved VWF haplotype, suggesting that this mutation is ancient. This is the first report of a mutation that segregates in a significant proportion of patients with type 1 VWD.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1210-1210
Author(s):  
Tara C White-Adams ◽  
Paula M Jacobi ◽  
Sandra L Haberichter ◽  
Jorge A Di Paola

Abstract Abstract 1210 Background: Von Willebrand disease (VWD), the most frequently diagnosed bleeding disorder, is characterized by variable expressivity and incomplete penetrance. Bleeding severity in type 1 VWD does not always correlate with plasma VWF levels, except in cases of severe deficiency. It is possible that the phenotypic variability observed in type 1 VWD is related to the final ratio of mutant vs. wild-type (WT) subunits in the mature VWF multimeric structure. The aim of this study was to determine the role of mutant:WT transfection ratio on von Willebrand factor (VWF) expression, secretion and degradation in VWD type 1 mutations. Methods: Type 1 VWD mutations with reported normal multimer distribution were chosen from the D'-D3 region of VWF. Mutations of cysteine residues were eliminated to avoid interference with inter- and intra-chain disulfide linkages. Mutations were generated by performing site-directed mutagenesis on full-length human VWF cDNA within the pcDNA3.1(-)A vector, which appends VWF with a Myc-His tag (denoted mH). The following mutations were generated: M771I, R782Q, R924W, I1094T and T1156M. Mutant VWF was co-transfected with WT VWF contained within the pCIneo vector (mutant mH:WT pCIneo ratios investigated were 1:3, 2:2, 3:1, 4:0). Recombinant (r)VWF expression was measured using ELISA and concentrations were determined by comparison to a standard curve generated with pooled normal plasma. Multimer composition was analyzed using SDS-agarose gel electrophoresis followed by Western blot. Statistical significance was determined using one-way ANOVA with post-hoc Tukey test. Results: Homozygous expression of R924W or I1094T had no effect on rVWF expression or secretion compared to WT, while M771I, R782Q and T1156M significantly increased intracellular protein retention. Co-expression of M771I or R782Q at varying ratios with WT was able to partially correct rVWF secretion, although intracellular retention remained significantly higher than WT at all ratios (n=3, * p<0.05, Figure 1). Co-expression with WT cDNA was also able to correct T1156M retention in a dose-dependent manner (n=3, Figure 1), as described previously [Lethagen, Thromb and Haemost, 2002]. Multimer analysis of co-transfection supernatants exhibited normal and full distribution of multimers, as expected for type 1 VWD mutations. Others have shown previously that heterodimers of WT and C1149R VWF, a type 1 VWD mutation, are degraded by the proteasome [Bodo et al, Blood, 2001], presumably via recognition of a folding defect within the mutant subunit. In order to determine the role of proteasomal degradation in the decreased secretion levels of our mutants, we performed experiments in the presence of the proteasome inhibitor MG-132. Treatment of co-transfected cells (mutant:WT 2:2) with 1 mM MG-132 for 16 hours prior to harvesting did not significantly affect secretion or overall expression of rVWF, suggesting that this pathway is not involved in the regulation of the expression of our mutants. Discussion: Our data demonstrate that M771I, T1156M and R782Q induce a significant increase in intracellular retention compared to WT protein, which could contribute to a quantitative deficiency in type 1 VWD, while R924W and I1094T do not appear to interfere with VWF production or secretion. Variable levels of intracellular retention have been observed in a previous study of VWF mutations identified in type 1 VWD patients [Eikenboom, et al, J Thromb Haemost, 2009]. While one interpretation of these results is that R924W or I1094T may not be causative mutations in type 1 VWD, other mechanisms including protein clearance and function remain to be explored. Although type 1 VWD mutations variably affect expression and secretion levels in vitro, studying platelet rolling on these mutants at a range of physiological shear stresses will provide valuable information regarding whether the degree of incorporation of mutant subunits into VWF multimers can affect supramolecular structure, and ultimately, hemostatic function. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3308-3308
Author(s):  
Margaret V. Ragni ◽  
Enrico M. Novelli ◽  
Anila Murshed ◽  
Elizabeth P. Merricks ◽  
Mark T. Kloos ◽  
...  

Abstract Abstract 3308 Background: DDAVP is the treatment of choice for individuals with type 1 von Willebrand disease (VWD), although 20% are unresponsive, and of the 80% who do respond, the VWF increase is transient, as endothelial stores are depleted after 3 days. Further, administration requires a 30- minute intravenous infusion in a medical facility. Plasma-derived concentrates may be used in these settings, but are more costly and have potential risk of transmissible infection. We recently demonstrated that recombinant human IL-11 (rhIL-11, Neumega®), a gp-130 signaling cytokine with hematopoietic and anti-inflammatory activity, increases VWF activity up to 2-fold when given daily by subcutaneous injection, with levels persisting each day it is given, and reduces menstrual and postoperative bleeding. The effects of rhIL-11 in individuals with VWD unresponsive or allergic to DDAVP, or hemophilia A, however, have not been evaluated. Methods: We conducted a phase II trial to evaluate the safety and biologic effects of rhIL-11 in VWD patients unresponsive or allergic to DDAVP (VWD-Un) or mild hemophilia A (HemA). rhIL-11 was given subcutaneously at 25 μg/kg daily for 4 days in the non-bleeding state, followed on day 4, 30 minutes after rhIL-11, by one dose of DDAVP intravenously, 0.3 μg/kg, if not contraindicated (pt. 2). Fluid restriction was recommended. Fluid status was assessed by height, weight, and exam. Pre- and post-dosing laboratory assays included the VWD profile, VWF multimers by SDS gel electrophoresis, and platelet VWF mRNA by qPCR. Results: The results of the first six subjects, including three with VWD (one type IIB and two type 1 VWD), VWF:RCo 0.10–0.20 U/ml, and three with mild hemophilia A, F.VIII 0.08–0.12 U/ml, are presented. All subjects were healthy, with no hypertension or cardiac disease, and all had normal physical exams and normal EKGs. By day 4, among VWD-Un subjects, there was a 1.2-fold increase in VWF:RCo (15±3% vs. 12±0%); a 1.6-fold increase in VWF:Ag (22±8% vs.14±6%); and a 1.3-fold increase in VIII:C (34±36% vs. 27±10%), as compared with pre-rhIL-11 levels (Figure). Following DDAVP (except pt. 2), there was an additional 2.0-fold, 1.7-fold, and 2.6-fold increase in VWF:RCo, VWF:Ag, and VIII:C, respectively. Among HemA subjects, by day 4, there was a 1.8-fold increase in VWF:RCo (160±25% vs. 88±12%); a 1.8-fold increase in VWF:Ag (182±28% vs.99±18%), p<0.01; and a 1.5-fold increase in VIII:C (21±8% vs. 14±5%), as compared with pre-rhIL-11 levels. Following DDAVP, there was an additional 1.5-fold (p<0.01), 1.7-fold, and 2.8-fold (p<0.05) increase in VWF:RCo, VWF:Ag, and VIII:C, respectively. The drug was well tolerated well with less than grade 1 mild conjunctival erythema, local erythema and tenderness at the injection site; in one subject transient hyponatremia, Na 129 meq/L, occurred after excess oral fluid intake for diabetic hyperglycemia, which resolved with fluid restriction. Discussion: These data suggest that rhIL-11 increases VWF and VIII levels modestly in VWD patients unresponsive/allergic to DDAVP, and in mild hemophilia A, suggesting the potential use in treatment of clinical bleeding in these disorders. Disclosures: No relevant conflicts of interest to declare.


2014 ◽  
Vol 112 (12) ◽  
pp. 1159-1166 ◽  
Author(s):  
Viviana Daidone ◽  
Giovanni Barbon ◽  
Elena Pontara ◽  
Grazia Cattini ◽  
Lisa Gallinaro ◽  
...  

SummaryCysteines play a key part in von Willebrand factor (VWF) dimerisation and polymerisation, and their loss may severely affect VWF structure and function. We report on three patients with type 3 von Willebrand disease carrying the new c.1751G>T missense mutation that induces the substitution of cysteine 584 by phenylalanine (C584F), and the deletion of seven nucleotides in exon 7 (c.729_735del), producing a premature stop codon at position 454 (E244Lfs*211). VWF was almost undetectable in the patients’ plasma and platelets, while a single, poorly represented, oligomer emerged on plasma VWF multimer analysis. No post-DDAVP increase in VWF and factor VIII was observed. Expressing human recombinant C584F-VWF in HEK293T cells showed that C584F-VWF was synthesised and multimerised but not secreted – apart from the first oligomer, which was slightly represented in the conditioned medium, with a pattern similar to the patients’ plasma VWF. The in vitro expression of the E244Lfs*211–VWF revealed a defective synthesis of the mutated VWF, with a behavior typical of loss of function mutations. Cellular trafficking, investigated in HEK293 cells, indicated a normal C584F-VWF content in the endoplasmic reticulum and Golgi apparatus, confirming the synthesis and multimerisation of C584F-VWF. No pseudo-Weibel Palade bodies were demonstrable, however, suggesting that C584F mutation impairs the storage of C584F-VWF. These findings point to cysteine 584 having a role in the release of VWF and its targeting to pseudo-Weibel Palade bodies in vitro, as well as in its storage and release by endothelial cells in vivo.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 101-101 ◽  
Author(s):  
Paquita Nurden ◽  
Alan T. Nurden ◽  
Jocelyne Enouf ◽  
Silvia La Marca ◽  
Luciano Baronciani ◽  
...  

Abstract Background: VWD type 2B results from mutations in exon 28 of the VWF gene. Gain of function of this adhesive protein results in an increased affinity for the platelet glycoprotein (GP) Ib-IX-V complex. Recently we reported that impaired megakaryocytopoiesis results from an abnormal interaction between GPIb with newly synthesized VWF in megakaryocytes of a family with the R1308P mutation (Blood2006; 108:2587–95). Aim of the Study: to further examine the potential consequences of VWF abnormalities on platelet production we have studied a series of patients with different types of VWD. Patients, Methods: 13 VWD patients were enrolled in the study after informed consent. Diagnoses of VWD were performed according to the criteria of the ISTH-SSC-SC. Included were 8 VWD 2B patients from 6 families with the following mutations: R1306W (n=1), R1308C (n=1), I1309V (n=1), V1326M (n=2), R1341Q (n=2) and P1266L (n=1, 2B/1NY). Also studied were 5 additional VWD cases characterized by low/absent VWF in their platelets: VWD 2M (n=1, D1277-E78delInsL), VWD 3 without inhibitors against VWF (n=2, 276delT/257delA and 6182delT/6182delT) and VWD with isoantibodies against VWF (n=2, large deletions of the VWF gene). The platelet count was decreased at the time of examination for 6/8 VWD 2B patients and normal for 2/8 (n=1 V1316M and n=1 P1266L). Platelet counts were normal in the remaining 5 patients with VWD types 3, and 2M. Electron microscopy (EM) of platelets and immunolocalization of VWF were performed. Results: EM showed the presence of an increased population of giant platelets (15 to 40% versus <10% for controls) in all VWD 2B. Characteristics of these platelets were the presence of large vacuoles often filled with material and the presence of numerous membrane complexes. Additional abnormalities were observed in the patient with 2B/1NY; alpha-granule morphology was different with a population of enlarged granules, sometimes giant. There was also a heterogeneneous distribution with some platelets almost devoid of alpha-granules. Immunogold staining for all type 2B patients showed that VWF was present not only inside the granules but also in the surface-connected canalicular system. For 3/8 patients with VWD 2B, cleaved caspase was present in the platelets indicating abnormal caspase activity at least for R1341Q and V1316M. In VWD 2M (mutation D1277-E78delInsL) characterized by low platelet VWF content as well as in the VWD 3 (n=2) with a premature stop codon, no significant modification of platelet morphology was found. Some residual VWF was also seen in the alpha-granules of these 2 VWD 3 patients. In contrast, a significant number of enlarged platelets with numerous vacuoles were found in the 2 VWD 3 with large deletions and isoantibodies directed against VWF. Immunogold labelling for platelet VWF was completely negative for these two patients. Conclusions: Patients with VWD types 2B and 3 (undetectable VWF) show platelet production defects of varying severity, suggesting a major role of VWF in the fine regulation of megakaryocytopoiesis. Up-regulation or loss of the interaction between VWF and GPIb may lead to a variable proportion of giant platelets with or without thrombocytopenia.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1215-1215 ◽  
Author(s):  
Sandra L Haberichter ◽  
Paula M Jacobi ◽  
Veronica H Flood ◽  
Pamela A. Christopherson ◽  
Joan Cox Gill ◽  
...  

Abstract Abstract 1215 The diagnosis of von Willebrand disease (VWD) and discrimination between its subtypes includes analysis of VWF:Ag, VWF:RCo, and VWF multimer structure. VWF multimer analysis is qualitative, and therefore a subjective assessment open to interpretation. It is often difficult to assess subtle differences in multimer structure. To address these shortcomings we have developed a quantitative method for analysis of VWF multimers. We have analyzed multimer structure for VWD patients and healthy controls recruited through the Zimmerman Program for the Molecular and Clinical Biology of von Willebrand Disease (ZPMCB-VWD). The patient population includes type 1 and type 2 VWD with well-defined genotypes and phenotypes. Multimer analysis was performed using a 0.65% LiDS-agarose gel electrophoresis system and western blotting with chemilumiscent detection using the Fujifilm LAS-3000 luminescent image analyzer. Densitometry was performed and area-under-the-curve calculated using MultiGauge analysis software. We calculated the percentage of low molecular weight (LMW) multimers defined as bands 1 – 5, mid-molecular weight (MMW) multimers (bands 6 – 10) and high molecular weight (HMW) multimers (bands >10). For healthy controls, the distribution of multimer density (mean ± standard deviation) was 25.3 ± 2.7% HMW, 56.1 ± 4.9% MMW, and 18.6 ± 3.4% LMW. Type 1 VWD (including type 1C) patients had a similar distribution of multimers (22.5 ± 7.6% HMW, 48.5 ± 6.7% MMW, 29.0 ± 7.2 % LMW), although there was a slight shift in distribution to increased LMW. For some type 1C patients with mutations including C1130Y and W1144G, we observed a small loss of HMW multimers (14.2 ± 0.8% HMW, 51.1 ± 1.4% MMW, 34.7 ± 2.3% LMW), as has been previously reported in patients with a C1130F variation. In contrast, some patients with the type 1C “Vicenza” mutation, R1205H, demonstrated increased HMW multimers (32.6 ± 1.0% HMW, 42.2 ± 4.0% MMW, 25.2 ± 3.0% LMW) as previously reported. Although the multimers in the type 1 patients are essentially normal, quantitative analysis reveals subtle abnormalities in structure. In type 2B VWD patients with mutations including V1316M, R1306W, and R1341W, a loss of HMW and MMW multimers was observed (7.1 ± 3.2% HMW, 40.4 ± 8.3% MMW, and 52.5 ± 11.4% LMW). A greater loss of HMW and MMW multimers was observed in patients with type 2A VWD with mutations including Y1349C, R1597W, G1609R, I1628T, G1631D, and G1670S (3.5 ± 6.2% HMW, 19.7 ± 20.4% MMW, and 76.9 ± 26.3% LMW). The type 2A subjects consisted of two groups: those with a virtually complete loss of HMW and MMW (0.0 ± 0% HMW, 4.0 ± 1.0% MMW, and 96.0 ± 1.0% LMW), and those with loss of HMW and decreased MMW (8.7 ± 7.5% HMW, 41.0 ± 14.7% MMW, and 50.3 ± 20.9% LMW). The latter group had a similar multimer distribution to that of type 2B VWD subjects. While most type 2A patients with mutations associated with increased susceptibility to ADAMTS13 proteolysis had severe multimer abnormalities (>95% LMW), some had only moderate abnormalities. Our study demonstrates that quantitative analysis of VWF multimer patterns more clearly distinguishes patients with various subtypes of VWD than subjective analysis. Although one of the two groups of type 2A patients is similar to the type 2B group, the other group is clearly different and is associated with specific genotypes, perhaps eliminating the need for DNA sequence analysis to make a definitive diagnosis for this group. This technique provides an objective measure of VWF structure to better characterize subtle changes observed in the subtypes of VWD and may help to determine the nature of any additional clinical laboratory testing to reach a clear-cut diagnosis. Disclosures: No relevant conflicts of interest to declare.


1998 ◽  
Vol 79 (04) ◽  
pp. 709-717 ◽  
Author(s):  
Giancarlo Castaman ◽  
Hans Vos ◽  
Rogier Bertina ◽  
Francesco Rodeghiero ◽  
Jeroen Eikenboom

SummaryThe genetic defects causing recessive type 1 and type 3 von Wille-brand disease (VWD) in eight families from the northern part of Italy have been investigated. Mutations were identified in 14 of the 16 disease-associated von Willebrand factor (VWF) genes. Only one mutation, a stop codon in exon 45, was previously reported. Several new mutations were identified: one cytosine insertion in exon 42, one guanine deletion in exon 28, one probably complete VWF gene deletion, one substitution in the 3’ splice site of intron 13, one possible gene conversion, and three candidate missense mutations. One missense mutation, the substitution of a cysteine in exon 42, was identified in all type 3 VWD patients that were previously characterized as a subgroup with significant increase of factor VIII procoagulant activity after desmopressin infusion. This paper demonstrates again that the molecular defects of quantitative VWD are diverse and located throughout the entire VWF gene.


Sign in / Sign up

Export Citation Format

Share Document