scholarly journals Results from Ongoing Phase 2 Trial of SL-401 As Consolidation Therapy in Patients with Acute Myeloid Leukemia (AML) in Remission with High Relapse Risk Including Minimal Residual Disease (MRD)

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 215-215 ◽  
Author(s):  
Andrew A. Lane ◽  
Kendra L. Sweet ◽  
Eunice S. Wang ◽  
William B. Donnellan ◽  
Roland B. Walter ◽  
...  

Abstract Background: SL-401 is a novel targeted therapy directed to the interleukin-3 receptor (CD123), a target overexpressed on acute myeloid leukemia (AML) blasts and AML cancer stem cells (CSCs), and a variety of additional hematologic malignancies. While conventional chemotherapy can induce remission in a majority of treatment-naive AML patients, relapse rates remain high. Outcomes are particularly poor when minimal residual disease (MRD), as determined by genetic and/or flow cytometric analyses, remains after therapy, with high rates of relapse and short disease-free survival. Conceivably, a therapy directed at lowering MRD burden may improve long-term outcomes. Given the association of MRD with CD123+ AML CSCs, SL-401 is being evaluated in patients with AML in first or second complete remission (CR1 or CR2, respectively) with high risk of relapse including persistent MRD. Preliminary results are reported here. Methods & Results: This multicenter, single-arm Phase 2 trial of AML patients in CR1 or CR2 with high risk of relapse includes a lead-in (stage 1) and expansion (stage 2). In stage 1, patients (MRD+ or MRD-) receive SL-401 as a daily IV infusion at 7, 9, or 12 ug/kg/day for days 1- 5 of a 28 day cycle in a 3x3 design. In stage 2, patients (MRD+ only) receive SL-401 at the dose determined in stage 1. Presence of MRD for eligibility requires either molecular (by cytogenetics, FISH, PCR, or next-generation sequencing of AML-associated mutations) or multiparameter flow cytometry (MFC) evidence of persistent abnormalities in the setting of morphologic CR. In stage 2, MRD assessment will include MFC of bone marrow aspirates conducted at a central laboratory for uniformity. Objectives include characterization of SL-401 safety with determination of the maximum tolerated or tested dose, and preliminary assessment of efficacy including changes in MRD burden and response duration. As of 7/27/16, stage 1 has been completed and stage 2 is open for enrollment. Nine patients (stage 1) received SL-401 (7 ug/kg, n=3; 9 ug/kg, n=3; 12ug/kg, n=3). The median age was 63 years (range: 51-78 years); 6 males and 3 females were treated; 8 patients were in CR1 and 1 patient was in CR2 at enrollment. The 12 ug/kg dose level was the highest tested dose with no DLTs; MTD was not reached. The most common treatment-related AEs, all grades, were thrombocytopenia (3/9; 33%) and hypoalbuminemia (3/9; 33%); the most common ≥ grade 3 treatment-related AE was thrombocytopenia (1/9; 11%); there was no DLT. Patients treated at all doses received 1+ to 5+ cycles (ongoing) of SL-401, including 3 MRD+ patients treated at 7 ug/kg (n=1) or 9 ug/kg (n=2) who received 1-5 cycles, and 1 MRD+ patient treated at 12 ug/kg who is receiving ongoing SL-401 for 4+ cycles. For all 3 patients treated at 12 ug/kg (MRD+, n=1; MRD-, n=2), 2 patients remain on SL-401 and have received 1+ and 4+ cycles (both ongoing); one other patient treated at 12 ug/kg discontinued the study because of infection unrelated to study drug. Notably, the one MRD+ patient treated at 12 ug/kg (ongoing at 4+ cycles) had marked MRD reduction as determined by MFC at the local institution; this patient is being considered for stem cell transplant (SCT). Conclusions: Stage 1 is complete without DLT or MTD, and stage 2 (expansion) is open to enroll AML patients in CR1 or CR2 who are MRD+ at the highest tested dose of 12 ug/kg. The safety profile has been similar to that observed in other SL-401 clinical studies, with no unexpected AEs. Targeting MRD with SL-401 has the potential to reduce this chemo-resistant cell population and offer improved long-term outcomes for AML patients in remission with high risk of relapse. Updated data will be presented. Clinical trial information: NCT02270463. Disclosures Lane: N-of-1: Consultancy; Stemline Therapeutics: Research Funding. Sweet:Pfizer: Speakers Bureau; Karyopharm: Honoraria, Research Funding; Incyte Corporation: Research Funding; Novartis: Consultancy, Speakers Bureau; Ariad: Consultancy, Speakers Bureau. Wang:Immunogen: Research Funding; Incyte: Speakers Bureau. Stein:Seattle Genetics: Research Funding; Amgen: Consultancy, Research Funding, Speakers Bureau; Stemline Therapeutics: Consultancy, Research Funding; Argios: Research Funding; Celgene: Research Funding. Carraway:Incyte: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees; Celgene: Research Funding, Speakers Bureau; Baxalta: Speakers Bureau. Prebet:celgene: Consultancy, Honoraria; Novartis: Consultancy, Honoraria. Chen:Stemline Therapeutics, Inc.: Employment, Equity Ownership. Lindsay:Stemline Therapeutics, Inc.: Employment, Equity Ownership. Shemesh:Stemline Therapeutics: Employment, Equity Ownership. Brooks:Stemline Therapeutics, Inc.: Employment, Equity Ownership, Patents & Royalties. Stone:Novartis: Consultancy; Juno Therapeutics: Consultancy; Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees; Abbvie: Consultancy, Membership on an entity's Board of Directors or advisory committees; Agios: Consultancy; Amgen: Consultancy; Celator: Consultancy; Karyopharm: Consultancy; Jansen: Consultancy; Pfizer: Consultancy; ONO: Consultancy; Merck: Consultancy; Roche: Consultancy; Seattle Genetics: Consultancy; Sunesis Pharmaceuticals: Consultancy; Xenetic Biosciences: Consultancy. Jabbour:ARIAD: Consultancy, Research Funding; Pfizer: Consultancy, Research Funding; Novartis: Research Funding; BMS: Consultancy. Konopleva:Cellectis: Research Funding; Calithera: Research Funding.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4245-4245 ◽  
Author(s):  
Mrinal M Patnaik ◽  
Vikas Gupta ◽  
Jason R. Gotlib ◽  
Hetty E. Carraway ◽  
Martha Wadleigh ◽  
...  

Abstract Background: SL-401 is a novel targeted therapy directed to the interleukin-3 receptor (CD123), a target overexpressed by many hematologic malignancies. SL-401 is currently being advanced through clinical trials in patients with a variety of CD123+ malignancies including blastic plasmacytoid dendritic cell neoplasm (BPDCN), acute myeloid leukemia (AML) in remission with high relapse risk, and multiple myeloma. CD123 has been shown to be expressed on myeloproliferative neoplasm (MPN) cells as well as microenvironmental immune cells, namely plasmacytoid dendritic cells (pDCs), in the bone marrows of some patients with MPN including chronic myelomonocytic leukemia (CMML). Microenvironmental pDCs have been implicated in promoting plasma cell disorders and preliminary data suggest that pDCs could play a related role in some myeloid neoplasms. Accordingly, a therapy directed at both CD123-expressing myeloid cells and neighboring CD123-expressing pDCs could provide therapeutic benefit. SL-401 is being evaluated in patients with advanced, high-risk MPN, including systemic mastocytosis (SM), myelofibrosis (MF), primary eosinophilic disorders (PED), and CMML. Preliminary results are reported here. Methods & Results: This multicenter, single-arm Phase 2 trial of patients with advanced, high risk MPN includes a lead-in (stage 1) and expansion (stage 2). In stage 1, patients receive SL-401 as a daily IV infusion at 7, 9, 12 ug/kg/day, or higher for days 1-3 of a 21-28 day cycle in a 3x3 design. In stage 2, patients receive SL-401 at the dose determined in stage 1. Study objectives include characterization of the safety profile, including determination of the maximum tolerated or tested dose, and detection of preliminary efficacy signals including evaluation of tumor response and progression free survival by standard criteria. As of 7/20/16, 6 patients with MPN (MF, n=3; CMML-2, n=2; CMML-1, n=1) received SL-401 (7 ug/kg, n=3; 9 ug/kg, n=3). The median age was 66 years (range: 42-81 years). Patients treated at all doses received 1+ to 2+ cycles (ongoing) of SL-401. The most common treatment-related adverse events (AEs) were thrombocytopenia (2/6; 33%) and fatigue (2/6; 33%); the most common ≥ Grade 3 treatment-related AEs were thrombocytopenia (2/6; 33%) and anemia (1/6; 17%); there has been no DLT. Efficacy assessments are ongoing. Patients are currently enrolling in the 12 ug/kg/day cohort. Conclusions: Initial dosing of SL-401 appears to be well-tolerated in patients with MPN and CMML, with no unexpected AEs observed. Given CD123 expression on myeloid neoplastic cells as well as microenvironmental immune cells (namely, pDCs), SL-401 may offer a novel, targeted therapeutic approach in patients with high-risk MPN and CMML of unmet medical need. Enrollment continues in stage 1 of this ongoing Phase 2 trial and updated safety and efficacy data will be presented. Clinical trial information: NCT02268253. Disclosures Gupta: Novartis: Consultancy, Honoraria, Research Funding; Incyte Corporation: Consultancy, Research Funding. Carraway:Incyte: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees; Baxalta: Speakers Bureau; Celgene: Research Funding, Speakers Bureau; Amgen: Membership on an entity's Board of Directors or advisory committees. Schiller:Incyte Corporation: Research Funding. Talpaz:Incyte Corporation: Other: Travel expense reimbursement, Research Funding; Ariad: Other: Expense reimbursement, travel accomodation expenses, Research Funding; Novartis: Research Funding; Pfizer: Consultancy, Other: travel accomodation expenses, Research Funding. McCloskey:Novartis: Speakers Bureau; Incyte: Consultancy; Ariad: Consultancy, Speakers Bureau; Amgen: Speakers Bureau. Lee:Alexion Pharmaceuticals: Consultancy; Amgen: Consultancy; Baxalta: Consultancy; Boehringer Ingelheim: Consultancy; Pfizer Inc: Consultancy. Yacoub:Alexion: Honoraria; Seattle Genetics: Consultancy, Honoraria, Speakers Bureau; Incyte: Consultancy, Honoraria, Speakers Bureau. Ali:Incyte Corporation: Research Funding. Chen:Stemline Therapeutics, Inc.: Employment, Equity Ownership. Shemesh:Stemline Therapeutics: Employment, Equity Ownership. Brooks:Stemline Therapeutics, Inc.: Employment, Equity Ownership, Patents & Royalties.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 814-814 ◽  
Author(s):  
Paul G. Richardson ◽  
Melissa Alsina ◽  
Donna M. Weber ◽  
Steven E. Coutre ◽  
Sagar Lonial ◽  
...  

Abstract Abstract 814FN2 Background: Patients with refractory multiple myeloma (MM) have limited treatment options and an extremely poor prognosis. A recent study of patients who were refractory to bortezomib and were relapsed following, refractory to or ineligible to receive an immunomodulatory drug (IMiD, thalidomide or lenalidomide) demonstrated a median event-free survival of only 5 months (Kumar S et al, Leukemia, 2011). Panobinostat is an oral pan-deacetylase inhibitor (pan-DACi) that increases acetylation of proteins involved in multiple oncogenic pathways. Preclinical studies have demonstrated synergistic anti-myeloma activity of the combination of panobinostat and bortezomib through dual inhibition of the aggresome and proteasome pathways. In a phase I study (B2207) of patients with relapsed or relapsed/refractory MM treated with panobinostat + bortezomib, clinical responses (≥ minimal response [MR]) were observed in 65% of patients, including in patients with bortezomib-refractory disease. PANORAMA 2 seeks to expand upon these preliminary results and seeks to determine whether panobinostat can sensitize resistant patients to a bortezomib-containing therapeutic regimen. Methods: PANORAMA 2 is a single arm, phase II study of panobinostat + bortezomib + dexamethasone in patients with bortezomib-refractory MM. Patients with relapsed and bortezomib-refractory MM (≥ 2 prior lines of therapy including an IMiD and who had progressed on or within 60 days of the last bortezomib-based therapy) are treated in 2 phases. Treatment phase 1 consists of 8 three-week cycles of oral panobinostat (20 mg days 1, 3, 5, 8, 10, 12) + intravenous bortezomib (1.3 mg/m2 days 1, 4, 8, 11) + oral dexamethasone (20 mg on day of and after bortezomib). Patients demonstrating clinical benefit (≥ stable disease) can proceed to treatment phase 2, consisting of 4 six-week cycles of panobinostat (20 mg TIW 2 weeks on 1 week off, and repeat) + bortezomib (1.3 mg/m2 days 1, 8, 22, 29) + dexamethasone (20 mg on day of and after bortezomib). The primary endpoint is overall response (≥ partial response [PR]), as defined by the European Group of Blood and Marrow Transplantation 1998 criteria, in the first 8 cycles of treatment phase 1. A Simon 2-stage design is used to test the primary endpoint where ≥ 4 responses (≥ PR) in 24 patients are needed in stage 1 in order to proceed to stage 2, where ≥ 9 responses in all patients (N = 47) are required to reject the null hypothesis (overall response rate ≤ 10%). Results: A sufficient number of responses ≥ PR were observed in stage 1 to allow for enrollment to continue to stage 2. As of 15 July 2011, 53 patients with bortezomib-refractory MM were enrolled. Safety and demographic data were available for 48 patients. The median age was 61 (41–88) years. Patients were heavily pretreated, with a median of 4 (2–14) prior regimens, and most patients (69%) received prior autologous stem cell transplant. Efficacy data were available for 44 patients. At the time of this analysis, 9 patients achieved ≥ PR (2 near CR [nCR] and 7 PR) as best overall response, and an additional 7 patients achieved an MR. Responders exhibited a long duration on therapy, and, to date, 8 patients have proceeded to treatment phase 2. The 2 patients with nCR have received ≥ 10 cycles of treatment (duration of therapy 190 and 253 days). Four patients who achieved PR have received ≥ 9 cycles (duration of therapy 155–225 days). Updated response data will be presented. Common adverse events (AEs) of any grade included, fatigue (52%), diarrhea (41%), thrombocytopenia (38%), nausea (38%), and anemia (21%). Gastrointestinal AEs were generally mild, with a relatively low incidence of grade 3/4 events. Grade 3/4 AEs were generally hematologic in nature, with grade 3/4 thrombocytopenia, anemia, and neutropenia reported in 38%, 12%, and 10% of patients, respectively. Other common nonhematologic grade 3/4 AEs included fatigue (10%) and pneumonia (10%). Of note, to date, a relatively low rate of peripheral neuropathy (17%) has been observed. No grade 3/4 peripheral neuropathy has been observed. Conclusions: The combination of panobinostat and bortezomib is a promising treatment for patients with bortezomib-refractory MM. These data, along with forthcoming data from the phase III study of panobinostat/placebo + bortezomib + dexamethasone in patients with relapsed MM (PANORAMA 1), will further define the potential role of panobinostat in the treatment of patients with MM. Disclosures: Richardson: Johnson & Johnson: Membership on an entity's Board of Directors or advisory committees; Millennium: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees; BMS: Membership on an entity's Board of Directors or advisory committees. Alsina:Novartis: Research Funding; Celgene: Research Funding; Ortho Biotech: Research Funding; Onyx: Research Funding; Millennium: Consultancy, Research Funding. Weber:Millennium: Honoraria; Celgene: Honoraria, Research Funding; Novartis: Research Funding. Lonial:Millennium: Consultancy; Celgene: Consultancy; Merck: Consultancy; Onyx: Consultancy; BMS: Consultancy; Novartis: Consultancy. Gasparetto:Millennium: Speakers Bureau. Warsi:Novartis: Employment, Equity Ownership. Ondovik:Novartis: Employment, Equity Ownership. Mukhopadhyay:Novartis: Employment, Equity Ownership. Snodgrass:Novartis: Employment, Equity Ownership.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1821-1821 ◽  
Author(s):  
Mrinal M. Patnaik ◽  
Haris Ali ◽  
Vikas Gupta ◽  
Gary J. Schiller ◽  
Sangmin Lee ◽  
...  

Abstract Background: Patients with chronic myelomonocytic leukemia (CMML) have historically had poor outcomes, with overall response rates (ORR) of ~16% for hypomethylating agents (HMA) in first-line registration studies with a median overall survival (OS) of ~4-7 months in the relapsed/refractory (R/R) setting. Allogeneic stem cell transplant is not an option for the majority, due to older age at diagnosis and comorbidities. Tagraxofusp (Elzonris™, SL-401) is a novel targeted therapy directed to the interleukin-3 receptor-α (CD123), a target expressed on a variety of malignancies. In CMML, CD123 is expressed on malignant progenitor cells as well as microenvironmental plasmacytoid dendritic cell (pDC) infiltrates, now shown to be part of the malignant clone (Solary, EHA 2018). We thus hypothesized that therapeutic targeting of CD123-expressing malignant cells and infiltrating clonal pDCs may offer a novel therapeutic approach. Tagraxofusp has already demonstrated high levels of clinical activity against blastic plasmacytoid dendritic cell neoplasm (BPDCN), a CD123+ malignancy derived from pDCs. Methods: This multicenter, two-stage Phase 1/2 trial is enrolling patients with relapsed/refractory (r/r) CMML or other myeloproliferative neoplasms (MPNs). Primary objectives include assessment of safety, determining optimal dose/regimen, and evaluating efficacy outcomes in patients with r/r CMML. In the Stage 1 dose escalation cohort (completed), tagraxofusp was administered as a daily IV infusion at 7, 9, and 12 mcg/kg/day, on days 1-3 every 21 days (cycle 1-4), every 28 days (cycles 5-7), and every 42 days (cycles 8+). In Stage 2 (ongoing), patients received the optimal dose determined in Stage 1 (12 mcg/kg; no MTD reached). Results: As of July 2018, 18 patients with CMML (CMML-1 [n=10]; CMML-2 [n=8]) received tagraxofusp. 13 patients were treated in second-line setting and 5 patients were treated in third-line and beyond, with HMAs being the most commonly administered prior therapy. Median age was 70 years (range 42-80); 78% patients were male. 53% (9/17) of patients had baseline splenomegaly (range: 2 to 22 cm palpable below left costal margin (BCM) by physical exam). Most common treatment-related adverse events (TRAEs) were hypoalbuminemia and nausea (each 38%), vomiting (31%), fatigue, edema, and thrombocytopenia (each 25%). Most common ≥grade 3 TRAEs were thrombocytopenia (13%) and nausea (6%). Capillary leak syndrome was reported in 3 patients (19%; all grade 2). 100% (8/8) of patients with baseline splenomegaly had a spleen response, including 75% (6/8) who had reduction in splenomegaly of 50% or more. 60% (3/5) of patients with baseline spleen size ≥5cm had reduction in splenomegaly of 50% or more. Two patients treated with tagraxofusp achieved bone marrow CRs. 43% (6/14) of evaluable patients had a treatment duration of 6 months or more, including one at 8+ and one at 14+ months. Conclusions: Tagraxofusp monotherapy resulted in significant reductions in spleen sizes along with bone marrow morphological responses in relapsed/refractory patients with CMML, with a manageable safety profile. Given CD123 expression on both neoplastic myeloid cells and pDCs infiltrates, tagraxofusp may offer a novel targeted approach for patients with CMML, an area of unmet medical need. Enrollment continues, and updated safety and efficacy data will be presented. A registrational trial in this patient population is planned. Clinical trial information: NCT02268253. Disclosures Ali: Incyte Corporation: Membership on an entity's Board of Directors or advisory committees. Gupta:Novartis: Consultancy, Honoraria, Research Funding; Incyte: Research Funding. Schiller:Celator/Jazz Pharmaceuticals: Research Funding; Pharmacyclics: Research Funding. Lee:AstraZeneca: Consultancy; Clinipace: Consultancy; Karyopharm Therapeutics Inc: Consultancy; LAM Therapeutics: Research Funding; Amgen: Consultancy. Yacoub:Cara Therapeutics: Equity Ownership; Ardelyx, INC.: Equity Ownership; Dynavax: Equity Ownership; Inycte: Honoraria, Speakers Bureau; Seattle Genetics: Honoraria, Speakers Bureau; Novartis: Honoraria, Speakers Bureau. Sardone:Stemline Therapeutics: Employment, Equity Ownership. Wysowskyj:Stemline Therapeutics: Employment, Equity Ownership. Shemesh:Stemline Therapeutics: Employment, Equity Ownership. Chen:Stemline Therapeutics: Employment, Equity Ownership. Olguin:Stemline Therapeutics: Employment, Equity Ownership. Brooks:Stemline Therapeutics: Employment, Equity Ownership. Dunn:Stemline Therapeutics: Employment, Equity Ownership. Verstovsek:Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Incyte: Consultancy; Italfarmaco: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees. Khoury:Stemline Therapeutics: Research Funding. Pemmaraju:celgene: Consultancy, Honoraria; novartis: Research Funding; Affymetrix: Research Funding; samus: Research Funding; cellectis: Research Funding; daiichi sankyo: Research Funding; stemline: Consultancy, Honoraria, Research Funding; plexxikon: Research Funding; abbvie: Research Funding; SagerStrong Foundation: Research Funding.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5696-5696 ◽  
Author(s):  
Myo Htut ◽  
Cristina Gasparetto ◽  
Jeffrey Zonder ◽  
Thomas G. Martin ◽  
Emma C. Scott ◽  
...  

Abstract Background: The bone marrow microenvironment of many multiple myeloma (MM) patients harbors high quantities of plasmacytoid dendritic cells (pDCs), which are specialized immune cells that express the interleukin-3 receptor (CD123). These pDCs have been shown to augment MM growth and contribute to drug resistance, suggesting that targeting pDCs may offer clinical benefit for MM patients. SL-401, a novel targeted therapy directed to CD123, has previously demonstrated potent preclinical in vitro and in vivo activity against MM cell lines and primary tumor samples via both a direct anti-MM effect and an indirect effect by targeting neighboring pDCs. SL-401 has also demonstrated synergy in these systems when used in combination with traditional MM therapies including pomalidomide (POM). Clinically, SL-401 has demonstrated high levels of anti-tumor activity in patients with an aggressive CD123+ malignancy of pDC origin, namely blastic plasmacytoid dendritic cell neoplasm (BPDCN). SL-401 is currently being evaluated in combination with POM and dexamethasone (DEX) in relapsed or refractory (r/r) MM patients. Preliminary results are reported here. Methods and Results: This multicenter, single arm Phase 1/2 trial of patients with r/r MM includes a lead-in (stage 1) and expansion (stage 2). In stage 1, patients receive SL-401 as a daily IV infusion at 7, 9, or 12 ug/kg/day for days 1-5 of a 28 day cycle as a single agent for the initial run-in cycle (cycle 0) and in combination with standard doses/administration of POM+DEX in cycles 1 and beyond, in a 3x3 design. In stage 2, patients receive SL-401 in combination with POM+DEX at the dose and regimen determined in stage 1. Objectives include characterization of the safety profile of SL-401 in combination with POM+DEX, including determination of the maximum tolerated or tested dose, and detection of efficacy signals including evaluation of tumor response based on International Myeloma Working Group criteria, duration of response, progression-free survival, and translational evaluation of changes in BM microenvironmental pDCs. As of 7-25-16, 2 patients with r/r MM received SL-401 at 7 ug/kg in combination with POM+DEX. The median age was 65 years (range: 63-67 years). The most common treatment-related AEs, all grades, were thrombocytopenia (2/2, both grade 1) and hypoalbuminemia (2/2, both grade 2); there has been no DLT. Rapid onset decrease in a set of myeloma-related laboratory values from pre-SL-401 treatment was observed in both patients after the first combination cycle of SL-401 and POM+DEX. In one patient, serum M-protein decreased from 2.34 to 1.19 g/dL (cycle 1), free light chain kappa decreased from 40.1 to 8.27 mg/dL (cycle 1), and free light chain kappa/lambda ratio decreased from 58.12 to 41.35 (cycle 1). In the other patient, serum M-protein decreased from 1.88 to 0.87 (cycle 1) and then was 0.96 (cycle 3) g/dL, free light chain kappa decreased from 134 to 49.4 (cycle 1) and then was 92.5 (cycle 3) mg/dL, and free light chain kappa/lambda ratio decreased from 638.1 to 76 (cycle 1) and then was 111.45 (cycle 3). Both patients remain on study receiving ongoing SL-401 at 2+ and 4+ months. Dose escalation to 9 ug/kg is planned if a third patient clears the 7 ug/kg cohort. Conclusions:This is the first clinical study to evaluate SL-401 in combination with other agents. SL-401 thus far has been well-tolerated in combination with POM+DEX in r/r MM patients, with no unexpected AEs observed. After the first cycle of SL-401 and POM+DEX combination therapy, 2 of 2 patients experienced a rapid decrease in serum M-protein and remain on SL-401 therapy. Given CD123 expression on microenvironmental immune pDCs and the potential synergy of SL-401 with certain current MM agents including POM, SL-401 may offer a novel therapeutic approach in MM. This Phase 1/2 trial continues to enroll and updated data will be presented. Clinical trial information: NCT02661022. Disclosures Zonder: Janssen: Consultancy, Honoraria; Celgene: Consultancy, Honoraria, Research Funding; Bristol Myers Squibb: Consultancy, Honoraria; Prothena: Consultancy, Honoraria; Seattle Genetics: Consultancy, Honoraria; Takeda: Consultancy, Honoraria; Pharmacyclics: Other: DSMC membership. Martin:Sanofi: Research Funding; Amgen: Research Funding. Chen:Stemline Therapeutics, Inc.: Employment, Equity Ownership. Shemesh:Stemline Therapeutics: Employment, Equity Ownership. Brooks:Stemline Therapeutics, Inc.: Employment, Equity Ownership, Patents & Royalties. Chauhan:Stemline Therapeutics: Consultancy. Anderson:Oncopep: Other: Scientific Founder; Acetylon: Other: Scientific Founder; Gilead: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Sonofi Aventis: Membership on an entity's Board of Directors or advisory committees; Onyx: Membership on an entity's Board of Directors or advisory committees. Richardson:Jazz Pharmaceuticals: Consultancy, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3326-3326 ◽  
Author(s):  
Andrew Spencer ◽  
Simon Harrison ◽  
Jacob P. Laubach ◽  
Jeffrey Zonder ◽  
Ashraf Z Badros ◽  
...  

Abstract Marizomib (MRZ) is a novel, irreversible, pan subunit proteasome inhibitor (PI) with preclinical evidence demonstrating in vitro and in vivo activity in multiple myeloma (MM). This study was designed to evaluate the safety and antimyeloma activity of pomalidomide (POM), MRZ and low dose dexamethasone (Lo-DEX) (PMD) in patients with relapsed and refractory multiple myeloma (RRMM). Thirty-eight heavily pretreated patients with RRMM were enrolled [dose-escalation cohort (n=14); recommended Phase 2 dose (RP2D) cohort (n=24)]. IV MRZ (0.3 to 0.5 mg/m2) was administered on Days (D) 1, 4, 8, 11; POM (3 or 4 mg) on D1 through 21; and Lo-DEX (5 or 10 mg) on D1, 2, 4, 5, 8, 9, 11, 12, 15, 16, 22, 23 of every 28-D cycle. Patients received a median of 4 (range 1-9) prior lines of therapy; 100% received prior lenalidomide (LEN) and bortezomib (BTZ), 34% carfilzomib (CFZ), and 50% thalidomide. 53% of patients were refractory to both LEN and BTZ and 21% were refractory to LEN, BTZ, and CFZ. There were no dose limiting toxicities during the study. The most common study treatment related ≥Grade 3 adverse events (AEs) were neutropenia (11/38 pts: 29%), pneumonia (4/38 pts 11%), anemia (4/38 pts; 11%), thrombocytopenia (4/38 pts; 11%), and febrile neutropenia (2/38 pts; 5%), with two grade 4 AEs (neutropenia related to POM and viral infection related to DEX), and one grade 5 AE (cardio-respiratory arrest from a suspected PE related to POM). Overall, MRZ was well tolerated, did not add to the incidence or severity of POM/Lo-DEX AEs and the regimen may have fewer hematological and infectious AEs compared to that observed with POM/Lo-DEX. MRZ pharmacokinetic analysis revealed that it was rapidly cleared with a short T1/2 (6.2-11mins) and a large volume of distribution (41-86L) suggesting extensive tissue distribution. Pharmacodynamic analysis demonstrated rapid and robust inhibition of chymotrypsin-like activity in both packed whole blood (PWB) and peripheral blood mononuclear cells (PMBCs), reflecting the irreversible binding nature of MRZ. Evolving inhibition of trypsin-like and caspase-like proteasome activity was also observed in PWB and PBMC with continued dosing. The overall response rate (ORR) and clinical benefit rate (CBR) for the 36 response evaluable patients was 53% (19/36) and 64% (23/36), respectively (Table 1). Subpopulation analysis demonstrated an ORR of 50% (5/10) in high risk cytogenetic patients, 56% (10/18) in LEN/BTZ refractory patients, 71% (5/7) in LEN/BTZ/CFZ refractory patients and 80% (8/10) in CFZ refractory patients. These data compare favorably against POM/Lo-Dex with a near doubling of ORR in both the total patient population and the double refractory patients. Substantial activity in high-risk patients that are triple refractory and in patients that are refractory to CFZ in prior last regimen was observed. MRZ activity in RRMM patients exposed and/or refractory to multiple PIs is likely a consequence of its unique pan proteasome subunit inhibitory actions. In conclusion, MRZ in combination with POM and Lo-DEX was well tolerated and demonstrated promising activity in heavily pretreated, high-risk RRMM patients. Table 1 Table 1. Disclosures Harrison: Janssen-Cilag: Research Funding, Speakers Bureau; Celgene: Honoraria. Zonder:Prothena: Consultancy, Honoraria; Seattle Genetics: Consultancy, Honoraria; Bristol Myers Squibb: Consultancy, Honoraria; Janssen: Consultancy, Honoraria; Celgene: Consultancy, Honoraria, Research Funding; Takeda: Consultancy, Honoraria; Pharmacyclics: Other: DSMC membership. Khot:Amgen: Honoraria; Janssen: Consultancy; Pfizer: Speakers Bureau. Anderson:C4 Therapeutics: Equity Ownership; Millennuim: Membership on an entity's Board of Directors or advisory committees; Oncoprep: Equity Ownership; C4 Therapeutics: Equity Ownership; Gilead: Membership on an entity's Board of Directors or advisory committees; Gilead: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Acetylon: Equity Ownership; Acetylon: Equity Ownership; Oncoprep: Equity Ownership; Millennuim: Membership on an entity's Board of Directors or advisory committees; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees. MacLaren:Triphase Accelerator: Employment, Equity Ownership. Reich:Triphase Accelerator: Consultancy. Trikha:Encycle Therapeutics: Consultancy, Equity Ownership; Triphase Accelerator: Employment, Equity Ownership. Richardson:Jazz Pharmaceuticals: Consultancy, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4370-4370
Author(s):  
Michael J Mason ◽  
Carolina D. Schinke ◽  
Christine Eng ◽  
Fadi Towfic ◽  
Fred Gruber ◽  
...  

Multiple myeloma (MM) is a hematological malignancy of terminally differentiated plasma cells residing within the bone marrow with 25,000-30,000 patients diagnosed in the United States each year. The disease's clinical course depends on a complex interplay chromosomal abnormalities and mutations within plasma cells and patient socio-demographic factors. Novel treatments extended the time to disease progression and overall survival for the majority of patients. However, a subset of 15%-20% of MM patients exhibit an aggressive disease course with rapid disease progression and poor overall survival regardless of treatment. Accurately predicting which patients are at high-risk is critical to designing studies with a better understanding of myeloma progression and enabling the discovery of novel therapeutics that extend the progression free period of these patients. To date, most MM risk models use patient demographic data, clinical laboratory results and cytogenetic assays to predict clinical outcome. High-risk associated cytogenetic alterations include deletion of 17p or gain of 1q as well as t(14;16), t(14;20), and most commonly t(4,14), which leads to juxtaposition of MMSET with the immunoglobulin heavy chain locus promoter, resulting in overexpression of the MMSET oncogene. While cytogenetic assays, in particular fluorescence in situ hybridization (FISH), are widely available, their risk prediction is sub-optimal and recently developed gene expression based classifiers predict more accurately rapid progression. To investigate possible improvements to models of myeloma risk, we organized the Multiple Myeloma DREAM Challenge, focusing on predicting high-risk, defined as disease progression or death prior to 18 months from diagnosis. This effort combined 4 discovery datasets providing participants with clinical, cytogenetic, demographic and gene expression data to facilitate model development while retaining 4 additional datasets, whose clinical outcome was not publicly available, in order to benchmark submitted models. This crowd-sourced effort resulted in the unbiased assessment of 171 predictive algorithms on the validation dataset (N = 823 unique patient samples). Analysis of top performing methods identified high expression of PHF19, a histone methyltransferase, as the gene most strongly associated with disease progression, showing greater predictive power than the expression level of the putative high-risk gene MMSET. We show that a simple 4 feature model composed of age, stage and the gene expression of PHF19 and MMSET is as accurate as much larger published models composed of over 50 genes combined with ISS and age. Results from this work suggest that combination of gene expression and clinical data increases accuracy of high risk models which would improve patient selection in the clinic. Disclosures Towfic: Celgene Corporation: Employment, Equity Ownership. Dalton:MILLENNIUM PHARMACEUTICALS, INC.: Honoraria. Goldschmidt:Bristol-Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; John-Hopkins University: Research Funding; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Mundipharma: Research Funding; Amgen: Consultancy, Research Funding; Chugai: Honoraria, Research Funding; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Molecular Partners: Research Funding; MSD: Research Funding; Sanofi: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Takeda: Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding; Adaptive Biotechnology: Membership on an entity's Board of Directors or advisory committees; Janssen: Consultancy, Research Funding; Dietmar-Hopp-Stiftung: Research Funding; John-Hopkins University: Research Funding. Avet-Loiseau:takeda: Consultancy, Other: travel fees, lecture fees, Research Funding; celgene: Consultancy, Other: travel fees, lecture fees, Research Funding. Ortiz:Celgene Corporation: Employment, Equity Ownership. Trotter:Celgene Corporation: Employment, Equity Ownership. Dervan:Celgene: Employment. Flynt:Celgene Corporation: Employment, Equity Ownership. Dai:M2Gen: Employment. Bassett:Celgene: Employment, Equity Ownership. Sonneveld:SkylineDx: Research Funding; Takeda: Honoraria, Research Funding; Karyopharm: Honoraria, Research Funding; Janssen: Honoraria, Research Funding; Celgene: Honoraria, Research Funding; BMS: Honoraria; Amgen: Honoraria, Research Funding. Shain:Amgen: Membership on an entity's Board of Directors or advisory committees; Bristol-Myers Squibb: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees; AbbVie: Research Funding; Takeda: Membership on an entity's Board of Directors or advisory committees; Sanofi Genzyme: Membership on an entity's Board of Directors or advisory committees; Adaptive Biotechnologies: Consultancy. Munshi:Abbvie: Consultancy; Takeda: Consultancy; Oncopep: Consultancy; Celgene: Consultancy; Adaptive: Consultancy; Amgen: Consultancy; Janssen: Consultancy. Morgan:Bristol-Myers Squibb, Celgene Corporation, Takeda: Consultancy, Honoraria; Celgene Corporation, Janssen: Research Funding; Amgen, Janssen, Takeda, Celgene Corporation: Other: Travel expenses. Walker:Celgene: Research Funding. Thakurta:Celgene: Employment, Equity Ownership.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4654-4654 ◽  
Author(s):  
Mohammad O Hussaini ◽  
Jaya Srivastava ◽  
Lik Wee Lee ◽  
Taiga Nishihori ◽  
Bijal Shah ◽  
...  

Background: Measuring residual disease during the continuum of care is fundamental to oncology practice. In particular, minimal residual disease (MRD) assessments and trends over time can help inform clinical management, including change in treatment regimen or treatment discontinuation. In patients (pts) with plasma cell and lymphoid malignancies, next-generation sequencing (NGS)-MRD is a valuable tool for assessing MRD and depth of response to treatment. MRD status is strongly prognostic of time to relapse and overall survival in multiple myeloma (MM), acute lymphoblastic leukemia (ALL), mantle cell lymphoma (MCL), and chronic lymphocytic leukemia (CLL). In this report, we summarize our 2-year experience with clinical implementation of NGS-MRD (clonoSEQ®) testing across a spectrum of plasma cell and lymphoid disease. Methods: This retrospective analysis summarizes our experience using the NGS-MRD Assay (Adaptive Biotechnologies, Seattle, WA) in plasma cell and lymphoid malignancies. The assay uses multiplex polymerase chain reaction (PCR) and NGS to identify, characterize, and monitor unique disease-associated sequence rearrangements or clonotypes of immunoglobulin (Ig) IgH (V-J), IgH (D-J), IgK, and IgL receptor gene sequences, and translocated BCL1/IgH (J) and BCL2/IgH (J) sequences in DNA extracted from high disease burden diagnostic (ID) and post-treatment (MRD) samples. PCR amplification bias control ensures a quantitative read-out of the full B-cell receptor repertoire present in the ID sample and provides direct measure of tumor burden. Our study included pts with plasma cell and lymphoid malignancies, including MM, ALL, CLL, and MCL treated at the Moffitt Cancer Center between March 2017 and March 2019 who had provided at least an ID sample for NGS-MRD testing. Results: A total of 423 ID tests using DNA from bone marrow (BM; n=407) or peripheral blood (PB; n=16) and 384 MRD tracking tests (BM, n=321; PB, n=63) were performed in 297 pts (Table). The median turnaround time from shipment arrival to assay initiation was 2.1 hours and from activation to report date was 7.1 days. For MM, ALL, MCL, and CLL, the numbers of tests ordered, calibration rates (defined as proportion of ID samples with trackable sequence[s]), and mean number of trackable sequences are shown in the Table. More ID tests were ordered than number of pts (range: 108-178%) due to multiple tests performed for each patient. Sequences analyzed for MRD tests included IgH, IgK/IgL, and T-cell receptors β and γ. The proportion of pts with detectable MRD is shown by indication in the Table. In MM, autologous stem cell transplant (autoSCT)-eligible pts or those who achieved excellent initial responses but were transplant-ineligible, were primarily considered for NGS-MRD testing as part of standard of care. NGS-MRD testing was performed prior to autoSCT and post-SCT before initiation of maintenance therapy for prognostication. More than 90% of MM cases with successful NGS-MRD results had trackable clones. Negative NGS-MRD assured excellent disease control and supported the decision to discontinue therapy in some pts with significant toxicities. In pts with ALL, treatment response after induction and/or consolidation guided decision-making for allogeneic (allo) SCT at first remission. MRD burden prior to alloSCT could potentially guide the decisions and timing on performing SCT or conditioning regimen intensity. In pts with MCL, treatment response evaluated by NGS-MRD following 6 cycles of therapy was a decision point in a randomized trial of auto-transplant + rituximab vs rituximab alone (ClinicalTrials.gov: NCT03267433). MRD is also being used to guide the duration of rituximab maintenance therapy. Updated data analysis for all indications, including CLL, is underway and will be presented at the meeting. Conclusions: The NGS-MRD Assay is a highly sensitive diagnostic tool for the observation of deeper disease response to therapy in multiple specimen types and in various lymphoid and plasma cell malignancies. NGS-MRD may assist in therapeutic decision-making or prognostication. NGS-MRD is a sensitive and powerful prognostic tool available for the majority of pts, which will help our understanding of the role of MRD in clinical management of plasma cell and lymphoid malignancies. Table Disclosures Srivastava: Adaptive Biotechnologies: Employment, Equity Ownership. Lee:Adaptive Biotechnologies: Employment, Equity Ownership. Nishihori:Novartis: Research Funding; Karyopharm: Research Funding. Shah:AstraZeneca: Honoraria; Pharmacyclics: Honoraria; Adaptive Biotechnologies: Honoraria; Spectrum/Astrotech: Honoraria; Novartis: Honoraria; Celgene/Juno: Honoraria; Kite/Gilead: Honoraria; Incyte: Research Funding; Jazz Pharmaceuticals: Research Funding. Alsina:Janssen: Speakers Bureau; Amgen: Speakers Bureau; Bristol-Myers Squibb: Research Funding. Baz:Merck: Research Funding; Sanofi: Research Funding; Bristol-Myers Squibb: Research Funding; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Karyopharm: Membership on an entity's Board of Directors or advisory committees, Research Funding; AbbVie: Research Funding. Pinilla Ibarz:Abbvie: Consultancy, Speakers Bureau; Takeda: Consultancy, Speakers Bureau; Novartis: Consultancy; Bristol-Myers Squibb: Consultancy; Sanofi: Speakers Bureau; Bayer: Speakers Bureau; TG Therapeutics: Consultancy; Teva: Consultancy; Janssen: Consultancy, Speakers Bureau. Shain:Adaptive Biotechnologies: Consultancy; Takeda: Membership on an entity's Board of Directors or advisory committees; Bristol-Myers Squibb: Membership on an entity's Board of Directors or advisory committees; AbbVie: Research Funding; Sanofi Genzyme: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1765-1765
Author(s):  
Srdan Verstovsek ◽  
Jingbo Yu ◽  
Jonathan K. Kish ◽  
Dilan Chamikara Paranagama ◽  
Jill Kaufman ◽  
...  

Abstract Introduction Myelofibrosis (MF) is a myeloproliferative neoplasm characterized by marrow fibrosis, extramedullary hematopoiesis, and leukoerythroblastosis. Clinical manifestations include severe anemia, splenomegaly, and symptoms. Median survival in patients with primary MF ranges from 2 to 11 years, depending on risk categorization. The National Comprehensive Cancer Network (NCCN) Clinical Practice Guidelines recommend the International Prognostic Scoring System (IPSS) for risk stratification at diagnosis; other systems including the Dynamic IPSS (DIPSS) and the DIPSS-Plus are also cited in the Guidelines. Treatment recommendations are risk-adapted in the NCCN Guidelines. The objective of this study is to describe how patients are risk stratified at diagnosis by community hematologists/oncologists and the impact that risk stratification has on the initiation of MF-directed treatments. Methods Medical chart reviews were conducted at community hematology/oncology practices in the OPEN network. Adult patients diagnosed with primary MF, post-PV MF, or post-ET MF between 1/2012 and 12/2016 and receiving care for at least 6 months were included. Data were collected with an electronic case report form (eCRF) with questions on clinical characteristics (symptoms, Hgb, WBC, blast %, and PLT) and risk assessment method used at diagnosis (IPSS, DIPSS, or DIPSS-Plus), treatments, and outcomes. A data-derived IPSS risk score was calculated for each patient. To assess the accuracy of the assigned risk, a data-derived risk score, corresponding to the system used by the provider, was also calculated. Patients were classified as treated at diagnosis if they received MF-directed therapy (hydroxyurea, interferon, ruxolitinib, or clinical trial) or allogeneic hematopoietic cell transplant (HCT) within 120 days of diagnosis. The methods and rates of risk stratification, accuracy of the provider-assigned risk versus data-derived risk, and treatment administered were reported. Results A total of 338 patients with MF from 28 community hematology/oncology practices were included. Mean (SD) age at diagnosis was 65.3 (11.8) years, 51.8% were male, and 68.3% had primary MF. JAK2, MPL, and CALR mutations were tested in 86.1%, 70.1%, and 60.9% of patients at diagnosis, of these, 71.1%, 23.2%, and 14.6% were positive, respectively; 18.4% (38/206) were triple negative. Median follow-up from diagnosis was 27.5 months (IQR, 18.5-42.6). Approximately 32% of patients did not have a risk classification in their medical records at diagnosis. A scoring system was used for risk assignment in 45.3% of patients; DIPSS (23.0%) and IPSS (21.3%) were most commonly used. Of all 338 patients, the corresponding data-derived risk classifications were: 5.6% low, 20.1% int-1, 18.3% int-2, and 55.9% high risk. Among those patients who were not assigned risk by their treating physicians (n=108), most had int-1 (28.7%), int-2 (17.6%), or high risk (43.5%) disease based on the data-derived IPSS risk classification. Of those who received a risk classification from their treating physician, 47.4% (n=109) received an inaccurate risk classification; among these patients, the risk was under-estimated for most (82.6%) (Table 1). Overall, 55.8% of patients (63.2% low-risk, 55.9% int-1, 52.5% int-2, 56.1% high-risk) received MF-directed pharmacological treatment or HCT within 4 months of diagnosis. Among all patients receiving MF-directed treatment, the mean time from diagnosis to treatment initiation was 5.3 months (SD=1.8), and the most common first pharmacological treatments were ruxolitinib (49.8%) and hydroxyurea (46.7%). Splenomegaly (81.3%), symptoms (72.6%), and anemia (65.6%) were top cited indications for treatment initiation. The treatment initiation rate was higher among those patients correctly risk classified compared to those incorrectly classified (64.2% versus 49.5%, p=0.032). Conclusions Nearly one-third of patients with MF did not receive a risk classification at diagnosis. When risk was assigned, almost half were incorrectly classified. Just over half of patients received treatment within four months of diagnosis. Patients who were correctly risk classified at diagnosis were more likely to start treatment promptly upon diagnosis versus those incorrectly risk classified, which may be attributable to the under-estimation of risk. Disclosures Verstovsek: Celgene: Membership on an entity's Board of Directors or advisory committees; Incyte: Consultancy; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Italfarmaco: Membership on an entity's Board of Directors or advisory committees. Yu:Incyte Corporation: Employment, Equity Ownership. Kish:Cardinal Health: Employment. Paranagama:Incyte: Employment, Equity Ownership. Kaufman:Cardinal Health: Employment. Chung:Cardinal Health: Employment. Grunwald:Genentech: Research Funding; Incyte Corporation: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Agios: Consultancy, Membership on an entity's Board of Directors or advisory committees; Janssen: Research Funding; Alexion: Consultancy, Membership on an entity's Board of Directors or advisory committees; Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees; Medtronic: Equity Ownership; Pfizer: Consultancy, Membership on an entity's Board of Directors or advisory committees; Cardinal Health: Consultancy, Membership on an entity's Board of Directors or advisory committees; Amgen: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Merck: Consultancy, Membership on an entity's Board of Directors or advisory committees; Ariad: Consultancy, Membership on an entity's Board of Directors or advisory committees; Forma Therapeutics: Research Funding. Colucci:Incyte: Employment, Equity Ownership. Mesa:UT Health San Antonio - Mays Cancer Center: Employment; NS Pharma: Research Funding; Promedior: Research Funding; Gilead: Research Funding; Incyte Corporation: Research Funding; CTI Biopharma: Research Funding; Genentech: Research Funding; Celgene: Research Funding; Novartis: Consultancy; Pfizer: Research Funding.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2592-2592
Author(s):  
Jessica Leonard ◽  
Jennifer Dunlap ◽  
Tanaya L Neff ◽  
Andrea Warrick ◽  
Fei Yang ◽  
...  

Abstract Introduction: Favorable risk acute myeloid leukemia (AML) is defined by recurrent genetic abnormalities including core binding factor rearrangements such as inv(16) and t(8,21), normal cytogenetics with isolated mutations of NPM1, or bi-allelic mutations of CEBPA. Approximately 60% of patients are cured with standard 7+3 induction and cytarabine consolidation, which is comparable to survival rates of patients who receive allogeneic stem cell transplant (SCT). However, 20-30% of patients treated with chemotherapy still relapse, and relapsed disease remains the leading cause of death in this group. Even if relapsed patients achieve CR2 with salvage chemotherapy, their survival with allogeneic SCT is reduced compared to patients transplanted in CR1. Thus, predicting which favorable risk AML patients are more likely to relapse after chemotherapy would help guide therapy and improve patient outcomes. Recent publications have proposed that additional mutations in genes such as IDH1, IDH2, or DMT3A may impact relapse risk, but reports are conflicting. In addition, studies using minimal residual disease to evaluate disease burden after induction and consolidation has also been shown to predict relapse. We have used high throughput next generation sequencing (NGS) as diagnostic panel for AML at our institution for the past 2 years. This panel looks for mutations in 42 different genes known to be associated with acute leukemias and can quantitatively evaluate genetic MRD at a sensitivity of about 0.1%. We are analyzing favorable risk AML patients in an effort to identify additional mutations that predict relapse and in the process of evaluating the ability of this panel to evaluate MRD. Methods: Clinical samples were obtained with informed consent and with the approval of our institutional IRB. A targeted NGS panel was designed using multiplexed Ion AmpliSeq Designer (Life Technologies) software to amplify and sequence 42 genes relevant to hematopoietic malignancies. 20ng of DNA from bone marrow or blood was used to generate amplicon-based libraries that were sequenced using an Ion Torrent PGM. Bioinformatics analysis was performed using the Torrent Suite v.3.2 pipeline. Open source programs and lab-developed algorithms were used for variant annotation and mutation prediction.Patients with favorable risk AML diagnosed within the past two years had sequencing data available in their medical records. For patients diagnosed >2 years ago, archival samples were obtained and DNA extracted from isolated mononuclear cells or formalin-fixed paraffin-embedded tissue according to standard protocols. Results: We identified 57 patients with favorable risk AML diagnosed at OHSU over the past five years. 48 had enough biopsy material for genetic analysis. Of the 48, 17% had t (8;21), 29% had inv(16), 46% were NPM1+, and 8% had CEBPA mutations. Seven patients received transplant in CR1 for either residual disease or physician discretion. Of the remaining 41 patients, 11 patients relapsed (26%) and 8 of the 11 were NPM1+. Of the 8 relapsed NPM1+ patients, all had additional DNMT3A R882 mutations, IDH1/2 mutations, or both. 13 NPM1+ non-relapsed patients have been evaluated by sequencing to date and only 5 of 13 in the non-relapsed group had additional mutations in DNMT3A and/or IDH1/2(P=0.0185), however only 2 of the 5 had the R882 DNMT3A mutation. No DNMT3A, IDH1 or IDH2 mutations were identified in patients with t(8;21), inv (16) or biallelic CEBPA AML. Conclusions: Although our numbers are small, the presence of the R882 DNMT3A mutation appears to increase the risk of relapse in NPM1+ patients (Figure 1). Other DNMT3A point mutations do not seem to impact the risk of relapse and should be considered separately for relapse risk. Complete analysis and evaluation of MRD is underway. Figure 1. Figure 1. Disclosures Dunlap: Oregon Health & Sciences University: Employment. Druker:Bristol-Myers Squibb: Research Funding; McGraw Hill: Patents & Royalties; Oncotide Pharmaceuticals: Research Funding; Millipore: Patents & Royalties; Leukemia & Lymphoma Society: Membership on an entity's Board of Directors or advisory committees, Research Funding; Aptose Therapeutics Inc.: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; ARIAD: Research Funding; AstraZeneca: Consultancy; Blueprint Medicines: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; CTI Biosciences, Inc.: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Cylene Pharmaceuticals: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Fred Hutchinson Cancer Research Center: Research Funding; Henry Stewart Talks: Patents & Royalties; Gilead Sciences: Consultancy, Membership on an entity's Board of Directors or advisory committees; Novartis Pharamceuticals: Research Funding; Molecular MD: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Oregon Health and Science University: Patents & Royalties; Roche TCRC, Inc.: Consultancy, Membership on an entity's Board of Directors or advisory committees; Sage Bionetworks: Research Funding.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3110-3110 ◽  
Author(s):  
Srdan Verstovsek ◽  
Vikas Gupta ◽  
Jason R. Gotlib ◽  
Ruben A. Mesa ◽  
Alessandro M. Vannucchi ◽  
...  

Abstract Background:The Janus kinase (JAK) 1/JAK2 inhibitor ruxolitinib has been evaluated for patients with MF in the phase 3 COMFORT studies. In both trials, ruxolitinib prolonged OS, reduced splenomegaly, and improved MF-related symptoms and quality of life compared with controls. Here, we report the results of an exploratory pooled analysis of OS in the COMFORT studies at 5 years of follow-up. Methods: The double-blind COMFORT-I trial and the open-label COMFORT-II trial were randomized phase 3 studies that evaluated the safety and efficacy of ruxolitinib in patients with intermediate-2 (int-2) or high-risk primary MF (PMF), post-polycythemia vera MF (PPV-MF), or post-essential thrombocythemia MF (PET-MF). The comparator was placebo in COMFORT-I and best available therapy (BAT) in COMFORT-II. The ruxolitinib starting dose was 15 or 20 mg twice daily based on baseline platelet counts (100-200 and >200 × 109/L, respectively); dose modifications were permitted for safety and efficacy. Patients were allowed to cross over to ruxolitinib from the control arm for progressive splenomegaly, defined as a ≥25% increase in spleen volume from baseline (COMFORT-I) or study nadir (COMFORT-II), or select protocol-defined progression events; crossover was mandatory following treatment unblinding in COMFORT-I. OS was a secondary endpoint in both studies and was evaluated in an intent-to-treat (ITT) analysis using a Cox proportional hazard model that estimated the treatment effect stratified by clinical trial and International Prognostic Scoring System (IPSS) risk. The crossover-corrected treatment effect was estimated using a rank-preserving structural failure time (RPSFT) method. Results: Overall, 528 patients were randomized: 301 to ruxolitinib (COMFORT-I, n=155; COMFORT-II, n=146) and 227 to placebo (n=154) or BAT (n=73). All ongoing patients in the control arms crossed over to ruxolitinib by the 3-year follow-up. Patient populations were similar between the two trials and their details were previously published. In the combined ruxolitinib group, 162 patients (53.8%) had high-risk MF and 139 (46.2%) had int-2 risk MF based on IPSS criteria. At the 5-year ITT analysis, 128 patients (42.5%) died in the ruxolitinib group compared with 117 (51.5%) in the control group. The risk of death was reduced by 30% with ruxolitinib compared with control (median OS: ruxolitinib, 63.5 mo; control, 45.9 mo; HR, 0.70; 95% CI, 0.54-0.91; P=0.0065; Figure A). After correcting for crossover using RPSFT, OS advantage was more pronounced for patients originally randomized to ruxolitinib (median OS: ruxolitinib, 63.5 mo; control, 27 mo; HR, 0.35; 95% CI, 0.23-0.59; Figure B). An analysis of OS censoring patients at the time of crossover also demonstrated that ruxolitinib prolonged survival compared with control (median OS: ruxolitinib, 63.5 mo; control, 28.3 mo; HR, 0.53; 95% CI, 0.36−0.78; P=0.0013; Figure C). Among all patients treated with ruxolitinib, those with lower-risk disease had longer survival compared with those with high-risk disease (median OS: int-2, not reached [estimated, 102 mo]; high-risk, 50 mo; HR, 2.86; 95% CI, 1.95-4.20; P<0.0001; Figure D). In a subgroup analysis, OS favored ruxolitinib compared with placebo for patients with int-2 or high-risk MF (data not shown). At 5 years, median OS appeared to favor patients with int-2 (n=58) or high-risk (n=89) PMF who were originally randomized to ruxolitinib compared with historical (Cervantes et al; J Clin Oncol 30:2981-2987) controls (int-2 PMF, not reached [estimated, 70 mo] vs 48 mo; high-risk PMF, 34 vs 27 mo); OS was longer among patients with int-2 vs high-risk PMF (P=0.0003). Subgroup analyses showed that ruxolitinib provided an OS advantage regardless of age (>65 or ≤65 y), sex, disease type (PMF, PPV-MF, PET-MF), risk status (int-2 or high), JAK2V617F mutation status, baseline spleen volume (>10 or ≤10 cm), anemia, white blood cell count (>25 or ≤25 × 109L), or platelet count (>200 or ≤200 × 109/L). Conclusion: Long-term treatment with ruxolitinib up to 5 years prolonged survival in patients with MF compared with BAT or placebo. Corrections for patients who crossed over to ruxolitinib suggested that the separation between ruxolitinib and control OS curves was primarily caused by a delay in ruxolitinib treatment. The results suggest that earlier treatment with ruxolitinib may provide a greater survival advantage for patients with MF. Disclosures Gupta: Incyte Corporation: Consultancy, Research Funding; Novartis: Consultancy, Honoraria, Research Funding. Mesa:Incyte: Research Funding; Ariad: Consultancy; Novartis: Consultancy; Celgene: Research Funding; CTI: Research Funding; Promedior: Research Funding; Galena: Consultancy; Gilead: Research Funding. Vannucchi:Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau. Kiladjian:AOP Orphan: Research Funding; Novartis: Research Funding. Cervantes:AOP Orphan: Membership on an entity's Board of Directors or advisory committees; Baxalta: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Novartis: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Sun:Incyte Corporation: Employment, Equity Ownership. Gao:Incyte Corporation: Employment, Equity Ownership. Dong:Novartis Pharmaceutical Corporation: Employment, Equity Ownership. Naim:Incyte Corporation: Employment, Equity Ownership. Gopalakrishna:Novartis Pharma AG: Employment, Equity Ownership. Harrison:Incyte Corporation: Honoraria, Speakers Bureau; Baxaltra: Consultancy, Honoraria, Speakers Bureau; Gilead: Honoraria, Speakers Bureau; CTI Biopharma: Consultancy, Honoraria, Speakers Bureau; Shire: Honoraria, Speakers Bureau; Novartis: Consultancy, Honoraria, Other: travel, accommodations, expenses, Research Funding, Speakers Bureau.


Sign in / Sign up

Export Citation Format

Share Document