Targeting EZH2 in Multiple Myeloma Could be Promising for a Subgroup of MM Patients in Combination with IMiDs

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 311-311 ◽  
Author(s):  
Laurie Herviou ◽  
Alboukadel Kassambara ◽  
Stephanie Boireau ◽  
Nicolas Robert ◽  
Guilhem Requirand ◽  
...  

Abstract Multiple Myeloma is a B cell neoplasia characterized by the accumulation of clonal plasma cells within the bone marrow.Epigenetics is characterized by a wide range of changes that are reversible and orchestrate gene expression. Recent studies have shown that epigenetic modifications play a role in multiple myeloma (MM) by silencing various cancer-related genes. We investigated the epigenetic genes differentially expressed between normal bone marrow plasma cells (BMPC ; N=5) and MM plasma cells from patients (N=206). Using SAM (Significance Analysis of Microarrays) analysis, only 12 genes significantly differentially expressed between BMPC and MM cells (ratio > 2 and FDR (false discovery rate) < 5%) were identified, including the EZH2 histone methyltransferase. EZH2, the enzymatic subunit of Polycomb Repressive Complex 2, is a histone methyltransferases able to repress gene expression by catalyzing H3K27me3 histone mark. EZH2 overexpression has been associated with numerous hematological malignancies, including MM. We thus studied EZH2 role in MM physiopathology and drug resistance. EZH2 expression was analyzed in normal bone marrow plasma cells (BMPCs; N=5), primary myeloma cells from newly diagnosed patients (MMCs; N=206) and human myeloma cell lines (HMCLs; N=40) using Affymetrix microarrays. EZH2 gene is significantly overexpressed in MMCs of patients (median 574, range 105 - 4562) compared to normal BMPCs (median = 432; range: 314 - 563) (P < 0.01). The expression is even higher in HMCLs (median 4481, range 581 - 8455) compared to primary MMCs or BMPCs (P < 0.001). High EZH2 expression is associated with a poor prognosis in 3 independent cohorts of newly diagnosed patients (Heidelberg-Montpellier cohort - N=206, UAMS-TT2 cohort - N=345 and UAMS-TT3 cohort - N =158). Furthermore, GSEA analysis of patients with high EZH2 expression highlighted a significant enrichment of genes involved in cell cycle, downregulated in mature plasma cells vs plasmablasts, and EZH2 targets. Specific EZH2 inhibition by EPZ-6438 EZH2 inhibitor induced a significant decrease of global H3K27me3 in all the HMCLs tested (P < 0.01) and inhibited MM cell growth in 5 out of the 6 HMCLs tested. The inhibitory effect of EZH2 inhibitor on MM cell growth appeared at day 6 suggesting that it is mediated by epigenetic reprogramming. To confirm that EZH2 is also required for the survival of primary MMCs from patients, primary MM cells (n = 17 patients) co-cultured with their bone marrow microenvironment and recombinant IL-6 were treated with EPZ-6438. As identified in HMCLs, EZH2 inhibition significantly reduced the median number of viable myeloma cells by 35% (P = 0.004) from a subset of patients (n=9) while the other group (n=8) was resistant. Of interest, EPZ-6438 induced a significant global H3K27me3 decrease in both groups of patient. RNA sequencing of 6 HMCLs treated with EPZ-6438 combined with H3K27me3 ChIP analyses allowed us to create an EZ GEP-based score able to predict HMCLs and primary MM cells sensitivity to EZH2 inhibitors. We also observed a synergy between EPZ-6438 and Lenalidomide, a conventional drug used for MM treatment. More interestingly, pretreatment of myeloma cells with EPZ-6438 significantly re-sensitize drug-resistant MM cells to Lenalidomide. Investigating the effect of EPZ-6438/Lenalidomide combination in MMC, we identified that IKZF1, IRF4 and MYC protein levels were significantly more inhibited by the combination treatment (65.5%, 63.9% and 14.8% respectively) compared with Lenalidomide (51.5%, 43% and 2.2%) or EPZ-6438 (45.2%, 38.7% and 6.2%) alone. Clinical trials are ongoing with EZH2 inhibitors in lymphoma and could be promising for a subgroup of MM patients in combination with IMiDs. Furthermore, the EZ score enables identification of MM patients with an adverse prognosis and who could benefit from treatment with EZH2 inhibitors. Disclosures Goldschmidt: Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Onyx: Honoraria, Membership on an entity's Board of Directors or advisory committees; Bristol-Myers Squibb: Membership on an entity's Board of Directors or advisory committees, Research Funding; Millennium: Membership on an entity's Board of Directors or advisory committees, Research Funding; Chugai: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding; Takeda: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees. Hose:EngMab: Research Funding; Takeda: Other: Travel grant; Sanofi: Research Funding.

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1649-1649
Author(s):  
Omar Nadeem ◽  
Robert A. Redd ◽  
Michael Z. Koontz ◽  
Jeffrey V. Matous ◽  
Andrew J. Yee ◽  
...  

Abstract Introduction : Daratumumab (Dara) is an anti-CD38 monoclonal antibody that is approved for use in patients with newly diagnosed and relapsed multiple myeloma (MM). We hypothesized that early therapeutic intervention with Dara in patients with high-risk MGUS (HR-MGUS) or low-risk SMM (LR-SMM) would lead to eradication of the tumor clone by achieving deep responses, resulting in prevention of progression to MM. We present results of our phase II, single arm study of Dara in HR-MGUS and LR-SMM. Methods : Patients enrolled on this study met eligibility for either HR-MGUS or LR-SMM. HR-MGUS is defined as &lt;10% bone marrow plasma cells and &lt;3g/dL M protein and at least 2 of the following 3 high-risk criteria: Abnormal serum free light chain ratio (SFLC) of &lt;0.26 or &gt;1.65, M protein ≥ 1.5g/dL or non-IgG M protein. LR-SMM is defined by one of the following 3 criteria: M protein ≥3g/dL, ≥10% bone marrow plasma cells, SFLC ratio &lt;0.125 or &gt;8. Dara (16mg/kg) was administered intravenously on a weekly schedule for cycles 1-2, every other week cycles 3-6, and monthly during cycles 7-20. The primary objective of this study was to determine the proportion of patients who achieve very good partial response (VGPR) or greater after 20 cycles of Dara. Secondary objectives included duration of response, safety, and rates of minimal residual disease (MRD)-negativity in VGPR or greater patients. Correlative studies included assessing changes in immune microenvironment, evaluating clonal heterogeneity using deep sequencing, and determining association of genomic aberrations correlating with either response to therapy or progression of disease. Results : At the time of data cutoff, a total of 42 patients were enrolled on this study from 2018 to 2020 with participation of 5 sites. The median age for all patients at enrolment was 60 years (range 38 to 76), with 22 males (52.4%) and 20 females (47.6%). Majority of patients enrolled were classified as LR-SMM (n = 37, 88.1%) and the remaining 5 patients had HR-MGUS (11.9%). 41 patients have started treatment and are included in toxicity assessment, and 40 patients have at least completed 16 cycles (range 6-20). Grade 3 toxicities were rare and only experienced in 5/41 patients including diarrhea (n =1/41; 2%), flu like symptoms (n = 1/41; 2%), headache (n=1/41; 2%), and hypertension (n=2/41; 5%). Most common toxicities of any grade included fatigue (n = 24/41, 51%), cough (n = 19/41, 46%), nasal congestion (n = 18/41, 44%), headache (n = 14/41, 34%), hypertension (n = 11/41, 27%), nausea (n = 13/41, 32%), and leukopenia (n = 13/41, 32%). No patients have discontinued therapy due to toxicity. Minimal response or better was observed in 82.9% of patients (34/41) and PR or better was observed in 51.2% of patients (21/41). This included overall CR (n = 4, 9.8%), VGPR (n = 1, 2.4%), PR (n = 16, 39.0%), MR (n = 13, 31.7%), and SD (n = 7, 17.1%). In the 40 patients who completed at least 16 cycles, response rates were as follows: MR or better 85% (34/40), PR or better 52.5% (21/40) and VGPR or better 12.5% (5/40). Median time to VGPR was 7 months. Median overall survival and progression-free survival have not been reached and no patients have progressed to overt multiple myeloma while on study. Conclusion : Dara is very well tolerated among patients with HR-MGUS and LR-SMM with minimal toxicities. Responses are seen in majority of patients. Early therapeutic intervention in this precursor patient population appears promising but longer follow up is required to define the role of single agent Dara in preventing progression to MM, therefore avoiding more toxic interventions in this low-risk patient population. Disclosures Nadeem: Karyopharm: Membership on an entity's Board of Directors or advisory committees; GSK: Membership on an entity's Board of Directors or advisory committees; Takeda: Membership on an entity's Board of Directors or advisory committees; Adaptive Biotechnologies: Membership on an entity's Board of Directors or advisory committees; BMS: Membership on an entity's Board of Directors or advisory committees. Yee: GSK: Consultancy; Oncopeptides: Consultancy; Janssen: Consultancy; Amgen: Consultancy; Sanofi: Consultancy; Bristol Myers Squibb: Consultancy; Adaptive: Consultancy; Takeda: Consultancy; Karyopharm: Consultancy. Zonder: Caelum Biosciences: Consultancy; Amgen: Consultancy; BMS: Consultancy, Research Funding; Intellia: Consultancy; Alnylam: Consultancy; Janssen: Consultancy; Takeda: Consultancy, Membership on an entity's Board of Directors or advisory committees; Regeneron: Consultancy. Rosenblatt: Attivare Therapeutics: Consultancy; Imaging Endpoints: Consultancy; Parexel: Consultancy; Karyopharm: Membership on an entity's Board of Directors or advisory committees; Bristol-Myers Squibb: Research Funding; Wolters Kluwer Health: Consultancy, Patents & Royalties. Mo: AbbVIE: Consultancy; BMS: Membership on an entity's Board of Directors or advisory committees; Eli Lilly: Consultancy; Epizyme: Consultancy; GSK: Consultancy, Membership on an entity's Board of Directors or advisory committees; Janssen: Honoraria; Karyopharm: Honoraria, Membership on an entity's Board of Directors or advisory committees; Sanofi: Honoraria, Membership on an entity's Board of Directors or advisory committees. Sperling: Adaptive: Consultancy. Richardson: Karyopharm: Consultancy, Research Funding; AstraZeneca: Consultancy; AbbVie: Consultancy; Takeda: Consultancy, Research Funding; Celgene/BMS: Consultancy, Research Funding; Janssen: Consultancy; GlaxoSmithKline: Consultancy; Protocol Intelligence: Consultancy; Secura Bio: Consultancy; Regeneron: Consultancy; Sanofi: Consultancy; Oncopeptides: Consultancy, Research Funding; Jazz Pharmaceuticals: Consultancy, Research Funding. Ghobrial: AbbVie, Adaptive, Aptitude Health, BMS, Cellectar, Curio Science, Genetch, Janssen, Janssen Central American and Caribbean, Karyopharm, Medscape, Oncopeptides, Sanofi, Takeda, The Binding Site, GNS, GSK: Consultancy.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2946-2946
Author(s):  
Carlos Fernández de Larrea ◽  
Natalia Tovar ◽  
María Rozman ◽  
Laura Rosiñol ◽  
Juan I. Aróstegui ◽  
...  

Abstract Abstract 2946 Background: The achievement of complete remission (CR) is the crucial step for a long-lasting response and prolonged survival after autologous stem cell transplantation (ASCT) in patients with multiple myeloma (MM). The European Group for Blood and Marrow Transplantation (EBMT) criteria for CR include the negativity of serum and urine immunofixation (IFE) and less than 5% of bone marrow plasma cells (BMPCs). Additionally, the International Myeloma Working Group (IMWG) has even proposed a stringent CR category, which requires to rule out the clonal nature of the BMPCs. However, few studies have addressed this issue in patients with MM and negative IFE. The aim of the present study was to determine the impact of plasma cell count in the bone marrow aspirate on the long-term outcome of patients with MM with negative IFE after ASCT. Methods: Thirty-five patients (16M/19F; median age at ASCT 55 years, range 26–68) with MM who underwent ASCT from March 1994 to December 2008, were studied. All patients had achieved a negative serum and urine IFE after high dose therapy with melphalan-based regimens. Bone marrow aspirate was performed when negative serum and urine IFE was achieved and at least three months from ASCT (median 3.24 months). The analysis was based on microscopic revision for May-Grünwald-Giemsa stained bone marrow smears performed according to standard procedures. BMPC percentage was calculated independently by two observers counting 500 bone marrow total nucleated cells in random areas from two different slides (1000 cells on each patient). Results: Median BMPCs percentage was 0.8 (range 0.1–5.8). Only two patients had more than 3% BPMCs. These results are in contrast with a recent report from the Mayo Clinic group, where 14% of the patients with MM and negative IFE had 5% or more BMPCs. In univariate Cox-model regression analysis, the number of BMPCs significantly correlated with progression-free survival (PFS)(p=0.021) with no impact on overall survival (OS)(p=0.92). This statistical significance on PFS was retained in the multivariate analysis, when baseline prognostic factors such as age, hemoglobin level, serum creatinine, β2-microglobulin and Durie-Salmon stage were added to the model (p=0.003). To establish the best predictive cut-off for progression and survival, a receptor-operator curve (ROC) analysis was developed. It showed the value of 1.5% BMPCs, with a sensitivity of 53%, specificity of 90% and area under the curve of 0.66 for predicting progression. Ten patients had more than 1.5% BMPC, and 25 equal or less than 1.5% BMPC. Median PFS was 8.5 years (CI 95% 2.6 to 14.3) and was not reached in patients with ≤1.5% BMPCs versus 3.1 years in patients with >1.5% BMPCs, with a hazard ratio probability to progression of 3.02 (CI 95% 1.18 to 9.71)(p=0.016) in the group with more than 1.5% of BMPCs (Figure 1). Median OS was not reached in patients with ≤1.5% compared with a median of 9.7 years in those with more than 1.5% BMPCs (p=0.195) (Figure 2). It is likely that serological CR with very low percentage of BMPCs (i.e. ≤1.5%) is equivalent to negative MRD assessed by MFC or molecular studies. In fact, all 8 patients in continued CR between 9 and 16 years beyond ASCT (“operational cures”) are in the group with ≤1.5% BMPCs, while all patients in the group with >1.5% BPMC have relapsed within the first 9 years from ASCT (Figure 1). Conclusion: The percentage of BMPCs in patients with MM in CR after ASCT is a strong predictor of progression. Bone marrow morphology examination is an easy, inexpensive, and non-time consuming test and it should be the first step in the estimation of the residual tumor mass in patients with MM in CR after ASCT. Disclosures: Rosiñol: Janssen-Cilag: Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees. Cibeira:Janssen-Cilag: Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees. Blade:Janssen-Cilag: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2016-2016
Author(s):  
Tomer M Mark ◽  
Peter Forsberg ◽  
Ihsane Ouansafi ◽  
Adriana C Rossi ◽  
Roger N Pearse ◽  
...  

Abstract Background: Assessment of malignant plasma cell cycling via plasma cell labeling index (PCLI) has been a validated prognostic tool in multiple myeloma (MM) but the test requires specialized technical expertise and is not widely available. Ki67 is a well-known protein marker of cellular proliferation on immunohistochemical (IHC) staining with prognostic utility in other malignancies. In an effort to develop a simpler system to provide analogous information to PCLI, we used a novel IHC co-staining technique for CD138 and Ki67 to quantify plasma cells in active cycling. We then performed a retrospective analysis of the ratio of Ki67/CD138 (Ki67%) in newly diagnosed patients with multiple myeloma receiving 1st-line therapy to correlate with clinical outcomes. Methods: A retrospective cohort study of patients (pts) with treated symptomatic MM was performed by interrogation of the clinical database at the Weill Cornell Medical College / New York Presbyterian Hospital. For inclusion in the analysis, subjects must have started first-line treatment in the period of 2005-2010, and had available bone marrow biopsies. Double-staining with Ki67 and CD138 was performed by IHC. The Ki67% was calculated as the percent of plasma cells expressing CD138 that were also found to express Ki67. Treatment outcomes were stratified and compared based on %Ki67. Response was determined by monthly serum protein electrophoresis / immunofixation (IFX) with free light chain analysis according to International Multiple Myeloma Working Group (IMWG) guidelines. Pts who were IFX negative but had no subsequent bone marrow biopsy were classified as being in unconfirmed complete remission. Results: We identified 151 patients with newly diagnosed MM and available %Ki67 expression who received first-line therapy over the period of 2005-2010. Patient were subdivided into two groups based on %Ki67: Low: %ki67 <= 5%, n = 87; and High: %Ki67 >5, n=64, to allow for comparison of treatment response and survival analysis. Specific therapeutic agent exposure history did not differ significantly between patients. Both groups had similar depth of response rates (ORR) to front-line therapy, Table 1. Median progression-free survival for the high versus low %Ki67 groups approached statistical significance at 54 months (95% CI 30.8,67.4) versus 26.9 months (95% CI 21.6,40.2), respectively (P = 0.083). At data cut-off, there were 30 deaths in the low %Ki67 group (1-yr OS 93%, 5-yr OS 71%) and 36 deaths in the high %Ki67 group (1-yr OS 94%, 5-yr OS 62%). Median overall survival (OS) was not reached for Ki67% <= 5% (95% CI 97.3,NR) vs. 78.9 months (95% CI 55.9,93.1) for Ki67% > 5%, (P = 0.0434), Figure 1. Multivariate cox regression for factors with influence on OS showed that only high-risk cytogenetics (HR 2.05, 95% CI 1.17, 2.92, P = 0.027), ISS (HR 1.835, 95% CI 1.33, 3.60, P = 0.000), and %Ki67 group status had an independent effect on survival outcome. Low (<=5%) versus high (>5%) %Ki67 influenced overall survival with a hazard ratio of 1.76 (CI 1.07,2.92, P = 0.027). Survival after ASCT was significantly longer in the low %Ki67 group with median OS not reached (95%CI, 97.3, NR) versus 86.9 months (95% CI 43.9, NR) for high %Ki67 group (P = 0.04). Discussion: The ratio of IHC double positive Ki67 and CD138 of > 5% is an independent prognostic marker for overall survival in newly diagnosed MM undergoing 1st line therapy. The %Ki67 serves as a simpler and widely available analog to PCLI that can be presently performed in most hematopathology laboratories. Table 1: First Line Treatment and Best Response (modified IMWG Criteria) Ki67% <= 5(N = 87)n (%) Ki67% > 5(N = 64)n (%) P Treatment Exposure* Lenalidomide 59 (67.8) 48 (75) 0.34 Thalidomide 30 (34.5) 14 (21.9) 0.09 Bortezomib 25 (28.7) 14 (21.9) 0.34 Alkylating agent 11 (12.6) 4 (6.3) 0.19 ASCT 27 (31) 22 (34.4) 0.66 Best Response Overall Response (>= Partial response) 77 (88.4) 57 (89.1) 0.41 Complete response 15 (17.2) 22 (34.4) Unconfirmed complete response** 14 (16.1) 8 (12.5) Very good partial response 23 (26.4) 15 (23.4) Partial response 25 (28.7) 12 (18.8) Stable disease 9 (10.3) 5 (7.8) Progressive disease 1 (1.2) 2 (3.1) * Percentages do not add to 100% due to instances of concurrent therapy use ** Unconfirmed complete response: immunofixation negative, but no confirmatory bone marrow biopsy available Figure 1 Overall Survival by %Ki67 Figure 1. Overall Survival by %Ki67 Disclosures Mark: Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Millennium: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Onyx: Research Funding, Speakers Bureau. Rossi:Celgene: Speakers Bureau. Pekle:Celgene: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Millennium: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Perry:Celgene: Speakers Bureau. Coleman:Celgene: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Millennium: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Onyx: Honoraria. Niesvizky:Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Millennium: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Onyx: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1771-1771 ◽  
Author(s):  
Julie Devin ◽  
Elena Viziteu ◽  
Laurie Herviou ◽  
Anja Seckinger ◽  
Grandmougin Camille ◽  
...  

Abstract Epigenetics is characterized by a wide range of changes that are reversible and orchestrate gene expression. Recent studies have shown that epigenetic modifications play a role in multiple myeloma (MM) by silencing various cancer-related genes. We investigated the epigenetic genes differentially expressed between normal bone marrow plasma cells (BMPC ; N=5) and MM plasma cells from patients (N=206). Using SAM (Significance Analysis of Microarrays) analysis, only 12 genes significantly differentially expressed between BMPC and MM cells (ratio > 2 and FDR (false discovery rate) < 5%) were identified, including the SUV39H1 histone methyltransferase. SUV39H1 and SUV39H2 are regulators of chromatin organization. SUV39H1-dependent trimethylation of H3K9 is essential for maintenance of both pericentromeric and telomeric heterochromatin. SUV39H1 deficiency reduced cell viability severely and is associated to heterochromatin decompaction, loss of silencing, genome instability, and a wide range of defects in cell cycle, cell growth, and meiosis. SUV39H1-mediated H3K9me has been linked to gene silencing of the tumor suppressor genes, such as p15INK4B and E-cadherin, in acute myeloid leukemia (AML). Therefore, it is highly possible that the default function of SUV39H1 is to maintain genome stability by limiting the acute activation of oncogenes while its dysregulation could cause tumor formation. We reported that high SUV39H1 expression, in MM cells, is associated with a poor prognosis in two independent cohorts of patients (Heidelberg-Montpellier cohort - N=206 and UAMS-TT2 cohort - N=345). SUV39H1 expression was downregulated by conditional shRNA expression through lentiviral delivery. SUV39H1 knock down significantly inhibits H3K9me3, growth of myeloma cells, induces apoptosis, cell cycle deregulation, reactive oxygen species production and spontaneous accumulation of DNA double strand breaks. According to these results, SUV39H1 depletion sensitizes myeloma cells to melphalan. Chaetocin is a selective inhibitor of SUV39H1. We identified that chaetocin has anti-myeloma effects at low nanomolar doses (range: 4 to 17 nM), on 11 different human myeloma cell lines, that are representative of the molecular heterogeneity of the patients, in association with H3K9 trimethylation inhibition. Furthermore, this significant toxicity of chaetocin in MM was confirmed on primary myeloma cells of 5 patients cocultured with their bone marrow microenvironment without significant toxicity on normal bone marrow cells and hematopoietic stem cells. Interestingly, the IC50 doses of chaetocin in MM were 50 fold lower compared to results published in AML, suggesting H3K9 histone methyltransferases could be a potent therapeutic target in MM. Disclosures Seckinger: EngMab AG: Research Funding; Takeda: Other: Travel grant. Goldschmidt:Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Amgen: Consultancy, Membership on an entity's Board of Directors or advisory committees; Millenium: Honoraria, Research Funding, Speakers Bureau; Onyx: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Bristol-Myers Squibb: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Takeda: Consultancy, Membership on an entity's Board of Directors or advisory committees; Janssen-Cilag: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Chugai: Honoraria, Research Funding, Speakers Bureau. Hose:EngMab AG: Research Funding; Takeda: Other: Travel grant.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 951-951 ◽  
Author(s):  
Abdel Kareem Azab ◽  
Phong Quang ◽  
Feda Azab ◽  
Costas M Pitsillides ◽  
John T Patton ◽  
...  

Abstract Abstract 951 INTRODUCTION: Multiple Myeloma (MM) is characterized by widespread disease at diagnosis with the presence of multiple lytic lesions and disseminated involvement of the bone marrow (BM), implying that the progression of MM involves a continuous re-circulation of the MM cells in the peripheral blood and re-entrance into the BM. Selectins are adhesion molecules expressed by activated endothelium of venules and leukocytes, and are involved in the primary interaction of lymphocytes with the endothelium of blood vessels. The binding of selectins serves as a biologic brake, making leukocyte quickly decelerate by rolling on endothelial cells, as the first step of extravasation. In this study, we have investigated the role of selectins and their ligands in the regulation of homing of MM Cells to the BM and the therapeutic implications of this role. METHODS AND RESULTS: We have used flow cytometry to characterize the expression of E, L and P-selectins and their ligands on MM cell lines, patient samples and on plasma cells from normal subjects. We found that all MM cell lines and patient samples showed high expression of L and P, but little of no E-selectin. While normal plasma cells showed low expression of all selectins and ligands.(give numbers) A pan-selectin inhibitor GMI-1070 (GlycoMimetics Inc., Gaithersburg, MD) inhibited the interaction of recombinant selectins with the selectin-ligands on the MM cells in a dose response manner. We have tested the role of the selectins and their ligands on the adhesion of MM cells to endothelial cells and found that MM cells adhered preferentially to endothelial cells expressing P-selectin compared to control endothelial cells and endothelial cells expressing E-selectin (p<0.05). Moreover, we found that blockade of P-selectin on endothelial cells reduced their interaction with MM cells (p<0.01), while blockade of E and L-selectin did not show any effect. Treating endothelial cells with GMI-1070 mimicked the effect of blocking P-selectin. Moreover, we found that treating endothelial cells with the chemokine stroma cell-derived factor-1-alpha (SDF1) increased their expression of P but not E or L-selectin detected by flow cytometry. Neither the blockade of each of the selectins and their ligands nor the GMI-1070 inhibited the trans-well chemotaxis of MM cells towards SDF1-alpha. However, blockade of P-selectin (p<0.001) on endothelial cells by GMI-1070 inhibited the trans-endothelial chemotaxis of MM cells towards SDF1-alpha. Both adhesion to endothelial cells and activation with recombinant P-selectin induced phosphorylation of cell adhesion related molecules including FAK, SRC, Cadherins, Cofilin, AKT and GSK3. GMI-1070 decreased the activation of cell adhesion molecules induced by both recombinant P-selectin and endothelial cells. Using in vivo flow cytometry we found that both anti P-selectin antibody and GMI-1070 prevented the extravasation of MM cells out of blood vessels into the bone marrow in mice. Moreover, we found that, in a co-culture system, endothelial cells protected MM cells from bortezomib induced apoptosis, an effect which was reversed by using GMI-1070, showing synergistic effect with bortezomib. CONCLUSION: In summary, we showed that P-selectin ligand is highly expressed in MM cells compared to normal plasma cells, and that it plays a major role in homing of MM cells to the BM, an effect which was inhibited by the pan-selectin inhibitor GMI-1070. This provides a basis for testing the effect of selectin inhibition on tumor initiation and tumor response to therapeutic agents such as bortezomib. Moreover, it provides a basis for future clinical trials for prevention of MM metastasis and increasing efficacy of existing therapies by using selectin inhibitors for the treatment of myeloma. Disclosures: Patton: GlycoMimetics, Inc: Employment. Smith:GlycoMimetics, Inc: Employment. Sarkar:GlycoMimetics, Inc: Employment. Anderson:Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Consultancy, Honoraria, Research Funding; Millennium: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Magnani:GlycoMimetics, Inc.: Employment. Ghobrial:Millennium: Honoraria, Research Funding, Speakers Bureau; Celgene: Consultancy, Honoraria, Speakers Bureau; Novartis: Honoraria, Speakers Bureau.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3116-3116 ◽  
Author(s):  
Elisabet E. Manasanch ◽  
Sundar Jagannath ◽  
Hans C. Lee ◽  
Krina K. Patel ◽  
Connor Graham ◽  
...  

Background High risk smoldering multiple myeloma (HRSMM), defined as having immunoparesis and at least 95% abnormal plasma cells/all plasma cells by advanced flow cytometry, has a risk of progression to multiple myeloma of about 75% after 5 years of diagnosis. These patient have no symptoms and current standard is to follow them without treatment. Isatuximab is an IgG1 monoclonal antibody that binds to CD38 highly expressed in myeloma cells. Isatuximab has activity as monotherapy (overall response rate (ORR) 35%), with lenalidomide/dexamethasone (ORR 56%) and pomalidomide/dexamethasone (ORR 62%) in relapsed MM. We designed a phase II study to test the efficacy of isatuximab in high risk smoldering myeloma. Our study is registered in clinicaltrials.gov as NCT02960555. Methods The primary endpoint of the study is the ORR of isatuximab 20 mg/kg IV days 1, 8, 15, 22 cycle 1; days 1, 15 cycles 2-6 and day 1 cycles 7-30 in high risk smoldering myeloma. 24 patients were accrued in the first stage (of maximum 61 patients). Secondary endpoints are PFS, OS, clinical benefit rate (CBR). Exploratory endpoints are quality of life analysis (QoL), MRD, molecular/immune characterization using DNA/RNA sequencing of myeloma cells and the microenvironment before and after treatment. Results 24 patients with HRSMM were accrued from 02/08/2017 until 12/21/2018 (Table 1). All patients are evaluable for response. Best responses: ORR (≥PR) 15(62.5%), CR MRD- flow at 10-5 1 (5%), VGPR 4 (17%), PR 10 (42%), minor response (MR) 4 (18%), stable disease 5 (21%); CBR (≥MR) 79%. Median number of cycles received were 11.5 (range 6-30). Five patients have stopped treatment (one has completed the study, one with heavy history of smoking was diagnosed with squamous cell cancer of the tongue, one could no longer travel to treatments due to relocation, two progressed to active multiple myeloma after 16 and 6 cycles of treatment, respectively). There have been no deaths. DNA/RNA seq is ongoing for biomarkers of response. There were 5 grade 3 severe treatment-related adverse events (RAE) which resolved to baseline: dyspnea -related to infusion reaction (n=2), headache (n=1), ANC decrease (n=1), urinary tract infection (n=1). Most common grade 1-2 related adverse events (n): nausea (7), vomit (5), WBC decrease (3), diarrhea (3), fatigue (6), headache (4), mucositis (4), myalgia (4) and infusion reaction (3). In patients with available QoL functional scores (n=9 at baseline and n=7 after 6 months of therapy), isatuximab was effective in reducing their anxiety and worry of progression to multiple myeloma. Isatuximab also improved general QoL scores by the end of cycle 6 of treatment which were now comparable to those in the general population (Figure 1). Conclusion Isatuximab is very well tolerated, results in high response rates in HRSMM and has the potential to change the natural history of this disease. In ongoing QoL analysis, initial data shows improvement in QoL and decreased cancer worry after isatuximab treatment. Immune-genomic analysis is ongoing and may identify patients that benefit the most from treatment. Disclosures Manasanch: celgene: Honoraria; merck: Research Funding; quest diagnostics: Research Funding; sanofi: Research Funding; BMS: Honoraria; Sanofi: Honoraria. Jagannath:Multiple Myeloma Research Foundation: Speakers Bureau; BMS: Consultancy; Celgene: Consultancy; Novartis: Consultancy; Medicom: Speakers Bureau; Merck: Consultancy. Lee:Daiichi Sankyo: Research Funding; Celgene: Consultancy, Research Funding; GlaxoSmithKline plc: Research Funding; Sanofi: Consultancy; Takeda: Consultancy, Research Funding; Amgen: Consultancy, Research Funding; Janssen: Consultancy, Research Funding. Patel:Poseida Therapeutics, Cellectis, Abbvie: Research Funding; Oncopeptides, Nektar, Precision Biosciences, BMS: Consultancy; Takeda, Celgene, Janssen: Consultancy, Research Funding. Kaufman:Janssen: Other: travel/lodging, Research Funding. Thomas:Xencor: Research Funding; BMS: Research Funding; Celgene: Research Funding; Amgen: Research Funding. Mailankody:Takeda Oncology: Research Funding; Juno: Research Funding; Celgene: Research Funding; Janssen: Research Funding; CME activity by Physician Education Resource: Honoraria. Lendvai:Janssen: Employment. Neelapu:Acerta: Research Funding; Celgene: Consultancy, Research Funding; BMS: Research Funding; Kite, a Gilead Company: Consultancy, Research Funding; Incyte: Consultancy; Merck: Consultancy, Research Funding; Allogene: Consultancy; Cellectis: Research Funding; Poseida: Research Funding; Karus: Research Funding; Pfizer: Consultancy; Unum Therapeutics: Consultancy, Research Funding; Novartis: Consultancy; Precision Biosciences: Consultancy; Cell Medica: Consultancy. Orlowski:Poseida Therapeutics, Inc.: Research Funding. Landgren:Sanofi: Membership on an entity's Board of Directors or advisory committees; Karyopharm: Membership on an entity's Board of Directors or advisory committees; Adaptive: Honoraria, Membership on an entity's Board of Directors or advisory committees; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Takeda: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Theradex: Other: IDMC; Abbvie: Membership on an entity's Board of Directors or advisory committees; Merck: Other: IDMC. OffLabel Disclosure: Isatuximab for the treatment of smoldering myeloma


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 40-42
Author(s):  
Alexander Vdovin ◽  
Michal Durech ◽  
Tomas Jelinek ◽  
Tereza Sevcikova ◽  
Juli R. Bago ◽  
...  

Introduction Monoclonal immunoglobulin (Ig) is a valuable diagnostic marker in patients with multiple myeloma (MM). An inevitable consequence of extensive Ig synthesis is overload of misfolded proteins that saturate proteasome capacity making the myeloma cells highly sensitive to proteasome inhibitors (PI). Even though PI are regularly used in the clinic, resistance often emerges leaving clinicians with limited treatment options. Therefore, there is a need for a robust marker selecting MM patients for precise PI-based combination therapy. Methods We performed a multiple database search for genes associated with Ig production and MM patients' survival. Additionally, we compared gene expression profiles (RNAseq) of primary MM cells with low and high Ig levels. Next, we validated the identified hits by shRNA knockdown and overexpression studies using myeloma cell lines, primary MM samples, and mouse models. We also applied mass spectrometry-based proteomic analysis, advanced biochemical approaches, and genetic models to reveal the Ig production pathway components and function. Finally, we performed a limited rational drug screening to select suitable compounds for combination treatment. Results RNAseq and database mining revealed a strong association between the expression of plasma cell-specific deubiquitinase OTUD1, Ig production, and MM patient survival. Suppression of OTUD1 with shRNAs in RPMI8226 and MM1.S cell lines reduced Ig levels, increased proliferation, and induced bortezomib resistance. Conversely, inducible OTUD1 overexpression enhanced Ig production, slowed down proliferation, and increased bortezomib sensitivity. In the xenografts mouse models cells with high OTUD1 levels synthesized more Ig and developed smaller tumors. Intriguingly, the transcription of Ig genes was not influenced by OTUD1 expression suggesting that OTUD1 functions as a posttranslational regulator of Ig assembly. To gain mechanistic insight into the Ig pathway regulation by OTUD1, we utilized the biotin proximity labeling method (Turbo-ID) combined with mass spectrometry analysis. We found several novel OTUD1 interaction partners including the E3 ubiquitin ligase KEAP1 and endoplasmic reticulum (ER) redox protein PRDX4. We demonstrated that KEAP1 acts upstream of OTUD1 by regulating OTUD1 ubiquitination and stability. Consistently, survival analysis revealed that MM patients with high KEAP1 expression (low OTUD1) had a worse prognosis than patients with low levels of KEAP1 (high OTUD1). PRDX4 regulates disulfite bonds formation during protein folding and is uniquely expressed in fully differentiated plasma cells. Here, we revealed that OTUD1 specifically deubiquitinates and thus stabilizes PRDX4 inside the ER. Additionally, we performed rescue genetic experiments and found a direct link between the OTUD1-PRDX4 axis and Ig production. The increase in OTUD1 expression (high Ig) led to a dramatic increase in the total pool of ubiquitinated proteins formed mainly by misfolded Ig, while OTUD1 knockdown (low Ig) had an opposite effect. We showed that changes in the level of ubiquitinated proteins correlated with PI sensitivity. Of note, OTUD1 did not affect the expression of proteasome subunits, either their enzymatic activity. Our mechanistic findings prompted us to propose a novel therapeutic opportunity in PI resistant MM patients. We hypothesize that the resensitization of Ig low MM cells to PI could be achieved by enhancing ER stress leading to an increase in misfolded proteins that would ultimately saturate proteasomes. Indeed, from clinically relevant drugs tested so far, the HSP-90 inhibitor (17-AAG) reverted the PI resistance in OTUD1 low (Ig low) myeloma cells. An in vivo validation of the combination treatment and testing of Ig involvement in PI sensitivity and proliferation of MM cells is ongoing. Conclusion Here we present the discovery of a novel regulatory mechanism for Ig production in plasma cells. Based on our results and previously published studies, we conclude that Ig synthesis is a clinically significant factor related to PI response and MM patient survival. Our findings suggest that the intracellular Ig level is an important biomarker to identify patients benefiting the most from PI-based therapies. Finally, we provide a rational solution for selective, combination therapy to overcome PI resistance in MM patients with a decreased capacity to synthesize Ig. Figure Disclosures Hajek: Janssen: Consultancy, Honoraria, Research Funding; Amgen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Consultancy, Honoraria, Research Funding; BMS: Consultancy, Honoraria, Research Funding; Novartis: Consultancy, Research Funding; Takeda: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Abbvie: Consultancy, Honoraria; PharmaMar: Consultancy, Honoraria; Oncopeptides: Consultancy.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 20-22
Author(s):  
Sabrina L. Browning ◽  
Terri L. Parker ◽  
Noffar Bar ◽  
Tara Anderson ◽  
Madhav V. Dhodapkar ◽  
...  

Background: Multiple myeloma (MM) is a heterogeneous plasma cell neoplasm with significant genetic and biologic complexity. Limitations remain in our standard assessment of response to therapy, as random bone marrow biopsy may misrepresent the varied histologic and molecular features of this multifocal disease. Advanced imaging is crucial in evaluating bone and extramedullary (EM) lesions. We aim to refine global response assessment in MM, with incorporation of advanced imaging-guided lesion biopsies, to improve knowledge of residual tumor burden critical to patient outcomes. Methods: Patients ≥18 years of age with standard or high risk newly diagnosed clinical MM were eligible to participate in this study. Advanced imaging with positron emission tomography/computed tomography (PET/CT) or whole body magnetic resonance imaging (WB-MRI) based on access, standard bone marrow biopsy and aspiration, and targeted lesion biopsy occurred at enrollment and after 4 cycles of carfilzomib, lenalidomide, and dexamethasone (CRd). Carfilzomib was administered intravenously at a dose of 36 mg/m2 twice weekly, lenalidomide orally 25 mg daily days 1-21, and dexamethasone orally 40 mg weekly, with dose modifications as needed. Conventional clinical response, using IMWG Response Criteria (Kumar S et al, 2016), was assessed after each cycle of treatment. Results: An interim analysis was completed on 17 patients enrolled between June 2018 and March 2020, with 14 evaluable for global treatment response. Median age was 61 years (range, 43-76 years) and 82.4% of patients were male. 76.5% had Revised International Staging System (R-ISS) stage II or III disease and 58.8% had EM disease arising from bone (EM-B, 41.2%) or independently in soft tissue (EM-S, 17.6%). 70.6% of patients had at least one high risk feature at the time of diagnosis (Table 1). Of the 16 patients with conventional skeletal survey (CSS) at study entry, 68.8% had at least 1 myeloma-defining lesion on advanced imaging that was missed on CSS. Four patients had adequate sample from initial lesion biopsy for cytogenetics and fluorescence in situ hybridization (FISH), 3 of whom demonstrated discordant FISH results when compared to standard bone marrow samples. Clinical response rates after 4 cycles of CRd were notable with 85.7% of patients achieving ≥ very good partial response (VGPR) and 3 patients with stringent complete response (sCR) and minimal residual disease (MRD) negativity by flow cytometry with a sensitivity of 10-5. However, of the 12 patients with ≥ VGPR by conventional response assessment, 9 had residual disease on advanced imaging with PET/CT (2 patients), WB-MRI (6 patients), or total spine MRI (1 patient) (Figure 1). Repeat myeloma lesion biopsy was limited to 6 patients with targetable lesions after induction therapy, with diagnostic yield impacted by the presence of sclerotic tissue and insufficient marrow elements in some of the lesions sampled (Table 2). 85.7% of patients continued CRd or proceeded to high dose therapy and autologous stem cell rescue, with no patients transitioning directly to maintenance treatment after 4 cycles of CRd. At a median follow-up of 8 months, 14.3% (2/14) of patients have had progression of disease. Both individuals had residual lesions on imaging at end of treatment, despite one with flow MRD-negative sCR and normal FISH by standard assessment. There were no grade 4 serious adverse events or deaths. Conclusions: In our cohort of high risk newly diagnosed MM, CRd induction was potent and well-tolerated. While deep clinical responses were observed by conventional clinical assessment, two thirds of patients had persistent abnormalities on advanced imaging with concern that these sites could give rise to progressive MM. Our patients demonstrated spatial heterogeneity, highlighting the limitations of standard bone marrow evaluation. Use of advanced imaging and targeted lesion biopsies in response assessment enhances our understanding of tumor growth pattern in MM and consideration could be given to integrating these into clinical care when available. Current limitations of this study include a small number of patients with lesions amendable to repeat biopsy and their incomplete diagnostic yield. Ongoing investigation includes whole exome sequencing of paired bone marrow and focal lesion biopsies and application of a WB-MRI lesion scoring system to further augment this novel response assessment method. Disclosures Anderson: Celgene: Speakers Bureau; Janssen: Speakers Bureau; Takeda: Speakers Bureau; Amgen: Speakers Bureau. Dhodapkar:Roche/Genentech: Membership on an entity's Board of Directors or advisory committees, Other: Advisory Board; Janssen: Membership on an entity's Board of Directors or advisory committees, Other: Advisory Board; Lava Therapeutics: Membership on an entity's Board of Directors or advisory committees, Other: Advisory Board; Amgen: Membership on an entity's Board of Directors or advisory committees, Other: Advisory Board; Celgene/BMS: Membership on an entity's Board of Directors or advisory committees, Other: Advisory Board; Kite: Membership on an entity's Board of Directors or advisory committees, Other: Advisory Board. Prebet:Jazz Pharmaceuticals: Consultancy, Research Funding. Xu:Seattle Genetics: Membership on an entity's Board of Directors or advisory committees. Haims:Pfizer: Consultancy. Neparidze:Sanofi: Membership on an entity's Board of Directors or advisory committees, Other: Advisory board; Eidos Therapeutics: Membership on an entity's Board of Directors or advisory committees, Other: Diagnostic committee member ; GlaxoSmithKline: Research Funding; Janssen: Research Funding. OffLabel Disclosure: Carfilzomib has been shown to have significant anti-myeloma activity in relapsed myeloma. Phase I/II studies as well as one phase III study also showed favorable outcomes with carfilzomib-based regimens in newly diagnosed multiple myeloma, including in patients with high risk disease. We utilized an induction regimen with carfilzomib, lenalidomide, and dexamethasone given that patients enrolled in this study were required to have bone or soft tissue disease on advanced imaging, indicating a likely high risk feature with potentially aggressive disease biology. It has been shown that the combination of carfilzomib, lenalidomide, and dexamethasone is a safe regimen for patients with multiple myeloma. This combination is approved in the relapsed/refractory setting and included in NCCN guidelines for newly diagnosed multiple myeloma.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3091-3091
Author(s):  
Julia Frede ◽  
Praveen Anand ◽  
Andrew J. Yee ◽  
Tushara Vijaykumar ◽  
Monica S. Nair ◽  
...  

Introduction: Despite recent advances in the treatment of multiple myeloma, responses may be short-lived and therapeutic resistance develops almost invariably. Non-genetic cellular plasticity and dedifferentiation have recently emerged as a basis for therapeutic resistance in cancer as cells acquire transcriptional states which no longer depend on the drug target. Therefore, a better understanding of plasticity and adaptive state changes in myeloma cells is critical to develop effective therapeutic approaches that can overcome drug resistance. Here we show that cellular plasticity, though frequently invoked as a basis for therapeutic resistance in cancer, can also lead to new therapeutic opportunities. Methods: To define transcriptional states in myeloma at a single cell level, we performed fluorescence activated cell sorting and full-length single-cell RNA sequencing. We assayed a total 6000 CD38+CD138+ plasma cells and CD45+ immune cells from the bone marrow of 8 patients with relapsed and refractory multiple myeloma (RRMM) before and after immuno-modulatory treatment on a clinical trial with elotuzumab, pomalidomide, bortezomib and dexamethasone (Elo-PVD; NCT02718833) and 2 healthy donors. Surface expression of selected markers was validated by flow cytometry. Results: Assessing pre-treatment samples, we discovered that the transcriptional states of single myeloma cells are highly distinct between individual patients, despite the presence of the same established genomic classifiers, such as t(11;14). Furthermore, distinct transcriptional states co-exist within individual patients, indicating there is substantial inter- and intra-individual heterogeneity. Transcriptional states diverge from normal plasma cells towards more immature cells, of the B lymphoid lineage, suggesting a substantial cellular plasticity. Notably, we detected co-expression of myeloid and lymphoid developmental programs in the same single cells. Interestingly, these altered differentiation states were associated with up-regulation of potential immunotherapeutic targets, such as CD20, CD19, and CD33, indicating that this plasticity may result in novel therapeutic vulnerabilities. To define gene-regulatory relationships, we identified a shared core regulatory network present in malignant and normal plasma cells with the active transcription factors XBP1, ATF4, and CREB3, suggesting that myeloma cells retain lineage-specific regulons. However, we further identified patient-specific regulons not detected in any of the mature immune cell populations assayed, such as TEAD4, ELF3 and SNAI1, illustrating an aberrant and promiscuous activation of transcriptional regulators in myeloma cells. Consistent with this finding, we observed an increased number of expressed genes in myeloma cells compared to normal plasma cells as well as an increase in single cell transcriptional entropy, measures that have been linked to cell potency in normal development and cancer. Comparison of pre- and post-treatment samples interestingly revealed a further increase in transcriptional diversity and signatures associated with stemness and developmental potential following treatment. Conclusions: In conclusion, we find that higher transcriptional diversity and activation of alternate gene regulatory programs facilitate the emergence of altered transcriptional states. Interestingly, these altered states are associated with up-regulation of putative immune-therapeutic targets in myeloma cells, thus providing novel therapeutic vulnerabilities. Disclosures Lipe: amgen: Research Funding; Celgene: Consultancy; amgen: Consultancy. O'Donnell:Celgene: Consultancy; Takeda: Consultancy; BMS: Consultancy; Sanofi: Consultancy; Amgen: Consultancy. Munshi:Celgene: Consultancy; Amgen: Consultancy; Oncopep: Consultancy; Janssen: Consultancy; Abbvie: Consultancy; Celgene: Consultancy; Janssen: Consultancy; Takeda: Consultancy; Adaptive: Consultancy; Oncopep: Consultancy; Takeda: Consultancy. Richardson:Karyopharm: Membership on an entity's Board of Directors or advisory committees; Takeda: Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol-Myers Squibb: Research Funding; Amgen: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Oncopeptides: Membership on an entity's Board of Directors or advisory committees, Research Funding; Sanofi: Membership on an entity's Board of Directors or advisory committees. Anderson:Gilead Sciences: Other: Advisory Board; Janssen: Other: Advisory Board; Sanofi-Aventis: Other: Advisory Board; OncoPep: Other: Scientific founder ; C4 Therapeutics: Other: Scientific founder . Lohr:T2 Biosystems: Honoraria; Celgene: Research Funding. OffLabel Disclosure: Samples for ancillary research were obtained in the context of a phase II clinical trial evaluating Elotuzumab, pomalidomide, bortezomib, dexamethasone The combination of elo-PVD is off label.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 73-73 ◽  
Author(s):  
Torben Plesner ◽  
Henk Lokhorst ◽  
Peter Gimsing ◽  
Hareth Nahi ◽  
Steen Lisby ◽  
...  

Abstract Abstract 73 Background Daratumumab (HuMax™-CD38) is a human CD38 monoclonal antibody with broad-spectrum killing activity and effectively mediates killing of CD38-expressing tumor cells via antibody-dependent cell-mediated cytotoxicity, complement-dependent cytotoxicity and apoptosis. In this present ongoing first-in-human (FIH) dose-escalation study of daratumumab in pts with multiple myeloma (MM) (ClinicalTrials.gov CT00574288), the safety profile has been acceptable and preliminary efficacy data have already been published1,2. Here we present data from the dose escalation part of the study. Objectives The primary objective was to establish the safety profile. The secondary objectives were to establish the maximum tolerated dose (MTD), assessment of efficacy, pharmacokinetics (PK) and immunogenicity – Anti-Drug-Antibodies (ADA). Methods Pts ≥18 years and diagnosed with MM requiring systemic therapy and considered relapsed or refractory to at least two different prior lines of therapy and ineligible for ASCT were enrolled. The study was based on a 3+3 dose-escalation design. Daratumumab was administered over a 9-week period consisting of 2 pre- and 7 full doses. The doses ranged from 0.005 mg/kg to 24 mg/kg. Prednisolone/methylprednisolone was administered to prevent infusion related events (IREs) in a maximum dose equivalent to 27mg dexamethasone per week. Daratumumab plasma concentrations were measured by ELISA. Evaluation of efficacy data was according to IMGW guidelines3. A bridging ElectroChemiLuminesence (ELC) method on the MesoScale Discovery platform was used to detect ADA responses in pts to daratumumab. The results presented are based on data analyzed before database lock. Results Data from 32 pts including 2 pts in the ongoing 24mg/kg cohort were collected until now. Median age was 61 years (42–76). The median number of prior treatment lines was: 6.3 (2–12). PK analysis showed plasma peak levels as expected, but relatively rapid clearance at low dose levels. The clearance rate decreased with increasing dose suggesting an effect of target binding on the PK. At doses ≥ 4 mg/kg, daratumumab trough levels were consistent ≥ 10 μg/ml and observed PK values approximately estimated PK values (Figure 1). Preliminary efficacy evaluation in this abstract was based on best response to paraprotein as reflected by change in serum or urine M-component or free light chains (FLC) according to IMGW guidelines3. For groups ≤ 2 mg/kg, 4/20 pts achieved a reduction in paraprotein (12%, 14%, 19%, 55%); in the 4 mg/kg group, 3/3 pts had a reduction in paraprotein of 49%, 100%, and 64%, respectively. In the 8 mg/kg group, 2/3 pts had a reduction in paraprotein of 39%, and 100%, respectively whereas in the 16mg/kg cohort, 2/3 pts had a reduction in paraprotein of 50%, and 33%, respectively. A reduction of 80%-100% in the bone marrow plasma cells was seen in the 4 mg/kg group and onwards. No detectable ADA responses were found in the pts. No DLTs were reported in the 2, 4, 8 and 16mg/kg cohorts. The most common adverse events reported were infusion related events. The observed IREs occurred predominantly during the initial infusions, 10% of pts reported IREs during the pre-dose, 30% during the first full infusion with a gradual decrease in frequency after the 2nd full infusion. No dose relationship was observed. Most IREs had onset within 3–4 hours of infusion, two of the IREs were grade 3 and the remaining grade 1–2. Four IREs were SAEs; however, since implementation of steroids before all infusions and dilution of trial drug, no serious IREs were reported in the 4, 8 and 16mg/kg cohorts. Conclusion In pts with relapsed or refractory MM treated with daratumumab, a marked reduction in paraprotein and bone marrow plasma cells was observed in the higher dose cohorts. This has not previously been demonstrated with a single-agent monoclonal antibody in MM. No unexpected buildup of daratumumab was seen and in pts treated with 4mg/kg and upwards the observed plasma concentrations were close to those predicted. No ADA responses were detected. The MTD was not yet established and the toxicity was manageable. All data available from part 1 will be presented at the meeting. Disclosures: Plesner: Genmab: Consultancy; Janssen Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees; Celgene Corporation: Membership on an entity's Board of Directors or advisory committees. Lokhorst:Genmab: Consultancy. Lisby:Genmab: Employment. Richardson:Millenium Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees; Celgene Corporation: Membership on an entity's Board of Directors or advisory committees; Novartis Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees; Johnson & Johnson: Membership on an entity's Board of Directors or advisory committees; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document