scholarly journals Defining the Differentiation States of Multiple Myeloma at Single Cell Resolution Reveals Opportunities for Immunotherapy

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3091-3091
Author(s):  
Julia Frede ◽  
Praveen Anand ◽  
Andrew J. Yee ◽  
Tushara Vijaykumar ◽  
Monica S. Nair ◽  
...  

Introduction: Despite recent advances in the treatment of multiple myeloma, responses may be short-lived and therapeutic resistance develops almost invariably. Non-genetic cellular plasticity and dedifferentiation have recently emerged as a basis for therapeutic resistance in cancer as cells acquire transcriptional states which no longer depend on the drug target. Therefore, a better understanding of plasticity and adaptive state changes in myeloma cells is critical to develop effective therapeutic approaches that can overcome drug resistance. Here we show that cellular plasticity, though frequently invoked as a basis for therapeutic resistance in cancer, can also lead to new therapeutic opportunities. Methods: To define transcriptional states in myeloma at a single cell level, we performed fluorescence activated cell sorting and full-length single-cell RNA sequencing. We assayed a total 6000 CD38+CD138+ plasma cells and CD45+ immune cells from the bone marrow of 8 patients with relapsed and refractory multiple myeloma (RRMM) before and after immuno-modulatory treatment on a clinical trial with elotuzumab, pomalidomide, bortezomib and dexamethasone (Elo-PVD; NCT02718833) and 2 healthy donors. Surface expression of selected markers was validated by flow cytometry. Results: Assessing pre-treatment samples, we discovered that the transcriptional states of single myeloma cells are highly distinct between individual patients, despite the presence of the same established genomic classifiers, such as t(11;14). Furthermore, distinct transcriptional states co-exist within individual patients, indicating there is substantial inter- and intra-individual heterogeneity. Transcriptional states diverge from normal plasma cells towards more immature cells, of the B lymphoid lineage, suggesting a substantial cellular plasticity. Notably, we detected co-expression of myeloid and lymphoid developmental programs in the same single cells. Interestingly, these altered differentiation states were associated with up-regulation of potential immunotherapeutic targets, such as CD20, CD19, and CD33, indicating that this plasticity may result in novel therapeutic vulnerabilities. To define gene-regulatory relationships, we identified a shared core regulatory network present in malignant and normal plasma cells with the active transcription factors XBP1, ATF4, and CREB3, suggesting that myeloma cells retain lineage-specific regulons. However, we further identified patient-specific regulons not detected in any of the mature immune cell populations assayed, such as TEAD4, ELF3 and SNAI1, illustrating an aberrant and promiscuous activation of transcriptional regulators in myeloma cells. Consistent with this finding, we observed an increased number of expressed genes in myeloma cells compared to normal plasma cells as well as an increase in single cell transcriptional entropy, measures that have been linked to cell potency in normal development and cancer. Comparison of pre- and post-treatment samples interestingly revealed a further increase in transcriptional diversity and signatures associated with stemness and developmental potential following treatment. Conclusions: In conclusion, we find that higher transcriptional diversity and activation of alternate gene regulatory programs facilitate the emergence of altered transcriptional states. Interestingly, these altered states are associated with up-regulation of putative immune-therapeutic targets in myeloma cells, thus providing novel therapeutic vulnerabilities. Disclosures Lipe: amgen: Research Funding; Celgene: Consultancy; amgen: Consultancy. O'Donnell:Celgene: Consultancy; Takeda: Consultancy; BMS: Consultancy; Sanofi: Consultancy; Amgen: Consultancy. Munshi:Celgene: Consultancy; Amgen: Consultancy; Oncopep: Consultancy; Janssen: Consultancy; Abbvie: Consultancy; Celgene: Consultancy; Janssen: Consultancy; Takeda: Consultancy; Adaptive: Consultancy; Oncopep: Consultancy; Takeda: Consultancy. Richardson:Karyopharm: Membership on an entity's Board of Directors or advisory committees; Takeda: Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol-Myers Squibb: Research Funding; Amgen: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Oncopeptides: Membership on an entity's Board of Directors or advisory committees, Research Funding; Sanofi: Membership on an entity's Board of Directors or advisory committees. Anderson:Gilead Sciences: Other: Advisory Board; Janssen: Other: Advisory Board; Sanofi-Aventis: Other: Advisory Board; OncoPep: Other: Scientific founder ; C4 Therapeutics: Other: Scientific founder . Lohr:T2 Biosystems: Honoraria; Celgene: Research Funding. OffLabel Disclosure: Samples for ancillary research were obtained in the context of a phase II clinical trial evaluating Elotuzumab, pomalidomide, bortezomib, dexamethasone The combination of elo-PVD is off label.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 311-311 ◽  
Author(s):  
Laurie Herviou ◽  
Alboukadel Kassambara ◽  
Stephanie Boireau ◽  
Nicolas Robert ◽  
Guilhem Requirand ◽  
...  

Abstract Multiple Myeloma is a B cell neoplasia characterized by the accumulation of clonal plasma cells within the bone marrow.Epigenetics is characterized by a wide range of changes that are reversible and orchestrate gene expression. Recent studies have shown that epigenetic modifications play a role in multiple myeloma (MM) by silencing various cancer-related genes. We investigated the epigenetic genes differentially expressed between normal bone marrow plasma cells (BMPC ; N=5) and MM plasma cells from patients (N=206). Using SAM (Significance Analysis of Microarrays) analysis, only 12 genes significantly differentially expressed between BMPC and MM cells (ratio > 2 and FDR (false discovery rate) < 5%) were identified, including the EZH2 histone methyltransferase. EZH2, the enzymatic subunit of Polycomb Repressive Complex 2, is a histone methyltransferases able to repress gene expression by catalyzing H3K27me3 histone mark. EZH2 overexpression has been associated with numerous hematological malignancies, including MM. We thus studied EZH2 role in MM physiopathology and drug resistance. EZH2 expression was analyzed in normal bone marrow plasma cells (BMPCs; N=5), primary myeloma cells from newly diagnosed patients (MMCs; N=206) and human myeloma cell lines (HMCLs; N=40) using Affymetrix microarrays. EZH2 gene is significantly overexpressed in MMCs of patients (median 574, range 105 - 4562) compared to normal BMPCs (median = 432; range: 314 - 563) (P < 0.01). The expression is even higher in HMCLs (median 4481, range 581 - 8455) compared to primary MMCs or BMPCs (P < 0.001). High EZH2 expression is associated with a poor prognosis in 3 independent cohorts of newly diagnosed patients (Heidelberg-Montpellier cohort - N=206, UAMS-TT2 cohort - N=345 and UAMS-TT3 cohort - N =158). Furthermore, GSEA analysis of patients with high EZH2 expression highlighted a significant enrichment of genes involved in cell cycle, downregulated in mature plasma cells vs plasmablasts, and EZH2 targets. Specific EZH2 inhibition by EPZ-6438 EZH2 inhibitor induced a significant decrease of global H3K27me3 in all the HMCLs tested (P < 0.01) and inhibited MM cell growth in 5 out of the 6 HMCLs tested. The inhibitory effect of EZH2 inhibitor on MM cell growth appeared at day 6 suggesting that it is mediated by epigenetic reprogramming. To confirm that EZH2 is also required for the survival of primary MMCs from patients, primary MM cells (n = 17 patients) co-cultured with their bone marrow microenvironment and recombinant IL-6 were treated with EPZ-6438. As identified in HMCLs, EZH2 inhibition significantly reduced the median number of viable myeloma cells by 35% (P = 0.004) from a subset of patients (n=9) while the other group (n=8) was resistant. Of interest, EPZ-6438 induced a significant global H3K27me3 decrease in both groups of patient. RNA sequencing of 6 HMCLs treated with EPZ-6438 combined with H3K27me3 ChIP analyses allowed us to create an EZ GEP-based score able to predict HMCLs and primary MM cells sensitivity to EZH2 inhibitors. We also observed a synergy between EPZ-6438 and Lenalidomide, a conventional drug used for MM treatment. More interestingly, pretreatment of myeloma cells with EPZ-6438 significantly re-sensitize drug-resistant MM cells to Lenalidomide. Investigating the effect of EPZ-6438/Lenalidomide combination in MMC, we identified that IKZF1, IRF4 and MYC protein levels were significantly more inhibited by the combination treatment (65.5%, 63.9% and 14.8% respectively) compared with Lenalidomide (51.5%, 43% and 2.2%) or EPZ-6438 (45.2%, 38.7% and 6.2%) alone. Clinical trials are ongoing with EZH2 inhibitors in lymphoma and could be promising for a subgroup of MM patients in combination with IMiDs. Furthermore, the EZ score enables identification of MM patients with an adverse prognosis and who could benefit from treatment with EZH2 inhibitors. Disclosures Goldschmidt: Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Onyx: Honoraria, Membership on an entity's Board of Directors or advisory committees; Bristol-Myers Squibb: Membership on an entity's Board of Directors or advisory committees, Research Funding; Millennium: Membership on an entity's Board of Directors or advisory committees, Research Funding; Chugai: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding; Takeda: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees. Hose:EngMab: Research Funding; Takeda: Other: Travel grant; Sanofi: Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3116-3116 ◽  
Author(s):  
Elisabet E. Manasanch ◽  
Sundar Jagannath ◽  
Hans C. Lee ◽  
Krina K. Patel ◽  
Connor Graham ◽  
...  

Background High risk smoldering multiple myeloma (HRSMM), defined as having immunoparesis and at least 95% abnormal plasma cells/all plasma cells by advanced flow cytometry, has a risk of progression to multiple myeloma of about 75% after 5 years of diagnosis. These patient have no symptoms and current standard is to follow them without treatment. Isatuximab is an IgG1 monoclonal antibody that binds to CD38 highly expressed in myeloma cells. Isatuximab has activity as monotherapy (overall response rate (ORR) 35%), with lenalidomide/dexamethasone (ORR 56%) and pomalidomide/dexamethasone (ORR 62%) in relapsed MM. We designed a phase II study to test the efficacy of isatuximab in high risk smoldering myeloma. Our study is registered in clinicaltrials.gov as NCT02960555. Methods The primary endpoint of the study is the ORR of isatuximab 20 mg/kg IV days 1, 8, 15, 22 cycle 1; days 1, 15 cycles 2-6 and day 1 cycles 7-30 in high risk smoldering myeloma. 24 patients were accrued in the first stage (of maximum 61 patients). Secondary endpoints are PFS, OS, clinical benefit rate (CBR). Exploratory endpoints are quality of life analysis (QoL), MRD, molecular/immune characterization using DNA/RNA sequencing of myeloma cells and the microenvironment before and after treatment. Results 24 patients with HRSMM were accrued from 02/08/2017 until 12/21/2018 (Table 1). All patients are evaluable for response. Best responses: ORR (≥PR) 15(62.5%), CR MRD- flow at 10-5 1 (5%), VGPR 4 (17%), PR 10 (42%), minor response (MR) 4 (18%), stable disease 5 (21%); CBR (≥MR) 79%. Median number of cycles received were 11.5 (range 6-30). Five patients have stopped treatment (one has completed the study, one with heavy history of smoking was diagnosed with squamous cell cancer of the tongue, one could no longer travel to treatments due to relocation, two progressed to active multiple myeloma after 16 and 6 cycles of treatment, respectively). There have been no deaths. DNA/RNA seq is ongoing for biomarkers of response. There were 5 grade 3 severe treatment-related adverse events (RAE) which resolved to baseline: dyspnea -related to infusion reaction (n=2), headache (n=1), ANC decrease (n=1), urinary tract infection (n=1). Most common grade 1-2 related adverse events (n): nausea (7), vomit (5), WBC decrease (3), diarrhea (3), fatigue (6), headache (4), mucositis (4), myalgia (4) and infusion reaction (3). In patients with available QoL functional scores (n=9 at baseline and n=7 after 6 months of therapy), isatuximab was effective in reducing their anxiety and worry of progression to multiple myeloma. Isatuximab also improved general QoL scores by the end of cycle 6 of treatment which were now comparable to those in the general population (Figure 1). Conclusion Isatuximab is very well tolerated, results in high response rates in HRSMM and has the potential to change the natural history of this disease. In ongoing QoL analysis, initial data shows improvement in QoL and decreased cancer worry after isatuximab treatment. Immune-genomic analysis is ongoing and may identify patients that benefit the most from treatment. Disclosures Manasanch: celgene: Honoraria; merck: Research Funding; quest diagnostics: Research Funding; sanofi: Research Funding; BMS: Honoraria; Sanofi: Honoraria. Jagannath:Multiple Myeloma Research Foundation: Speakers Bureau; BMS: Consultancy; Celgene: Consultancy; Novartis: Consultancy; Medicom: Speakers Bureau; Merck: Consultancy. Lee:Daiichi Sankyo: Research Funding; Celgene: Consultancy, Research Funding; GlaxoSmithKline plc: Research Funding; Sanofi: Consultancy; Takeda: Consultancy, Research Funding; Amgen: Consultancy, Research Funding; Janssen: Consultancy, Research Funding. Patel:Poseida Therapeutics, Cellectis, Abbvie: Research Funding; Oncopeptides, Nektar, Precision Biosciences, BMS: Consultancy; Takeda, Celgene, Janssen: Consultancy, Research Funding. Kaufman:Janssen: Other: travel/lodging, Research Funding. Thomas:Xencor: Research Funding; BMS: Research Funding; Celgene: Research Funding; Amgen: Research Funding. Mailankody:Takeda Oncology: Research Funding; Juno: Research Funding; Celgene: Research Funding; Janssen: Research Funding; CME activity by Physician Education Resource: Honoraria. Lendvai:Janssen: Employment. Neelapu:Acerta: Research Funding; Celgene: Consultancy, Research Funding; BMS: Research Funding; Kite, a Gilead Company: Consultancy, Research Funding; Incyte: Consultancy; Merck: Consultancy, Research Funding; Allogene: Consultancy; Cellectis: Research Funding; Poseida: Research Funding; Karus: Research Funding; Pfizer: Consultancy; Unum Therapeutics: Consultancy, Research Funding; Novartis: Consultancy; Precision Biosciences: Consultancy; Cell Medica: Consultancy. Orlowski:Poseida Therapeutics, Inc.: Research Funding. Landgren:Sanofi: Membership on an entity's Board of Directors or advisory committees; Karyopharm: Membership on an entity's Board of Directors or advisory committees; Adaptive: Honoraria, Membership on an entity's Board of Directors or advisory committees; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Takeda: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Theradex: Other: IDMC; Abbvie: Membership on an entity's Board of Directors or advisory committees; Merck: Other: IDMC. OffLabel Disclosure: Isatuximab for the treatment of smoldering myeloma


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 40-42
Author(s):  
Alexander Vdovin ◽  
Michal Durech ◽  
Tomas Jelinek ◽  
Tereza Sevcikova ◽  
Juli R. Bago ◽  
...  

Introduction Monoclonal immunoglobulin (Ig) is a valuable diagnostic marker in patients with multiple myeloma (MM). An inevitable consequence of extensive Ig synthesis is overload of misfolded proteins that saturate proteasome capacity making the myeloma cells highly sensitive to proteasome inhibitors (PI). Even though PI are regularly used in the clinic, resistance often emerges leaving clinicians with limited treatment options. Therefore, there is a need for a robust marker selecting MM patients for precise PI-based combination therapy. Methods We performed a multiple database search for genes associated with Ig production and MM patients' survival. Additionally, we compared gene expression profiles (RNAseq) of primary MM cells with low and high Ig levels. Next, we validated the identified hits by shRNA knockdown and overexpression studies using myeloma cell lines, primary MM samples, and mouse models. We also applied mass spectrometry-based proteomic analysis, advanced biochemical approaches, and genetic models to reveal the Ig production pathway components and function. Finally, we performed a limited rational drug screening to select suitable compounds for combination treatment. Results RNAseq and database mining revealed a strong association between the expression of plasma cell-specific deubiquitinase OTUD1, Ig production, and MM patient survival. Suppression of OTUD1 with shRNAs in RPMI8226 and MM1.S cell lines reduced Ig levels, increased proliferation, and induced bortezomib resistance. Conversely, inducible OTUD1 overexpression enhanced Ig production, slowed down proliferation, and increased bortezomib sensitivity. In the xenografts mouse models cells with high OTUD1 levels synthesized more Ig and developed smaller tumors. Intriguingly, the transcription of Ig genes was not influenced by OTUD1 expression suggesting that OTUD1 functions as a posttranslational regulator of Ig assembly. To gain mechanistic insight into the Ig pathway regulation by OTUD1, we utilized the biotin proximity labeling method (Turbo-ID) combined with mass spectrometry analysis. We found several novel OTUD1 interaction partners including the E3 ubiquitin ligase KEAP1 and endoplasmic reticulum (ER) redox protein PRDX4. We demonstrated that KEAP1 acts upstream of OTUD1 by regulating OTUD1 ubiquitination and stability. Consistently, survival analysis revealed that MM patients with high KEAP1 expression (low OTUD1) had a worse prognosis than patients with low levels of KEAP1 (high OTUD1). PRDX4 regulates disulfite bonds formation during protein folding and is uniquely expressed in fully differentiated plasma cells. Here, we revealed that OTUD1 specifically deubiquitinates and thus stabilizes PRDX4 inside the ER. Additionally, we performed rescue genetic experiments and found a direct link between the OTUD1-PRDX4 axis and Ig production. The increase in OTUD1 expression (high Ig) led to a dramatic increase in the total pool of ubiquitinated proteins formed mainly by misfolded Ig, while OTUD1 knockdown (low Ig) had an opposite effect. We showed that changes in the level of ubiquitinated proteins correlated with PI sensitivity. Of note, OTUD1 did not affect the expression of proteasome subunits, either their enzymatic activity. Our mechanistic findings prompted us to propose a novel therapeutic opportunity in PI resistant MM patients. We hypothesize that the resensitization of Ig low MM cells to PI could be achieved by enhancing ER stress leading to an increase in misfolded proteins that would ultimately saturate proteasomes. Indeed, from clinically relevant drugs tested so far, the HSP-90 inhibitor (17-AAG) reverted the PI resistance in OTUD1 low (Ig low) myeloma cells. An in vivo validation of the combination treatment and testing of Ig involvement in PI sensitivity and proliferation of MM cells is ongoing. Conclusion Here we present the discovery of a novel regulatory mechanism for Ig production in plasma cells. Based on our results and previously published studies, we conclude that Ig synthesis is a clinically significant factor related to PI response and MM patient survival. Our findings suggest that the intracellular Ig level is an important biomarker to identify patients benefiting the most from PI-based therapies. Finally, we provide a rational solution for selective, combination therapy to overcome PI resistance in MM patients with a decreased capacity to synthesize Ig. Figure Disclosures Hajek: Janssen: Consultancy, Honoraria, Research Funding; Amgen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Consultancy, Honoraria, Research Funding; BMS: Consultancy, Honoraria, Research Funding; Novartis: Consultancy, Research Funding; Takeda: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Abbvie: Consultancy, Honoraria; PharmaMar: Consultancy, Honoraria; Oncopeptides: Consultancy.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5499-5499
Author(s):  
Yanyan Gu ◽  
Benjamin G Barwick ◽  
Mala Shanmugam ◽  
Craig C Hofmeister ◽  
Jonathan L. Kaufman ◽  
...  

Multiple myeloma (MM) is a commonly occurring hematologic malignancy in the United States with poor prognosis. Among all treatments, proteasome inhibitor (PI) based regimens have been a major breakthrough for patients' outcomes. Available PIs all target 20S proteasome core complex, and the duration of response is limited by toxicity and resistance development. Until now, the underlying mechanism of drug resistance remains unclear. The proteasome is the major proteolytic machinery in protein homeostasis which is pivotal for myeloma cell survival. A functional proteasome consists of 20S proteasome core particle with regulatory particle on one or both ends. There are 3 types of proteasome regulators that could activate a 20S proteasome, PA700 (19S), 11S REG (PA28) and PA200. The 11S REG (PA28) protein family consists of three members, α, β, and γ. PA28 α/β are IFN-γ inducible and with higher expression in antigen presenting cells. Currently, the function of 11S subunit remains largely unknown. Our analysis of plasma cells from MM patients and healthy donors has demonstrated that expression of 11S proteasome is higher in myeloma cells than normal plasma cells and progressively upregulated with disease progression. To further identify the function of 11S proteasome especially PA28α in MM, we generate PA28α knockdown stable MM cell lines. We have found that knockdown of PA28α inhibits MM cell growth and proliferation, also induces myeloma cell resistance to PIs. The mechanism of PI resistance is different from knocking down of 19S or 20S proteasome subunits. Silencing of PA28α inhibits proteasome activity and decreases proteasome work load concurrently, resulting in a favorable proteasome load vs capacity ratio. Altogether, in this report, we describe the function of PA28α in MM cells, also provide novel insights into regulating PIs sensitivity through modulation of the 11S proteasome subunit PA28α. Disclosures Hofmeister: Nektar: Honoraria, Membership on an entity's Board of Directors or advisory committees; Karyopharm: Membership on an entity's Board of Directors or advisory committees; Imbrium: Membership on an entity's Board of Directors or advisory committees; Celgene: Honoraria; Janssen: Membership on an entity's Board of Directors or advisory committees; Oncopeptides: Membership on an entity's Board of Directors or advisory committees. Kaufman:Karyopharm: Membership on an entity's Board of Directors or advisory committees; Pharmacyclics: Membership on an entity's Board of Directors or advisory committees; Janssen: Honoraria; Amgen: Consultancy; Bristol-Myers Squibb: Consultancy; Incyte: Consultancy; Celgene: Consultancy; Winship Cancer Institute of Emory University: Employment; AbbVie: Consultancy; Takeda: Consultancy; TG Therapeutics: Consultancy. Nooka:Amgen: Honoraria, Other: advisory board participation; GSK: Honoraria, Other: advisory board participation; Celgene: Honoraria, Other: advisory board participation; Takeda: Honoraria, Other: advisory board participation; Spectrum pharmaceuticals: Honoraria, Other: advisory board participation; BMS: Honoraria, Other: advisory board participation; Janssen: Honoraria, Other: advisory board participation; Adaptive technologies: Honoraria, Other: advisory board participation. Boise:Genentech Inc.: Membership on an entity's Board of Directors or advisory committees; AstraZeneca: Honoraria, Research Funding. Lonial:Takeda: Consultancy, Research Funding; Amgen: Consultancy; BMS: Consultancy; Janssen: Consultancy, Research Funding; GSK: Consultancy; Karyopharm: Consultancy; Genentech: Consultancy; Celgene Corporation: Consultancy, Research Funding.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 6-8
Author(s):  
Manoj Bhasin ◽  
Beena E Thomas ◽  
Reyka G Jayasinghe ◽  
Nicolas Fernandez ◽  
Swati S Bhasin ◽  
...  

Introduction: Multiple myeloma (MM) is a genetically complex and clinically heterogeneous disease. Disease biology and phenotype is heavily influenced by the tumor microenvironment and the interaction between the immune milieu and malignant plasma cell population. Understanding the molecular profile of tumor along with the immune ecosystem can provide insights into key pathways that are important in disease pathobiology. Therefore, in this study, we have used single-cell RNA-Seq (scRNA-Seq) to compare the detailed maps of the bone marrow microenvironment of patients with rapid progressing disease (PFS &lt; 18 months) with those whose disease had not progressed at the time of analysis (PFS &lt; 4 years) Methods: MM patients (n=18) with rapid and no progression were identified from the Multiple Myeloma Research Foundation (MMRF) CoMMpass study, a longitudinal genomic study of patients with newly diagnosed, active multiple myeloma (NCT01454297). To generate a robust scRNA-Seq profile with minimal false positive, we profiled multiple technical replicates/aliquots of viably frozen CD138-negative bone marrow cells from each patient at three medical centers/universities (Beth Israel Deaconess Medical Center, Boston, Washington University in St. Louis and Mount Sinai School of Medicine, NYC using droplet-based single-cell barcoding technique. After batch correction and normalization, the cellular clusters were identified using principal component analysis and Uniform Manifold Approximation and Projection (UMAP) approach (Becht et al, 2018). Differential expression, pathways and systems biology analysis between rapid and non-progressors revealed differences for specific cell clusters (Panigrahy, Gartung et al. 2019). To determine association of plasma cell overexpressed genes with survival in CoMMpass study, survival analysis was performed using Kaplan-Meier (K-M) approach. Results: In this study, comparative analysis was performed of the bone marrow microenvironment of patients with aggressive and indolent disease by generating single-cell profiles of ~102,207 cells from 48 samples of 18 patients with MM. The UMAP approach identified multiple transcriptionally diverse clusters of plasma (CD138+), immune (PTPRC+) and erythroid (GYPA1/2+) cells (Fig 1a). Interestingly, the analysis identified CD138+ plasma/tumors cells clusters in a subset of samples from patients with rapid -progression and these clusters depicted a high degree of inter-patient heterogeneity (Fig 1a). Further characterization of plasma tumor cells depicted significant activation (Z score &gt;2 and P-value &lt;.001) of pathway related to "Unfolded protein response", epithelial-mesenchymal transition (EMT), and "p38 MAPK Signaling". These rapid progressions associated with plasma cells overexpressing multiple genes (e.g., Hazard ratio (HR) CCL3=1.9 95% CI= (1.5-3.9) log-rank P=0.0004, HSPA5 HR=1.4 (1-2.6), P=0.03) that are associated with poor outcome in multiple myeloma based CoMMpass data. The bone marrow microenvironment cells formed 22 clusters, comprising of cells from myeloid, macrophages, T cells, B cells, dendritic cells, Natural Killer T (NKT) cells, and erythroid lineages. The Non-progressive patients depicted enrichment of GZMB+ T and NKT cells with overexpression of genes associated with "Natural Killer Cell Signaling", "CD28 Signaling in T Helper Cells", "NF-kB Signaling" and "Th17 Activation Pathway" (Fig1b, c). Systems biology analysis depicted significant activation of TNF, STAT4, and NFATC2 regulatory signatures in NKT cells. The analysis also observed enrichment of macrophages, several types of monocytes, and myeloid cells in the samples from patients with non-progressive disease (Fig 1d). The myeloid/monocytes cluster depicted significant activation of multiple metabolic (i.e., Glycolysis, Gluconeogenesis) and immune response (i.e. IL8) pathways (Fig 1e). In summary, this multi-site study provides insights into potentially significant differences in the transcriptomic landscape of multiple myeloma patients with rapid and non-progression of disease. The non-progressive patients depict significant enrichment of activated T cells and myeloid lineage populations, suggesting their role toward better outcomes. These findings will be further expanded by ongoing single cell analyses of the CoMMpass tissue bank under the MMRF Immune Atlas initiative. Figure 1 Disclosures Bhasin: Canomiiks Inc: Current equity holder in private company, Other: Co-Founder. Dhodapkar:Roche/Genentech: Membership on an entity's Board of Directors or advisory committees, Other; Amgen: Membership on an entity's Board of Directors or advisory committees, Other; Celgene/BMS: Membership on an entity's Board of Directors or advisory committees, Other; Janssen: Membership on an entity's Board of Directors or advisory committees, Other; Kite: Membership on an entity's Board of Directors or advisory committees, Other; Lava Therapeutics: Membership on an entity's Board of Directors or advisory committees, Other. Kumar:Merck: Consultancy, Research Funding; Adaptive Biotechnologies: Consultancy; Genecentrix: Consultancy; Tenebio: Other, Research Funding; Celgene/BMS: Other: Research funding for clinical trials to the institution, Consulting/Advisory Board participation with no personal payments; Genentech/Roche: Other: Research funding for clinical trials to the institution, Consulting/Advisory Board participation with no personal payments; Oncopeptides: Consultancy, Other: Independent Review Committee; IRC member; Kite Pharma: Consultancy, Research Funding; Novartis: Research Funding; Sanofi: Research Funding; MedImmune: Research Funding; Karyopharm: Consultancy; BMS: Consultancy, Research Funding; Cellectar: Other; Carsgen: Other, Research Funding; Dr. Reddy's Laboratories: Honoraria; Janssen Oncology: Other: Research funding for clinical trials to the institution, Consulting/Advisory Board participation with no personal payments; Takeda: Other: Research funding for clinical trials to the institution, Consulting/Advisory Board participation with no personal payments; AbbVie: Other: Research funding for clinical trials to the institution, Consulting/Advisory Board participation with no personal payments; Amgen: Consultancy, Other: Research funding for clinical trials to the institution, Consulting/Advisory Board participation with no personal payments, Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5531-5531
Author(s):  
Reyka G Jayasinghe ◽  
Yige Wu ◽  
Ying Zhu ◽  
Ruiyang Liu ◽  
Mark A. Fiala ◽  
...  

Multiple myeloma (MM) is a disease defined by clonal proliferation of abnormal plasma cells from B-cells. Improved treatments for MM have led to improving overall lifespan, but still remains incurable due to acquired resistance to therapy and tumor heterogeneity. Single-cell RNA sequencing studies (scRNA-seq) of MM patients have highlighted the significant inter-individual heterogeneity and subclonal architecture of the malignant plasma cell populations, emphasizing the importance of developing personalized therapies specific to a patients molecular pathogenesis. In this study, we have integrated scRNA-seq with single-cell proteomics (sc-Prot) for 10 plasma cells and CD4+ T cells to validate and prioritize driver events in malignant cells and evaluate the tumor microenvironment. This effort will be expanded to another 10 cases to further integrate scRNA-seq, snATAC-seq, whole exome sequencing and bulk RNA-sequencing on a fraction of the cells isolated from bone marrow. The remaining cells will be sorted using FACS to select for specific malignant and immune cells including 40 plasma cells, 15 CD4+ T and 15 CD8+ T cells. These sorted cells will be profiled with a scProt technology (BASIL nanoPOTS) to illuminate their cell-to-cell heterogeneity. In our pilot study comparing bulk and single-cell proteomic data of a single patient's plasma cells (CD138+) for 400 representative proteins, while a majority of expression signatures are concurrent between the two methods, some signaling pathways including translation and apoptotic cleavage are discordant. Our findings stress the importance of interrogating subpopulations of immune and malignant cells at the single-cell level to further refine the transcriptomic and proteomic heterogeneity of MM in a cell type specific manner. With the aid of single-cell technology, we have assessed the heterogeneity of malignant and immune cell types to evaluate transcriptomic and proteomic changes contributing to altering the interplay between the immune environment and tumor cells. Disclosures Fiala: Incyte: Research Funding. Rettig:WashU: Patents & Royalties: Patent Application 16/401,950. O'Neal:Wugen: Patents & Royalties: Patent Pending; WashU: Patents & Royalties: Patent Pending. DiPersio:WUGEN: Equity Ownership, Patents & Royalties, Research Funding; Macrogenics: Research Funding, Speakers Bureau; Cellworks Group, Inc.: Membership on an entity's Board of Directors or advisory committees; Celgene: Consultancy; Magenta Therapeutics: Equity Ownership; RiverVest Venture Partners Arch Oncology: Consultancy, Membership on an entity's Board of Directors or advisory committees; NeoImmune Tech: Research Funding; Karyopharm Therapeutics: Consultancy; Incyte: Consultancy, Research Funding; Amphivena Therapeutics: Consultancy, Research Funding; Bioline Rx: Research Funding, Speakers Bureau. Vij:Bristol-Myers Squibb: Honoraria, Research Funding; Celgene: Honoraria, Research Funding; Genentech: Honoraria; Janssen: Honoraria; Karyopharm: Honoraria; Sanofi: Honoraria; Takeda: Honoraria, Research Funding.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2680-2680
Author(s):  
Tomas Jelinek ◽  
David Zihala ◽  
Tereza Sevcikova ◽  
Veronika Kapustova ◽  
Hana Sahinbegovic ◽  
...  

Abstract I ntroduction Extramedullary disease (EMD) is a less frequent manifestation of multiple myeloma (MM), where MM plasma cells become independent of the bone marrow (BM) microenvironment and infiltrate other tissues and organs. The incidence of EMD is increasing and is associated with worse prognosis and drug resistance. The specific and efficient treatment is lacking. Therefore, a better understanding of EMD pathogenesis is desperately needed. Aims To identify biological pathways leading to EMD development and to evaluate therapeutic targets in EMD plasma cells with further focus on EMD tumor microenvironment to reveal presence of effector immune cells that are crucial for immunotherapy. Methods To identify EMD specific genes, FACS/MACS sorted aberrant plasma cells were collected from: i) fresh 11 EMD relapse tumors for which we had ii) 7 corresponding cryopreserved paired BM samples from the time of MM diagnosis (NDMM), iii) 9 unpaired fresh NDMM without EMD confirmed by PET-CT and iv) 6 unpaired fresh relapsed MM (RRMM). For library preparation, we used total RNA with rRNA depletion protocol and Illumina sequencing. Residual rRNA was filtered out by SortMeRNA. Differential expression analysis was performed using Salmon for read mapping and quantification and Deseq2 package. For single-cell RNAseq we used 10x Genomics technology for sequencing and CellRanger and Seurat for data processing and analysis. Results To better understand the aggressive nature of EMD, we have analyzed bulk RNA samples (7 EMD samples plus 7 corresponding cryopreserved paired BM samples from the time of MM diagnosis). Our preliminary analysis revealed a unique EMD profile (Fig 1A) with 423 up-regulated and 421 down-regulated genes in EMD samples (adjusted p-value &lt; 0.1; absolute fold change &gt; 1.5), with G2M checkpoint proteins being the most enriched hallmark pathways pointing to higher proliferation of EMD cells. EMD down-regulated genes mainly belong to genes of the adaptive immune response which together with lower immunoglobulin production suggest loss of mature plasma cell function. Among the top genes uniquely overexpressed in EMD (versus RRMM or NDMM) were SCD and ELOVL6 that regulate crucial steps in unsaturated fatty acids synthesis. Also their transcription factor SREBF1 was significantly up-regulated. The importance of these genes in EMD pathogenesis can be supported by the involvement of SREBP1 in stem cell differentiation and mediation of bortezomib resistance by ELOVL6 (Yi et al. 2018, Lipchick et al. 2021). Our dataset also revealed several deregulated lncRNA in EMD compared to NDMM. MALAT1 was highly expressed, however, we did not confirm results by Handa et al. 2017 showing lncRNA MALAT1 as upregulated in EMD. Furthermore, we aimed to evaluate expression of known immunotherapy MM targets being currently in use or under investigation. We compared the information about expression level in EMD vs paired NDMM, with unpaired NDMM without EMD lesion confirmed by PET/CT, and with RRMM. The analysis revealed a decrease in the expression of several antigens commonly used in anti-MM immunotherapy (e.g. CD38, SLAMF7, BCMA or PDL1) on EMD PCs (Fig 1B). Intriguingly, our data show EMD specific elevated expression of EZH2 gene being promising target in preclinical MM investigation which can prove efficient especially for the aggressive MM stage - EMD. Effective immunotherapy depends on the presence of effector immune cells. Therefore, we have evaluated immune cell types and their proportion in EMD tumors. Using flow cytometry we identified T and NK cells as the only immune cell subsets present in EMD tumors (median 0.9% and 0.5%, respectively). Single-cell RNAseq analysis of two EMD samples supported these findings. Conclusions Here, we present up to our knowledge the worldwide largest cohort of 11 EMD samples (including 7 longitudinal pre-EMD/EMD samples) analysed using RNAseq with focus on biological pathways and dysregulation of particular genes leading to EMD development. Drop of expression of several known drug targets may suggest limited efficacy of the modern treatment in EMD as already presented by Jelinek et al., 2021. Importantly, we are also providing the initial insight into the microenvironment (including single-cell RNA analysis) of EMD tumors, where we detected presence of T cell and NK cells in very limited numbers. Figure 1 Figure 1. Disclosures Hajek: Takeda: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Consultancy, Honoraria, Research Funding; BMS: Consultancy, Honoraria, Research Funding; AbbVie: Consultancy, Honoraria; Novartis: Consultancy, Research Funding; Pharma MAR: Consultancy, Honoraria; Janssen: Consultancy, Honoraria, Research Funding; Amgen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1856-1856 ◽  
Author(s):  
Suzanne Lentzsch ◽  
Amy O’Sullivan ◽  
Silvana Lalo ◽  
Carrie Kruppa ◽  
Diane Gardner ◽  
...  

Abstract Abstract 1856 Poster Board I-882 Background: Lenalidomide is an analog of thalidomide that has shown significant clinical activity in patients with relapsed or refractory multiple myeloma (MM), both as a single agent and in combination with dexamethasone. Bendamustine is a bifunctional alkylating agent that is approved for the treatment of chronic lymphocytic leukemia and indolent non-Hodgkin's lymphoma that has progressed during or relapsed within 6 months following a rituximab-containing regimen. Bendamustine combined with lenalidomide may be an effective treatment option for MM patients, particularly those with preexisting or bortezomib-induced neuropathy. Our primary objective was to determine the maximum tolerated dose (MTD) and safety profile of bendamustine and lenalidomide when administered with dexamethasone for patients with relapsed or refractory MM. Methods: Patients aged ≥18 years with confirmed, measurable stage 2 or 3 MM that was refractory to or progressed after 1 or more prior therapies, including lenalidomide, received bendamustine by intravenous infusion on days 1 and 2, oral lenalidomide on days 1–21, and oral dexamethasone on days 1, 8, 15, and 22 of each 28-day cycle. Treatment was continued until a plateau of best response, as determined by the IBMTR/ABMTR, was reached. Study drug doses were escalated through 4 levels (Table), with 3–6 patients enrolled at each level depending on the rate of dose-limiting toxicity (DLT). After determining the MTD, up to an additional 12 patients will be enrolled in an MTD expansion arm to better evaluate toxicity and clinical activity. Secondary endpoints included preliminary efficacy, as evidenced by objective response, time to disease progression, and overall survival. Results: To date, 11 patients have been enrolled, with a median age of 63 years (range, 38–75 years). The MTD of bendamustine and lenalidomide has not been identified at this point; currently, patients are enrolling on dose level 3 with 100 mg/m2 bendamustine and 10 mg lenalidomide. Thus far, DLT included 1 grade 4 neutropenia at dose level 2. Nine of 11 patients are currently eligible for response assessment. A partial response was observed in 67% of patients, including 1 very good partial response and 5 partial responses (PR). Two patients experienced stable disease and 1 exhibited progressive disease. Grade 3/4 adverse events included grade 3 neutropenia, thrombocytopenia, anemia, hyperglycemia, and prolonged QTC, and 1 grade 4 neutropenia. Conclusions: Bendamustine, lenalidomide, and dexamethasone form a well-tolerated and highly active regimen even in heavily pretreated MM patients, with a PR rate of 67%. Additional updates on response and MTD will be available at the time of presentation. Disclosures: Lentzsch: Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Cephalon: Consultancy, Membership on an entity's Board of Directors or advisory committees. Off Label Use: Bendamustine is not FDA approved for the treatment of multiple myeloma in the USA. Burt:Millennium: Honoraria; Celgene: Honoraria. Mapara:Resolvyx: Consultancy, Research Funding; Genzyme: Membership on an entity's Board of Directors or advisory committees; Gentium: Equity Ownership; Celgene: Spouse is consultant , has received research funding, and participates on advisory board; Cephalon: Spouse has received funding for clinical trial and participates on advisory board. Redner:Biogen: Equity Ownership; Wyeth: Equity Ownership; Glaxo-Smith-Kline: Equity Ownership; Pfizer: Equity Ownership; Genzyme: Membership on an entity's Board of Directors or advisory committees. Roodman:Amgen: Consultancy, Membership on an entity's Board of Directors or advisory committees; Novartis: Consultancy, Research Funding, Speakers Bureau; Celgene: Consultancy; Acceleron: Consultancy. Zonder:Amgen: Consultancy; Pfizer: Consultancy; Cephalon: Consultancy; Millennium: Consultancy, Speaking (CME only); no promotional talks.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3852-3852 ◽  
Author(s):  
Jesús F. San-Miguel ◽  
Orhan Sezer ◽  
David Siegel ◽  
Andreas Guenther ◽  
Maria-Victoria Mateos ◽  
...  

Abstract Abstract 3852 Poster Board III-788 Introduction Panobinostat (LBH589) is a highly potent pan-deacetylase inhibitor (pan-DACi), inclusive of HDAC6, which disrupts aggresome function, promotes accumulation of cytotoxic misfolded protein aggregates and triggers myeloma cell death. Combination of pan-DAC and protease inhibition by co-treatment with panobinostat (PAN) and bortezomib (BTZ) has demonstrated synergistic cytotoxicity in vitro and in vivo in multiple myeloma (MM) cell lines and may provide increased efficacy in patients with MM. The primary objective of this Phase Ib trial is to determine the maximum tolerated dose (MTD) of oral PAN when combined with BTZ in patients with relapsed or refractory MM. Safety, tolerability, PK/PD, and preliminary efficacy are the secondary objectives. Results A total of 29 patients have been enrolled into four completed dosing Cohorts: (I) 10 mg PAN (TIW) + 1 mg/m2 BTZ (i.v., Days 1, 4, 8, 11) during a 21-day cycle; (II) 20 mg PAN + 1 mg/m2 BTZ; (III) 20 mg PAN + 1.3 mg/m2 BTZ; (IV) 30 mg PAN + 1.3 mg/m2 BTZ. Enrollment into Cohort V is ongoing at 25 mg PAN + 1.3 mg/m2 BTZ with 6 patients accrued to date. In Cohorts I– IV, the median number of prior therapies was 3 (range 1–6); 25 patients had at least one prior auto-SCT. Of 16 BTZ pretreated patients, 11 were refractory to their last prior BTZ-based therapy (9 with PD, 2 with SD on BTZ). Median time on study has been 97 days (range 7–424). Overall, the combination of PAN and BTZ was safe and tolerated in Cohorts I - III with one dose-limiting toxicity (DLT) (Gr 4 afebrile neutropenia) in Cohort II. In Cohort IV, four DLTs were reported: two Gr 4 thrombocytopenias,(requiring platelet transfusions), Gr 3 pneumonia, and Gr 3 fatigue. In the subsequent Cohort V, PAN dose was de-escalated. Hematologic adverse events (AEs) have been frequent, including Gr 3/4 thrombocytopenia (25), neutropenia (18), and anemia (6). Non-hematologic AEs included: diarrhea (18), fever (15), nausea (14), fatigue (14), and asthenia (11). A total of 1,778 ECGs were centrally, reviewed with neither QTcF prolongation from baseline >60 msec nor absolute QTcF duration >480 msec noted. Gr 3/4 thrombocytopenia was manageable by dose modification and platelet transfusion; two patients only discontinued for this AE in Cohorts I – III and no hemorrhagic events were reported in association with thrombocytopenia. Encouraging clinical efficacy was observed in all four Cohorts, with 14 responders (partial response [PR] or better) in 28 evaluable patients (50%), including 4 with immunofixation (IF) negative complete response (CR). Four additional patients achieved minor responses, resulting in 64% overall response rate. Responses were also seen in the subset of patients refractory to prior BTZ, suggesting a strong clinical correlate for synergism of the PAN/BTZ combination: 6 of 10 (60%) BTZ-refractory evaluable pts responded, including 4 PR and 2 MR (see Table for details). Dexamethasone (DEX) was introduced at Cycle 2 (or 3) in 9 pts; 11 of 18 pts with a response did not receive DEX, including several pts refractory to BTZ. All 15 patients in Cohorts III and IV treated with the full registered dose of BTZ (1.3 mg/m2) in combination with PAN 20 mg experienced a clinical benefit; however, toxicity in Cohort IV was not acceptable. Conclusion The encouraging clinical anti-myeloma synergism of the PAN and BTZ combination in this trial warrants further clinical investigation in patients with refractory and relapsed MM. Given the frequency of thrombocytopenia and dose adjustments, the dosing schedule in subsequent Phase II/III studies will be modified to take the safety profile and dose-reduction/-interruption pattern into account. Disclosures: San-Miguel: Novartis: Advisory Board, Consultancy, Honoraria; J&J: Advisory Board, Consultancy, Honoraria; Millenium: Advisory Board, Consultancy, Honoraria; Celgene: Advisory Board, Consultancy, Honoraria. Sezer:Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Siegel:Millenium: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Celgene: Membership on an entity's Board of Directors or advisory committees, Patents & Royalties, Speakers Bureau. Guenther:Novartis: Consultancy, Research Funding. Mateos:Ortho Biotech: Speakers Bureau; Novartis: Honoraria. Cavo:Novartis: Honoraria. Blade:Novartis: Honoraria; Janssen-Cilag: Honoraria, Research Funding; Celgene: Honoraria, Research Funding. Boccadoro:Celgene: Honoraria; Janssen Cilag: Honoraria. Bengoudifa:Novartis Pharma AG: Employment. Klebsattel:Novartis Pharma AG: Employment. Bourquelot:Novartis Pharma AG: Employment. Anderson:Millenium: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Honoraria, Research Funding; Novartis: Consultancy, Honoraria, Research Funding.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1951-1951 ◽  
Author(s):  
Paul Richardson ◽  
Donna Weber ◽  
Constantine S. Mitsiades ◽  
Meletios A. Dimopoulos ◽  
Jean-Luc Harousseau ◽  
...  

Abstract Abstract 1951 Background: Although novel treatment combinations for multiple myeloma (MM) have improved outcomes, the disease remains incurable and new drug combinations are urgently needed. Vorinostat is an oral histone deacetylase inhibitor approved in the United States for treatment of patients (pts) with advanced cutaneous T-cell lymphoma who failed prior therapies. Vorinostat alters gene expression and protein activity, promoting MM cell death through multiple pathways, and has been shown in preclinical studies to synergistically enhance the anti-MM activity of bortezomib and immunomodulatory drugs, including lenalidomide, with or without dexamethasone. Aims: The primary objective of this Phase I study was to determine the maximum tolerated dose (MTD) of vorinostat plus lenalidomide and dexamethasone in pts with relapsed or relapsed and refractory MM. Secondary objectives included overall safety, tolerability, response rate, duration of response, and time to progression (TTP). Methods: Pts in this Phase I multicenter open-label study were sequentially enrolled into 1 of 5 escalating doses of the combination regimen using a standard 3 + 3 design for ≤8 cycles. Pts who tolerated treatment and experienced clinical benefit were eligible for enrollment in an extension phase. Toxicity was evaluated using the National Cancer Institute Common Terminology Criteria (version 3.0). Response was assessed using the modified European Group for Blood and Marrow Transplantation criteria and International Myeloma Working Group Uniform Criteria. Safety and efficacy data were analyzed using summary statistics, except for TTP, which was estimated by the Kaplan-Meier method. Results: As of July 15, 2010, 31 pts were treated and evaluable for toxicity; 4 pts remain on study. Most pts had received prior thalidomide (n=22; 71%), bortezomib (n=20; 65%), or lenalidomide (n=14; 45%), with a median of 4 prior therapies (range, 1–10). The patient population contained both high-risk and low-risk pts, based on cytogenetic and/or fluorescence in situ hybridization analyses. Most adverse events (AEs) were mild or moderate in severity. The most common grade ≥3 treatment-related AEs, experienced by 19 (61%) pts, were neutropenia (26%), thrombocytopenia (16%), diarrhea (13%), anemia (10%), and fatigue (10%); 8 pts discontinued due to toxicity. One dose-limiting toxicity (grade 3 diarrhea lasting >48 h) was observed at the maximum assessed dose (level 5), but MTD was not reached (Table) and there were no treatment-related deaths. Among 30 pts evaluable for response, the median TTP was 32 weeks (5 mo), and 4 pts remain on study as of the data cutoff date; 26 of 30 pts (87%) have achieved at least stable disease (SD). Best single responses included 2 complete responses, 3 very good partial responses (VGPR), 11 partial responses (PR), and 5 minimal responses (MR), with 5 pts achieving SD and 4 developing progressive disease, resulting in an overall response rate (ORR; PR or better) of 53%. Of 13 evaluable pts who had previously received lenalidomide, a best single response of SD or better was observed in 9 (69%; 2 VGPR, 3 PR, 1 MR, 3 SD), resulting in a 38% ORR. Notably, SD or better (2 PR, 1 MR, 3 SD) was observed in 60% of 10 evaluable pts who were relapsed, refractory, or intolerant to previous lenalidomide-containing regimens. Conclusions: Preliminary data from this Phase I study suggest that vorinostat plus lenalidomide and dexamethasone is a convenient and generally well-tolerated regimen with promising activity for relapsed or relapsed and refractory MM. The MTD for this combination was not reached. Importantly, responses were observed in pts who had received prior lenalidomide, bortezomib, and thalidomide. Further evaluation of this regimen is planned in future trials. Disclosures: Richardson: Celgene: Membership on an entity's Board of Directors or advisory committees; Millenium: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees; Johnson & Johnson: Membership on an entity's Board of Directors or advisory committees. Off Label Use: Vorinostat, Lenalidomide, and Dexamethasone for treatment in Multiple Myeloma. Weber:Novartis-unpaid consultant: Consultancy; Merck- unpaid consultant: Consultancy; Celgene- none for at least 2 years: Honoraria; Millenium-none for 2 years: Honoraria; Celgene, Millenium, Merck: Research Funding. Mitsiades:Millennium: Consultancy, Honoraria; Novartis Pharmaceuticals: Consultancy, Honoraria; Bristol-Myers Squibb: Consultancy, Honoraria; Merck & Co.: Consultancy, Honoraria; Kosan Pharmaceuticals: Consultancy, Honoraria; Pharmion: Consultancy, Honoraria; Centrocor: Consultancy, Honoraria; PharmaMar: Patents & Royalties; OSI Pharmaceuticals: Research Funding; Amgen Pharmaceuticals: Research Funding; AVEO Pharma: Research Funding; EMD Serono: Research Funding; Sunesis: Research Funding; Gloucester Pharmaceuticals: Research Funding; Genzyme: Research Funding. Dimopoulos:MSD: Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees. Harousseau:Janssen-Cilag: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Houp:Merck Research Laboratories: Employment. Graef:Merck Research Laboratories: Employment. Gause:Merck Research Laboratories: Employment. Byrne:Celgene Corporation: Employment, Equity Ownership. Anderson:Millennium Pharmaceuticals: Consultancy; Celgene: Consultancy; Novartis: Consultancy; Onyx: Consultancy; Merck: Consultancy; BMS: Consultancy; Acetylon: Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Siegel:Celgene and Millennium: Advisory Board, Speakers Bureau; Merck: Advisory Board.


Sign in / Sign up

Export Citation Format

Share Document