scholarly journals Analysis of Leukemogenic Effects of RUNX1 and CSF3R Mutations Using Congenital Neutropenia (CN)/AML Patient-Derived Induced Pluripotent Stem Cells (iPSCs)

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 404-404
Author(s):  
Benjamin Dannenmann ◽  
Maksim Klimiankou ◽  
Christian Lindner ◽  
Azadeh Zahabi ◽  
Regine Bernhard ◽  
...  

Abstract Severe congenital neutropenia (CN) is a pre-leukemic bone marrow failure syndrome. Recently we reported a high frequency of cooperating RUNX1 and CSF3R mutations in CN patients that developed AML or MDS. Only a combination of these two mutations induced elevated proliferation and diminished myeloid differentiation of CD34+ cells in vitro. To confirm these clinical data in an in vitro model, we generated human induced pluripotent stem cells (hiPSCs) from PBMNCs of a CN patient harbouring p.C151Y mutation in ELANE after acquisition of AML. During GCSF treatment, this patient acquired G-CSFRmutation p.Q741*, which leads to a truncated G-CSF receptor and was detected six years prior to overt AML. Three years later, he acquired an additional RUNX1 (p.R139G) mutation, which is located in the RUNT-homology domain (RHD). Subsequently, he developed AML (FAB M1) with trisomy 21. Reprogramming of PBMNCs isolated from the time-point of AML (ca. 80 % of AML blasts) resulted in the generation of hiPSCs clones harbouring either only ELANE p.C151Y mutation (CN-iPSC clone, derived from non-leukemia PBMNCs) or additional CSF3R and RUNX1 mutations and trisomy 21 (CN/AML-iPSC clone, derived from AML blasts), which was subsequently validated by Sanger sequencing and by digital PCR. These iPSCs clones have been tested for their pluripotency and self-renewal capacity. Both iPSC clones expressed the pluripotent stem cell surface markers SSEA-4 and TRA-1-60 and displayed alkaline phosphatase activity. Further they highly expressed mRNA of the pluripotent stem cell markers SOX2, ABCG2, DNMT and NANOG and were able to differentiate into all three germ layers (meso-, endo- and ectoderm). Embryoid body (EB)-based hematopoietic / neutrophilic differentiation of CN-iPS clones using serum-free APEL stem cell differentiation medium showed comparable amounts of CD34+ and CD33+ cells, but ~ 2-fold reduction of CD16+ cells, compared to healthy donor (HD) iPSCs. CN/AML-iPSCs were not able to differentiate into mature granulocytes at all and revealed 10-fold reduced counts of CD34+ and CD33+hematopoietic cells. Morphological examinations of Giemsa-stained cytospin slides confirmed these results. Additionally, CN/AML-iPSCs showed a highly reduced number of CFU-G and CFU-GM colonies in CFU-Assay. To investigate the intracellular mechanisms of leukemogenic transformation in CN, we analyzed gene expression profiles of hematopoietic cells generated from CN-iPSCs vs CN/AML-iPSCs and HD-iPSCs for various time points of differentiation in our EB based-system. Our previous microarray-based analysis of bone marrow CD33+ cells of this CN/AML patient revealed that genes overexpressed in early hematopoietic stem/progenitor cells (HSPCs) as compared to more mature progenitors, such as DNTT, BAALC, CD34, HPGDS, NPR3 and PROM1 were strongly upregulated in CN/AML blasts harbouring both RUNX1 and CSF3R mutations, as compared to the cells prior to leukemia development. Intriguingly, elevated expression of these genes was described previously in RUNX1-mutated de novo AML blasts (Mendler et al., JCO 2012). This genetic signature suggests transformation of hematopoietic progenitors carrying mutated CSF3R into more primitive hematopoietic progenitors after aquisition of RUNX1mutation. We were able to confirm markedly increase of mRNA levels of these genes in hematopoietic cells derived from CN/AML-iPSCs, as compared to CN-iPSCs. In addition, we found that hematopoietic cells of both CN-iPSCs and CN/AML-iPSCs revealed increased expression of unfolded-protein response (UPR) genes DDIT3 (CHOP), ATF4 and ATF6, as compared to HD-iPSCs. Activation of UPR in hematopoietic cells of CN-ELANEpatients has been previously described by our and other groups. CN/AML-iPSC-derived hematopoietic progenitor cells expressed RUNX1 mRNA at least two-fold higher, as compared to HD- or CN-iPSC-derived cells. In summary, we established an in vitro cellular model of leukemogenic transformation in CN patients using CN/AML-patient derived hiPSCs that confirmed clinical data of Skokowa et al. (Blood 123:2550, 2014) on a cooperative leukemogenic effect of CSF3R and RUNX1 mutations. Comprehensive analysis of hematopoiesis using this iPSCs model will give us a deeper view into this highly complex signaling network operating during leukemogenic transformation of HSCs in pre-leukemic bone marrow failure syndromes. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2500-2500
Author(s):  
Tellechea Maria Florencia ◽  
Flavia S. Donaires ◽  
Tiago C. Silva ◽  
Lilian F. Moreira ◽  
Yordanka Armenteros ◽  
...  

Aplastic anemia (AA) is characterized by a hypoplastic bone marrow associated with low peripheral blood counts. In acquired cases, the immune system promotes hematopoietic stem and progenitor cell (HSPC) depletion by the action of several pro-inflammatory Th1 cytokines. The current treatment options for severe cases consist of sibling-matched allogeneic hematopoietic stem cell transplantation (HSCT) and immunosuppressive therapy (IST) with anti-thymocyte globulin, cyclosporine, and eltrombopag. However, most patients are not eligible for HSCT and, although about 85% of patients respond to IST with eltrombopag, a proportion of patients eventually relapse, requiring further therapies. Failure to respond adequately to immunosuppression may be attributed to the scarcity of HSPCs at the time of diagnosis. Induced pluripotent stem cells (iPSCs) are potentially an alternative source of patient-specific hematopoietic cells. Patient-specific HSPCs derived from in vitro iPSC differentiation may serve as a tool to study the disease as well as a source of hematopoietic tissue for cell therapies. The pyrimidoindole molecule UM171 induces ex vivo expansion of HSCs of human cord and peripheral blood and bone marrow, but the pathways modulated by this molecule are not well understood. Here we evaluated the hematopoietic differentiation potential of iPSCs obtained from patients with acquired AA. We further determined the effects of UM171 on this differentiation process. First, we derived iPSCs from 3 patients with acquired AA after treatment (1 female; average age, 31 years; 2 partial responders, 1 complete responder) and 3 healthy subjects (3 females; average age, 61 years) and induced differentiation in vitro through the embryoid body system in cell feeder and serum-free medium supplemented with cytokines. The hematopoietic differentiation of healthy-iPSCs yielded 19% ± 8.1% (mean ± SEM) of CD34+cells after 16 days in culture, in contrast with 11% ± 4.9% of CD34+cells obtained from the differentiation of AA-iPSCs, which corresponds to a 1.7-fold reduction in CD34+cell yield. The total number of erythroid and myeloid CFUs was lower in the AA-iPSC group as compared to healthy-iPSCs (12±4.2 vs.24±7.2; respectively; p<0.03). These findings suggest that erythroid-derived AA-iPSC have an intrinsic defect in hematopoietic differentiation. Next, we tested whether UM171 modulated hematopoietic differentiation of AA-iPSCs. We found that UM171 significantly stimulated the differentiation of both healthy and AA-iPSCs. In the healthy-iPSC group, the percentage of CD34+cells was 1.9-fold higher when treated with UM171 compared to controls treated with DMSO (37% ± 7.8% vs.19% ± 8.1%; respectively; p<0.03) and in AA-iPSCs the increase was 3.9-fold (45% ± 11% vs. 11% ± 4.9%; p<0.07). The clonogenic capacity of progenitors to produce erythroid and myeloid colonies also was augmented in both groups in comparison to DMSO (28±11 vs. 23±7.2) for healthy-iPSCs and for AA-iPSCs (23±8.5 vs. 12±4.2, p<0.06). We then investigated the molecular pathways influenced by UM171. The transcriptional profile of differentiated CD34+cells showed that UM171 up-regulated genes involved in early hematopoiesis from mesoderm (BRACHYURY and MIXL1) and primitive streak specification (APELA and APLNR), to hemangioblasts and primitive hematopoietic progenitor commitment (TDGF1, SOX17, and KLF5). We also observed the up-regulation of pro-inflammatory NF-kB activators (MAP4K1, ZAP70, and CARD11) and the anti-inflammatory gene PROCR, a marker of cultured HSCs and an NF-kB inhibitor. This balanced network has been previously suggested to be modulated by UM171 (Chagraoui et. al. Cell Stem Cell 2019). Taken together, our results showed that acquired AA-iPSCs may have intrinsic defects that impair hematopoietic differentiation in vitro. This defect may be atavic to the cell or, alternatively, the consequence of epigenetic changes in erythroid precursors provoked by the immune attack. In addition, our findings demonstrate that UM171 significantly stimulate the hematopoietic differentiation of AA-iPSCs and identified a novel molecular mechanism for UM171 as an enhancer of early hematopoietic development programs. These observations may be valuable for improving the achievement of de novo hematopoietic cells. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 111 (10) ◽  
pp. 4934-4943 ◽  
Author(s):  
Asaf Spiegel ◽  
Eyal Zcharia ◽  
Yaron Vagima ◽  
Tomer Itkin ◽  
Alexander Kalinkovich ◽  
...  

Abstract Heparanase is involved in tumor growth and metastasis. Because of its unique cleavage of heparan sulfate, which binds cytokines, chemokines and proteases, we hypothesized that heparanase is also involved in regulation of early stages of hematopoiesis. We report reduced numbers of maturing leukocytes but elevated levels of undifferentiated Sca-1+/c-Kit+/Lin− cells in the bone marrow (BM) of mice overexpressing heparanase (hpa-Tg). This resulted from increased proliferation and retention of the primitive cells in the BM microenvironment, manifested in increased SDF-1 turnover. Furthermore, heparanase overexpression in mice was accompanied by reduced protease activity of MMP-9, elastase, and cathepsin K, which regulate stem and progenitor cell mobilization. Moreover, increased retention of the progenitor cells also resulted from up-regulated levels of stem cell factor (SCF) in the BM, in particular in the stem cell–rich endosteum and endothelial regions. Increased SCF-induced adhesion of primitive Sca-1+/c-Kit+/Lin− cells to osteoblasts was also the result of elevation of the receptor c-Kit. Regulation of these phenomena is mediated by hyperphosphorylation of c-Myc in hematopoietic progenitors of hpa-Tg mice or after exogenous heparanase addition to wildtype BM cells in vitro. Altogether, our data suggest that heparanase modification of the BM microenvironment regulates the retention and proliferation of hematopoietic progenitor cells.


2012 ◽  
Vol 24 (1) ◽  
pp. 286
Author(s):  
A. Dinnyes ◽  
M. K. Pirity ◽  
E. Gocza ◽  
P. Osteil ◽  
N. Daniel ◽  
...  

Pluripotent stem cells have the capacity to divide indefinitely and to differentiate to all the somatic tissues. They can be genetically manipulated in vitro by knocking in and out genes, therefore they serve as an excellent tool for gene-function studies and for the generation of models for human diseases. Since 1981, when the first mouse embryonic stem cell (ESC) line was generated, several attempts have been made to generate pluripotent stem cells from other species as it would help us to understand the differences and similarities of signaling pathways involved in pluripotency and differentiation, and would reveal whether the fundamental mechanism controlling self-renewal of pluripotent cells is conserved among different species. This review gives an overlook of embryonic and induced pluripotent stem cell (iPSCs) research in the rabbit which is one of the most relevant non-rodent species for animal models. To date, several lines of putative ESCs and iPSCs have been described in the rabbit. All expressed stem cell-associated markers and exhibited longevity and pluripotency in vitro, but none have been proven to exhibit full pluripotency in vivo. Moreover, similarly to several domestic species, markers used to characterize the putative ESCs are not fully adequate because studies in domestic species have revealed that they are not specific to the pluripotent inner cell mass. Future validation of rabbit pluripotent stem cells would benefit greatly from a reliable panel of molecular markers specific to pluripotent cells of the developing rabbit embryo. The status of isolation and characterization of the putative pluripotency genes in rabbit will be discussed. Using rabbit specific pluripotency genes we might be able to reprogram somatic cells and generate induced pluripotent stem cells more efficiently thus overcome some of the challenges towards harnessing the potential of this technology. This study was financed by EU FP7 (PartnErS, PIAP-GA-2008-218205; InduHeart, PEOPLE-IRG-2008-234390; InduVir, PEOPLE-IRG-2009-245808; RabPstem, PERG07-GA-2010-268422; PluriSys, HEALTH-2007-B-223485; AniStem, PIAP-GA-2011-286264), NKTH-OTKA-EU-7KP HUMAN-MB08-C-80-205; Plurabbit, OMFB-00130-00131/2010 ANR-NKTH/09-GENM-010-01.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3767-3767
Author(s):  
Kran Suknuntha ◽  
Yuki Ishii ◽  
Kejin Hu ◽  
Jean YJ Wang ◽  
Igor Slukvin

Abstract Abstract 3767 Reprogramming of neoplastic cells to pluripotency provides a unique tool to personalize the exploration of tumor pathogenic mechanisms and drug resistance using iPSCs with patient-specific chromosomal abnormalities. We have developed a technology to generate transgene-free iPSCs from bone marrow and cord blood cells employing episomal vectors. Using this approach we created transgene-free iPSCs from a patient with CML in the chronic phase. CMLiPSCs showed a unique complex chromosomal translocation identified in the patinet's marrow sample while displaying typical embryonic stem cell phenotype and pluripotent differentiation potential. Importantly, these CMLiPSCs are devoid of genomic integration and expression of reprogramming factors, which are incompatible for modeling tumor development and drug response (Hu et al. Blood 117:e109). We have also shown that these CMLiPSCs contain the BCR-ABL oncogene without any detectable mutations in its kinase domain. By coculture with OP9, we generated APLNR+ mesodermal cells, MSCs, and lin-CD34+CD45+ hematopoietic progenitors from CMLiPSCs, and control BMiPSCs from a normal subject and analyzed the levels of BCR-ABL protein and tyrosine-phosphorylated (pTyr) cellular proteins in the different cell populations. The highest level of BCR-ABL protein expression was found in the in undifferentiated iPSCs, however, the overall cellular pTyr levels was lower than the control BMiPSCs, suggesting that BCR-ABL kinase activity was suppressed in the CMLiPScs. Consistent with these findings, imatinib does not inhibit the growth and survival of these CMLiPSCs. The levels of BCR-ABL protein decreased upon differentiation with a major reduction observed when cells became mesoderm. Following differentiation of CMLiPSC-derived mesoderm into the MSCs and lin-CD34+CD45+ hematopoietic progenitors, the levels of BCR-ABL protein did not change significantly, indicating that the major epigenetic regulation of BCR-ABL expression occurs during the transition to mesoderm. In spite of the decrease in BCR-ABL expression, the total pTyr levels significantly increased following transition of CMLiPSCs to mesoderm and blood cells, suggesting recovery of BCR-ABL kinase activity during differentiation. Interestingly, we found that imatinib had no effect on CFC potential of the most primitive lin-CD34+CD45+ hematopoietic progenitors derived from CMLiPSCs, while significant inhibition in hematopoietic CFC potential was observed when we used the patient's bone marrow cells. Following expansion of lin-CD34+CD45+ progenitors in serum-free medium with cytokines, we found that more differentiated hematopoietic cells became imatinib sensitive. The differential response of progenitors versus more differentiated cells to imatinib recapitulate the clinical observation that CML stem cells display innate resistance to imatinib but their differentiated progenies become sensitive to this BCR-ABL kinase inhibitor. The iPSC-based models provide several advantages for the study of CML pathogenesis. iPSCs can provide an unlimited supply of hematopoietic cells carrying patient-specific genetic abnormalities. Using well-defined temporal windows and surface markers, distinct cell subsets with tumor-initiating/tumor-propagating potential after transplantation in immunodeficient mice could be identified and used for drug screening. iPSC models make it possible to address CML stem-cell potential at various stages of differentiation for which it may be difficult to obtain samples from the patient, for example, at the hemangioblast stage. They also provide a unique opportunity to explore the interplays between epigenetics and oncogene function, as we have demonstrated using the CMLiPSCs. The major unsolved question is why CML stem cells are naturally resistant to imatinib, and this question can be addressed using the iPS system. Disclosures: Slukvin: CDI: Consultancy, Equity Ownership.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 760-760
Author(s):  
Kimberly A. Hartwell ◽  
Peter G. Miller ◽  
Alison L. Stewart ◽  
Alissa R. Kahn ◽  
David J. Logan ◽  
...  

Abstract Abstract 760 Recent insights into the molecular and cellular processes that drive leukemia have called attention to the limitations intrinsic to traditional drug discovery approaches. To date, the majority of cell-based functional screens have relied on probing cell lines in vitro in isolation to identify compounds that decrease cellular viability. The development of novel therapeutics with greater efficacy and decreased toxicity will require the identification of small molecules that selectively target leukemia stem cells (LSCs) within the context of their microenvironment, while sparing normal cells. We hypothesized that it would be possible to systematically identify LSC susceptibilities by modeling key elements of bone marrow niche interactions in high throughput format. We tested this hypothesis by creating and optimizing an assay in which primary murine stem cell-enriched leukemia cells are plated on bone marrow stromal cells in 384-well format, and examined by a high content image-based readout of cobblestoning, an in vitro morphological surrogate of cell health and self-renewal. AML cells cultured in this way maintained their ability to reinitiate disease in mice with as few as 100 cells. 14,720 small molecule probes across diverse chemical space were screened at 5uM in our assay. Retest screening was performed in the presence of two different bone marrow stromal types in parallel, OP9s and primary mesenchymal stem cells (MSCs). Greater than 60% of primary screen hits positively retested (dose response with IC50 at or below 5 μM) on both types of stroma. Compounds that inhibited leukemic cobblestoning merely by killing the stroma were identified by CellTiter-Glo viability analysis and excluded. Compounds that killed normal primary hematopoietic stem and progenitor cell inputs, as assessed by a related co-culture screen, were also excluded. Selectivity for leukemia over normal hematopoietic cells was additionally examined in vitro by comingling these cells on stroma within the same wells. Primary human CD34+ AML leukemia and normal CD34+ cord blood cells were also tested, by way of the 5 week cobblestone area forming cell (CAFC) assay. Additionally, preliminary studies of human AML cells pulse-treated with small molecules ex vivo, followed by in vivo transplantation, provided further evidence of potent leukemia kill across genotypes. A biologically complex functional approach to drug discovery, such as the novel method described here, has previously been thought impossible, due to presumed incompatibility with high throughput scale. We show that it is possible, and that it bears fruit in a first pilot screen. By these means, we discover small molecule perturbants that act selectively in the context of the microenvironment to kill LSCs while sparing stroma and normal hematopoietic cells. Some hits act cell autonomously, and some do not, as evidenced by observed leukemia kill when only the stromal support cells are treated prior to the plating of leukemia. Some hits are known, such as parthenolide and celastrol, and some are previously underappreciated, such as HMG-CoA reductase inhibition. Others are entirely new, and would not have been revealed by conventional approaches to therapeutic discovery. We therefore present a powerful new approach, and identify drug candidates with the potential to selectively target leukemia stem cells in clinical patients. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 50-50
Author(s):  
Baiwei Gu ◽  
Jason A. Mills ◽  
Jian-meng Fan ◽  
Deborah L. French ◽  
Monica Bessler ◽  
...  

Abstract Abstract 50 Dyskeratosis Congenita (DC) is a rare bone marrow failure syndrome showing considerable genetic and clinical heterogeneity. The most common form is the X-linked form due to mutations in the DKC1 gene encoding dyskerin, a protein important in telomere maintenance and ribosomal RNA biogenesis. Six other genes, all of whose products are involved in telomere maintenance, have been shown to be mutated in DC, together the seven genes accounting for about half of the known cases. The X-linked form can cause severe disease for which therapeutic options are limited. It is known that mutant dyskerin destabilizes telomerase RNA leading to rapidly shortening telomeres, accelerated stem cell aging and bone marrow failure. However the precise mechanism by which this occurs is not known. So far studies of the cell biology of DC stem and progenitor cells have been hampered by their scarcity in patients and their short life span and attempts to create mouse models have suffered from differences in telomere biology between mouse and human. An alternative approach that has recently become feasible is the production of induced pluripotent stem cells (iPSC) from patient fibroblasts that can then be used to investigate disease pathogenesis. Accordingly we generated iPSC from skin fibroblast from X-linked DC patients carrying DKC1 mutations Q31E, δ37A and 353V, and by using the classical OCT4, KLF4, SOX2 and cMYC 4-transcription factor system. Of particular interest is the A353V mutation since this is a recurrent mutation and accounts for about 40% of DKC1 mutations. In total, we obtained two Q31E clones, three δ37 clones and eight A353V clones. We found that all these DKC1 mutant iPS cells express decreased levels of dyskerin, in agreement with our mouse studies that show mutant proteins are relatively unstable. Mutant iPSC have very low levels of TERC (only 20–30% of the levels in WT iPSC) while TERT expression is the same as in WT cells. By using the TRAP assay, we found that both A353V and δ37 iPSC showed dramatically decreased telomerase activity; only 10–20 % compared to WT iPSC. After measuring the telomere length of both patient skin fibroblast cells and DKC1 mutant iPSC, we found A353V and δ37 iPSC lost the ability to elongate the telomere end during iPSC reprogramming while WT iPSC showed significantly increased telomere length compared to WT skin fibroblast cells. These results indicated that DKC1 iPSC are defective in telomere maintenance. In terms of ribosome biogenesis, we found that some snoRNA expression was slightly decreased including H/ACA snoRNAs E2, E3, U69, ACA10 and scaRNAs U90 and U93 while all C/D snoRNA we investigated were unchanged compared with WT iPS cells. We also found that DKC1 mutant iPS cells did not show significantly changes in ribosomal profiles or in the kinetics of rRNA processing. Together these results suggest that the iPSC faithfully reproduce the molecular features of the human disease and will prove to be a useful tool in investigations of the pathogenesis and treatment of DC. Disclosures: Bessler: Alexion Phamaceutical: Membership on an entity's Board of Directors or advisory committees; National Organization for Rare Dieases: Speakers Bureau.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1496-1496 ◽  
Author(s):  
Melisa Ruiz-Gutierrez ◽  
Ozge Vargel Bolukbasi ◽  
Linda Vo ◽  
Ryohichi Sugimura ◽  
Marilyn Sanchez Bonilla ◽  
...  

Abstract Myelodysplastic syndrome (MDS) caused by monosomy 7 or del(7q) is a frequent clonal abnormality that arises in the context of inherited bone marrow failure syndromes, such as Shwachman Diamond Syndrome (SDS). Monosomy 7/del(7q) also develops in a subset of patients with acquired aplastic anemia or de novo MDS in the general population. Monosomy 7/del(7q) is associated with high grade MDS and a high risk of malignant transformation, most frequently to acute myelogenous leukemia (AML). Bone marrow failure and clonal evolution to MDS and AML remain major causes of morbidity and mortality for individuals with SDS. Currently, the only curative therapy for these hematological complications is a hematopoietic stem cell transplant. Prognosis is extremely poor once SDS patients develop leukemia. The basis for this propensity to develop monosomy 7 clones remains unclear. The longterm aim of this study is to understand the molecular mechanisms underlying leukemia predisposition and develop more effective treatments. Whether monosomy 7/del(7q) functions as a driver of MDS, or is merely an associated marker of clonal progression in bone marrow failure remains a critical question. The lack of synteny between murine versus human chromosome 7 has posed a major barrier to the development of mouse models of monosomy 7/del(7q). To study the biological and molecular consequences of monosomy 7/del(7q) in SDS, induced pluripotent stem cells (iPSCs) were generated from bone marrow mononuclear cells of two patients with SDS. Each patient harbored homozygous c.258+2 T>C mutations in the canonical splice donor site of intron 2 in the SBDS gene. The SDS-iPSCs retained the pathogenic homozygous IVS2+2 T>C SBDS mutations, expressed stem cell markers, formed teratomas, and expressed reduced levels of SBDS protein similar to levels noted in the primary patient samples. Proliferation of 4 distinct SDS-iPSC clones derived from two different patients was reduced relative to wild type controls without an increase in cell death. SDS-iPSC formed smaller embryoid bodies with reduced production of CD34+ hematopoietic stem/progenitor cells. Hematopoietic differentiation from CD34+ to CD45+ cells was also impaired. Preliminary data suggest that SDS-iPSCs retain the capacity to give rise to hematopoietic stem/progenitor cells and early myeloid progenitor cells in vitro. These populations were also observed in primary SDS patient-derived bone marrow samples. Because the number of CD34+ cells derived from SDS-iPSCs are limiting, a previously reported 5 transcrition factor re-specification system was used to expand multilineage hematopietic progenitors for further characterization. SDS iPSCs were able to differentiate into an expandable CD34+ population in vitro. Further studies to characterize the hematopoietic impairment in SDS iPSC and primary marrow samples are ongoing. To model del(7q) in SDS iPSCs, a deletion of the MDS-associated long arm of chromosome 7 was genomically engineered using a previously published modified Cre-Lox approach. The deletion of 7q at locus (11.2) was confirmed by karyotyping and by qPCR across chromosome 7. The SDS (del7q) iPSCs retained the SBDS pathogenic mutations, expressed stem cell markers, and formed teratomas. Proliferation of the SDS del(7q) iPSC was markedly impaired compared to isogenic SDS iPSCs. No increase in cell death was observed in the SDS del7q iPSCs. Studies are in progress to determine the effects of del7q on hematopoiesis. Investigation is ongoing to determine the molecular consequences of deleting 7q. These isogenic SDS+/- del(7q) iPS models provide a platform to study the role of 7q loss in clonal evolution from bone marrow failure and to screen for novel therapeutic compounds or pathways to treat bone marrow failure and MDS. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1992 ◽  
Vol 80 (12) ◽  
pp. 3000-3008
Author(s):  
BP Alter ◽  
ME Knobloch ◽  
L He ◽  
AP Gillio ◽  
RJ O'Reilly ◽  
...  

Stem cell factor (SCF) enhances normal hematopoiesis. We examined its effect in vitro on bone marrow and blood progenitors from patients with inherited bone marrow failure syndromes, including 17 patients each with Diamond-Blackfan anemia (DBA) and Fanconi's anemia (FA), 3 with dyskeratosis congenita (DC), and 1 each with amegakaryocytic thrombocytopenia (amega) and transient erythroblastopenia of childhood (TEC). Mononuclear cells were cultured with erythropoietin (Ep) alone or combined with SCF or other factors. SCF increased the growth of erythroid progenitors in cultures from 50% of normal controls, 90% of DBA, 70% of FA, 30% of DC, and the amega and TEC patients; normal numbers were reached in 25% of DBA studies. Improved in vitro erythropoiesis with SCF in all types of inherited marrow failure syndromes does not suggest a common defect involving kit or SCF, but implies that SCF may be helpful in the treatment of hematopoietic defects of varied etiologies.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1275-1275
Author(s):  
Stephane Flamant ◽  
Jean-Claude Chomel ◽  
Christophe Desterke ◽  
Olivier Feraud ◽  
Emilie Gobbo ◽  
...  

Abstract Although human pluripotent stem cells (hPSCs) can theoretically be differentiated into any cell type, their ability to generate hematopoietic cells shows a major variability from one cell line to another. The reasons of this variable differentiation potential, which is constant and reproducible in a given hPSC line, are not clearly established. In order to study this phenomenon, we comparatively studied 4 human embryonic stem cell lines (hESC) and 11 human induced pluripotent stem cell (hiPSC) lines using transcriptome assays. These cell lines exhibited a significant variability to generate in vitro hematopoiesis as evaluated by day-16 embryoid body (EB) formation followed by clonogenic (CFC) assays. Four out of 11 iPSC lines (PB6, PB9, PB12.1, and PB14.3) were found to lack any hematopoietic differentiation ability whereas 7 cell lines showed variable hematopoietic potential. Among hESC lines, H9 and CL0 had low H1 and SA01 exhibited high hematopoietic potential using the above assays. Among hESC and hIPSC displaying hematopoietic potential, two sub-groups were further defined based on their hematopoietic CFC efficiency: a group of poor (generation of less than 100 CFC/105 cells, PB4 / PB10 /H9 /CL01), and high hematopoietic competency (more than 120 CFC/105 cells, PB3/ PB6.1 /PB7 /PB13 /PB17 /SA01/H1). Using global miRNome analysis performed at the pluripotency stage, the expression of 754 individual miRNAs was analyzed from 15 hPSC lines in order to explore a potential predictive marker between both sub-groups of pluripotent cells according to their hematopoietic potency. Using this approach, 27 miRNAs out of 754 appeared differentially expressed allowing the identification of a miRNA signature associated with hematopoietic-competency. The hematopoietic competency was associated with down-regulation of miR-206, miR-135b, miR-105, miR-492, miR-622 and upregulation of miR-520a, miR-296, miR-122, miR-515, miR-335. Amongst these, miR-206 harbored the most significant variation (0.04-Fold change). To explore the role of miRNA-206 in this phenomenon, we have generated a miR-206-eFGP-Puro lentiviral vector which was transfected in hESC line H1 followed by puromycin selection. As a control, H1 cell line was transfected with a Arabidopsis thaliana microRNA sequence (ath-miR-159a), which has no specific targets in mammalian cells. The correct expression of the transgenes were evaluated by flow cytometry (using GFP) and q-RT-PCR for miR-206 expression. The hematopoietic potential of H1 cell line and its miR-206-overexpressing counterpart was then tested using standard in vitro assays via d16-EB generation. We found that both CFC numbers and percentage of CD34+ were significantly lower in H1-mir-206-derived day-16 EB cells than in H1-ath- derived day-16 EB cells (p < 0.05). Thus, over-expression of miR-206 in this blood-competent hESC appeared to repress its hematopoietic potential at very early stage, since a similar lower CFC efficiency was observed in day-3 EB cells derived from miR-206 overexpressing H1 cell line. We then conducted an integrative bioinformatics analysis on miR-206 predicted target genes. To this end, 773 mRNA target transcripts of the broadly conserved (across vertebrates) miR-1-3p/206 family were identified in the TargetScan database and were integrated into the global transcriptomic analysis performed by microarray on day-16 EB cells. Using supervised ranking product analysis, 62 predicted gene targets of the miR-1-3p/206 family were found to be significantly up-regulated in hematopoietic-competent EB samples including the transcription factors RUNX1 and TAL1. Hierarchical unsupervised clustering, based on this subset of 62 predicted mir-206 target genes, fully discriminated hematopoietic-deficient from hematopoietic-competent cells. In conclusion, miRNA profiling performed at pluripotency stage could be useful to predict the ability to human iPSC to give rise to blood cell progenitors. This work emphasizes for the first time the critical role of the muscle-specific miR-206 in hematopoietic differentiation. Finally, these results suggest that genetic manipulation of hESC/iPSC could be used to enhance their hematopoietic potential and to design protocols for generation of hPSC-derived hematopoietic stem cells with long-term reconstitution ability. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document