scholarly journals HSP90 Stabilizes B-Cell Receptor Kinases in a Multi-Client Interactome: PU-H71 Induces CLL Apoptosis in a Cytoprotective Microenvironment

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5105-5105
Author(s):  
Yue Lynn Wang ◽  
Pin Lu ◽  
Jimmy Lee ◽  
Chao Jie Zhen ◽  
Gabriela Chiosis ◽  
...  

Abstract Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of B-cells in the hematopoietic system and lymphoid tissues. Although inhibitors targeting the B-cell receptor (BCR) pathway have been successful in the treatment of the disease, the underlying mechanisms leading to BCR over-activity in CLL are not fully understood. In this study, we found that HSP90, a highly conserved molecular chaperone, is overexpressed in CLL compared to resting B-cells. HSP90 overexpression is accompanied by the over-expression of several BCR kinases including LYN, SYK, BTK and AKT. Chemical and immune-precipitation demonstrated that these BCR constituents are present in a multi-client chaperone complex with HSP90. Inhibition of HSP90 with PU-H71 destabilized the BCR kinases and caused apoptosis of CLL cells through the mitochondrial apoptotic pathway. Further, PU-H71 induced apoptosis in the presence of stromal co-culture or cytoprotective survival signals. Finally, genetic knock-down of HSP90 client AKT, but not BTK, reduced CLL viability. Overall, our study suggests that the chaperone function of HSP90 contributes to the over-activity of the BCR signaling in CLL and inhibition of HSP90 has the potential to achieve a multi-targeting effect. Thus, HSP90 inhibition may be explored to prevent or overcome drug resistance to single targeting agents. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 178-178
Author(s):  
Dimitar G. Efremov ◽  
Aleksandar Petlickovski ◽  
Luca Laurenti ◽  
Xiaoping Li ◽  
Sara Marietti ◽  
...  

Abstract The clinical course of chronic lymphocytic leukemia (CLL) differs significantly between patients with mutated (M-CLL) and unmutated (U-CLL) immunoglobulin V genes, implying a role for B-cell receptor (BCR) signaling in the pathogenesis of this disease. BCR stimulation in normal B-cells triggers several crucial signaling pathways, including PI3K/Akt, IKK/NF- κB and the mitogen-activated protein kinases Erk, JNK and p38 MAPK, which can induce proliferation, survival, differentiation or apoptosis, depending on the nature and context of the antigenic stimulation. We have now investigated activation of these downstream signaling pathways, as well as induction of anti-apoptotic proteins and survival of CLL B-cells stimulated with soluble (sol-IgM) and immobilized (imm-IgM) anti-IgM antibodies, which were used to mimic stimulation with soluble and particulate/membrane-bound antigen, respectively. Stimulation with sol-IgM revealed similar activation patterns in the 10 U-CLL and 12 M-CLL cases that partially resembled the pattern described for tolerant B-cells. The response in the U-CLL cases was characterized by transient (<45 minutes) phosphorylation of Akt and Erk, no activation of JNK and p38 MAPK, and activation of IKKβ in 50% of the cases. Most M-CLL cases showed similar activation of Akt and Erk, but lacked activation of IKKβ, whereas three M-CLL cases were completely non-responsive. To investigate the effects on CLL B-cell survival, 14 U-CLL and 19 M-CLL cases were analyzed by Annexin V/PI staining after 48 hours stimulation with sol-IgM. A 10–40% increase in apoptotic cells was observed in the majority of cases from both CLL subsets (p<0.001 with respect to spontaneous apoptosis). Induction of apoptosis was confirmed by analyzing cleavage of the Caspase 3 substrate PARP, and was accompanied by an approximately 50% reduction in the levels of Mcl-1, an antiapoptotic protein implicated in CLL B-cell survival and resistance to chemotherapy. A markedly different response was induced by imm-IgM, which was characterized by activation of IKKβ in all cases and sustained Akt and Erk phosphorylation that persisted over 24 hours. This response resulted in a 2.5 fold mean increase in the levels of Mcl-1, whereas no changes were observed in the levels of Bcl-2 and Bcl-xL. Imm-IgM slightly reduced the percentage of cells undergoing spontaneous apoptosis after 48 hours, but significantly protected from fludarabine- and methylprednisolone-induced apoptosis. To investigate which of the three imm-IgM activated pathways is responsible for induction of Mcl-1 and protection from chemotherapy-induced apoptosis, we incubated CLL B-cells with LY294002, U0126 and BAY-11 (inhibitors of PI3K, ERK and NF- κB, respectively) prior to stimulation with imm-IgM and addition of fludarabine. Induction of Mcl-1 and inhibition of fludarabine-induced PARP cleavage were significantly abrogated only by LY294002, indicating that the PI3K/Akt pathway is the major link between the BCR and apoptosis resistance of CLL B-cells. In conclusion, this study shows that the response of CLL B-cells to BCR stimulation primarily depends on the nature of the antigenic stimulus. Moreover, it shows that only sustained BCR signaling can promote survival of CLL B-cells, and raises the possibility that the distinct clinical and biological behavior of U-CLL and M-CLL is determined by the availability of such stimulation.


Author(s):  
Sarah Wilmore ◽  
Karly-Rai Rogers-Broadway ◽  
Joe Taylor ◽  
Elizabeth Lemm ◽  
Rachel Fell ◽  
...  

AbstractSignaling via the B-cell receptor (BCR) is a key driver and therapeutic target in chronic lymphocytic leukemia (CLL). BCR stimulation of CLL cells induces expression of eIF4A, an initiation factor important for translation of multiple oncoproteins, and reduces expression of PDCD4, a natural inhibitor of eIF4A, suggesting that eIF4A may be a critical nexus controlling protein expression downstream of the BCR in these cells. We, therefore, investigated the effect of eIF4A inhibitors (eIF4Ai) on BCR-induced responses. We demonstrated that eIF4Ai (silvestrol and rocaglamide A) reduced anti-IgM-induced global mRNA translation in CLL cells and also inhibited accumulation of MYC and MCL1, key drivers of proliferation and survival, respectively, without effects on upstream signaling responses (ERK1/2 and AKT phosphorylation). Analysis of normal naïve and non-switched memory B cells, likely counterparts of the two main subsets of CLL, demonstrated that basal RNA translation was higher in memory B cells, but was similarly increased and susceptible to eIF4Ai-mediated inhibition in both. We probed the fate of MYC mRNA in eIF4Ai-treated CLL cells and found that eIF4Ai caused a profound accumulation of MYC mRNA in anti-IgM treated cells. This was mediated by MYC mRNA stabilization and was not observed for MCL1 mRNA. Following drug wash-out, MYC mRNA levels declined but without substantial MYC protein accumulation, indicating that stabilized MYC mRNA remained blocked from translation. In conclusion, BCR-induced regulation of eIF4A may be a critical signal-dependent nexus for therapeutic attack in CLL and other B-cell malignancies, especially those dependent on MYC and/or MCL1.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 341-341
Author(s):  
Pablo G. Longo ◽  
Luca Laurenti ◽  
Stefania Gobessi ◽  
Simona Sica ◽  
Giuseppe Leone ◽  
...  

Abstract Studies of the immunoglobulin variable region gene repertoire have provided compelling evidence that antigen-stimulation through the B-cell receptor (BCR) plays a crucial role in the pathogenesis and progression of chronic lymphocytic leukemia (CLL). In addition, previous studies from our lab have shown that CLL B-cells become more resistant to spontaneous and chemotherapy-induced apoptosis following sustained engagement of the BCR with immobilized anti-IgM antibodies, which mimic stimulation with membrane-bound antigens. Investigation of downstream signaling pathways revealed that sustained BCR engagement induces prolonged activation of the PI3K/Akt and MEK/ERK pathways, which are key regulators of survival and proliferation in various cell types. To further define the role of sustained activation of the Akt and ERK kinases in regulating CLL growth and survival, we transfected constitutively active mutants of Akt (myr.Akt) and MEK2 in primary leukemic cells and evaluated changes in the expression of relevant apoptosis- and cell-cycle regulatory proteins. Introduction of constitutively active MEK2 resulted in activation of ERK, but did not induce significant changes in the levels of most investigated proteins (Bcl-2, Bcl-xL, Bim, Bax or Mcl-1). The only exception was the inhibitor of apoptosis protein XIAP, which showed increased expression in most but not all experiments. In contrast, transfection of myr.Akt showed a consistent increase in the levels of the antiapoptotic protein Mcl-1, which ranged from 1.5 to more than 4-fold higher levels with respect to cells transfected with control vectors. Increased expression of Mcl-1 was observed in all experiments and paralleled the rise in Mcl-1 that occurred following stimulation of CLL B-cells with immobilized anti-IgM antibodies. The increase in Mcl-1 protein levels was entirely due to post-transcriptional mechanisms, since quantification by real-time PCR did not show an increase in Mcl-1 mRNA levels. Constitutively active Akt also upregulated Bcl-xL and XIAP, although this increase was lower than the increase in Mcl-1. In addition, CLL cells transfected with myr.Akt showed induction of cyclin D3 and an increase in cell size and viability, indicating that sustained activation of Akt is required for both leukemic cell survival and cell cycle progression. To determine the relative importance of Mcl-1, Bcl-xL and XIAP in CLL B-cell survival, we downregulated expression of these proteins in primary CLL B-cells by RNA interference. Surprisingly, downregulation of Bcl-xL and XIAP had no effect on CLL B-cell survival. In contrast, silencing of Mcl-1 induced rapid and potent apoptosis in all investigated cases and abrogated the prosurvival effect of stimulation with immobilized anti-IgM antibodies. Together, these data provide direct evidence that pro-survival BCR signaling in CLL B-cells is mediated, at least in part, through the Akt/Mcl-1 pathway. In addition, they suggest that Mcl-1 could be an attractive candidate for targeting, either with small molecule inhibitors or with pharmacological agents that interfere with BCR signals propagated by the Akt kinase.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2880-2880
Author(s):  
Martin Trepel ◽  
Fabian Muller ◽  
Mareike Frick ◽  
Janina Rahlff ◽  
Claudia Wehr ◽  
...  

Abstract Abstract 2880 Background: The development and / or course of chronic lymphocytic leukemia (CLL) may be driven by the recognition of antigens through the B cell receptor (BCR). While it has been recognized that the diversity of epitope recognition may be astonishingly confined in CLL, knowledge on antigens recognized by CLL BCRs is still limited. Here, we identified and characterized an epitope recognized by a defined CLL BCR which may broaden our view on potential mechanisms of antigenic drive in CLL. Methods: The B- cell receptor of a random CLL-patient was cloned and expressed as Fab fragment in E.coli. Random phage display reptile litanies we skeletal on the immobilized Fab and landed peptides were tested for specific binding. Specific clones we sequenced and sequences were analyzed for homology to known proteins. Recognition of candidate proteins was verified in brooding assays or recombinant proteins. Results: Screening random phage display peptide libraries, we identified a CLL BCR epitope mimic that displayed a high degree of homology to a conserved peptide string in the variable region of immunoglobulin heavy and light chains. CLL BCR binding to this epitope as well as binding to full length heavy and light immunoglobulin chains was verified by binding assays and a protein array screening. Interestingly, the CLL BCR also interacted with itself, as the identified epitope was also present in its own primary amino acid sequence. Conclusions: These findings suggest the possibility of self-recognition of BCRs within the CLL cell membrane or BCR interactions between neighboring CLL cells. This may potentially result in autostimulation of the leukemic cell independent of “exogenous” antigens and may account for self-sufficient signaling of some CLL-BCRs in driving disease progression. As the peptide mimicking this immunoglobulin epitope is known to be recognized by BCRs of other CLL cases in addition to the index case investigated here, such autostimulatory mechanisms may be relevant to a large number of CLL patients. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 668-668
Author(s):  
Phuong-Hien Nguyen ◽  
Nina Reinart ◽  
Michael Hallek

Abstract The Src family kinase Lyn is predominantly expressed in B cells and plays a central role in initiating B cell receptor (BCR) signaling. Lyn is associated with BCR complexes and is renowned for its role in B cell activation and proliferation. Active Lyn contributes to positive regulation of signalling through tyrosine phosphorylation of components of the BCR. Intriguingly, Lyn was also shown as a negative regulator of BCR signal transduction. Lyn plays an essential role in negative regulation of signalling through its unique ability to phosphorylate immunoreceptor tyrosine based inhibition motifs (ITIM) in inhibitory cell surface receptors. ITIM phosphorylation induces the recruitment of inhibitory phosphatases such as SHP-1/2 and SHIP-1, which attenuate BCR signalling. Lyn-deficient mice have reduced number of B cells and increased numbers of myeloid progenitors. It was reported that expression and activity of Lyn in human chronic lymphocytic leukemia (CLL) is elevated compared to healthy B cells. Besides, higher levels of Lyn are associated with a shorter treatment-free survival of CLL patients. This rises up a hypothesis about Lyn’s significant role in B cell tumorigenesis, malignant transformation of B cells, and the balance between myeloid cells and B lymphocytes. We generated Eµ-TCL1 transgenic LYN-deficient mice (TCL1+/wtLYN-/-) and monitored them in order to identify the population of malignant B cells and to characterize the development of malignant cells in these mice in comparison with Eµ-TCL1 transgenic mice (TCL1+/wtLYNwt/wt). In comparison to TCL1+/wtLYNwt/wt mice, TCL1+/wtLYN-/- mice show a significantly reduced number of malignant B cells in the peripheral blood, as well as a reduced leukocyte count. Besides, TCL1+/wtLYN-/- mice have significantly decreased infiltration of malignant B cells in lymphoid tissues such as spleen, liver, lymph node and bone marrow. This result is also resembled in a hepato-splenomegaly in the TCL1+/wtLYNwt/wt mice. These mice develop severe splenomegaly and hepatomegaly due to infiltration of malignant cells, while TCL1+/wtLYN-/- mice do not develop hepatomegaly. The non-transgenic LYN-/- control mice develop splenomegaly due to infiltration of myeloid cells. Although TCL1+/wtLYN-/- mice have hindered development of TCL1-induced CLL, preliminary data suggest it is not only due to LYN-deficiency in B cell compartment of these mice. Indeed, B cell of TCL1+/wtLYN-/- mice show enhanced proliferation and better survival ex vivo compared to TCL1+/wtLYNwt/wt mice. Notably, TCL1+/wtLYN-/- mice developed a skewed microenvironment which might contribute to CLL down regulation. LYN-/- microenvironment, particularly in aged mice, does not support engraftment of TCL1-induced leukemic B cell as well as LYNwt/wt mice in our transplantation model. These results point to a complex regulation of Lyn signalling in CLL involving not only leukemic cells but also cells of the micromillieu, that needs further investigation. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1999 ◽  
Vol 93 (7) ◽  
pp. 2327-2335 ◽  
Author(s):  
A. Alfarano ◽  
S. Indraccolo ◽  
P. Circosta ◽  
S. Minuzzo ◽  
A. Vallario ◽  
...  

Several functional anomalies of B-chronic lymphocytic leukemia (B-CLL) cells may be explained by abnormalities of the B-cell receptor (BCR), a multimeric complex formed by the sIg homodimer and the noncovalently bound heterodimer Ig/Igβ (CD79a/CD79b). Because the expression of the extracellular Ig-like domain of CD79b has been reported to be absent in the cells of most CLL cases, we have investigated the molecular mechanisms that may account for this defect. Peripheral blood lymphocytes (PBL) from 50 patients and two cell lines (MEC1, MEC2) obtained from the PBL of one of them were studied. MEC1, MEC2, and 75% of CLL cases did not express detectable levels of the extracellular Ig-like domain of CD79b, which was nevertheless present in greater than 80% CD19+ cells from normal donors. In healthy subjects the expression of CD79b was equally distributed in CD5+ and CD5− B-cell subsets. Reverse transcription-polymerase chain reaction (RT-PCR) analysis of CD79b RNA from all patients and from MEC1 and MEC2 cell lines consistently yielded two fragments of different size (709 bp and 397 bp). The 709-bp band corresponds to CD79b entire transcript; the 397-bp band corresponds to an alternatively spliced form lacking exon 3 that encodes the extracellular Ig-like domain. Both fragments were also visible in normal PBL. The expression of the 397-bp fragment was increased in normal activated B cells, while no difference was seen between CD5+ and CD5− B cells. To obtain a more accurate estimate of the relative proportions of the two spliced forms, a radioactive PCR was performed in 13 normal and 22 B-CLL samples and the results analyzed using a digital imager. The mean value of the CD79b to the CD79b internally deleted ratio was 0.64 ± 0.20 SD in normal donors and 0.44 ± 0.27 SD in B-CLL (P = .01). Direct sequencing of 397-bp RT-PCR products and of genomic DNA corresponding to exon 3 from MEC1, MEC2, their parental cells, and five fresh B-CLL samples did not show any causal mutation. Single-strand conformation polymorphism analysis of exon 3 performed in 18 additional B-CLL cases showed a single abnormal shift corresponding to a TGT → TGC polymorphic change at amino acid 122. We propose a role for the alternative splicing of CD79b gene in causing the reduced expression of BCR on the surface of B-CLL cells. As normal B cells also present this variant, the mechanism of CD79b posttranscriptional regulation might reflect the activation stage of the normal B cell from which B-CLL derives.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4356-4356
Author(s):  
Andrea Nicola Mazzarello ◽  
Stefano Vergani ◽  
Gerardo Ferrer ◽  
Yun Liu ◽  
Shih-Shih Chen ◽  
...  

Abstract B cell receptor signaling is a key factor in chronic lymphocytic leukemia (CLL), evinced by inhibitory drug ibrutinib's efficacy. Studies of normal and CLL B cells indicate surface membrane IgM or IgD engagement has diverse signaling consequences. But little is known about relative amounts of sIg/co-receptor components within intraclonal fractions and how their compositions affect signaling. We studied relative densities of IgM and IgD and Ig-associated stimulatory and inhibitory co-receptors in two subsets based on: [1] relative densities of IgM and IgD and [2] reciprocal expression of CXCR4/CD5 indicating activation state. Samples from 5 U and 5 M-CLL patients, pre and during (4-6 weeks) ibrutinib treatment, were tested by conventional and by imaging flow cytometry using an ISX Mark II providing multiple spectral images of individual cells in a flow setting. After subfractionating clones for IgM (IgMDim, IgMInt, IgMBright) or IgD (IgDDim, IgDInt, IgDBright) densities, we quantified relative densities of stimulatory/inhibitory molecules on the subsets. A directly proportional change was observed for CD5, CD19, CD20, Siglec10, CD25, HLA-DR, and CD38 as IgM moved from Dim to Bright. Exceptions were CXCR4, which dramatically decreased as IgM density increased, and CD22, that had a constant density in all fractions. Similar changes were seen for IgD except for CD22 which increased in IgDBright density. Again CXCR4 showed the opposite pattern. CD25 and HLADR remained constant within IgD increments. Stimulatory markers CD25 and HLADR changed upward only in the transition to IgMBright. Together these imply signaling through IgM heightens as IgM density increases, but does not through IgD, likely due to increased Siglec 10 and CD22. The reduced amounts of smCXCR4 suggest impaired ability of cells with high smIgM or smIgD to traffic. We examined subpopulations based on CXCR4 and CD5. IgD and IgM densities increased from resting (RF) CXCR4Bright/CD5Dim to intermediate (INT) CXCR4Int/CD5Int to proliferative (PF) CXCR4Dim/CD5Bright fractions, although the degree of upregulation was more marked for IgD than IgM. All stimulatory/inhibitory coreceptors also increased in density from RF to PF. Interestingly, CD22 and IgD retained a constantdensity from RF to INT but increased considerably at the PF. Although stimulatory molecules CD25, CD38 and HLADR had upward trends, peaking occurred in the PF. Collectively, this implies signaling capacity through smIgM amplifies toward the PF due to higher smIgM density and IgD upregulation. Finally, we evaluated CLL clones as a whole as well as based on the subsets above for ibrutinib treatment induced changes. Clonally, a density decrement occurred for smIgD and an increment for smIgM. Data for the other molecules fell into 3 categories based on relative density changes: Decreasing: CD5, CD20, CD38, CD25, HLA-DR; Increasing: CXCR4: Invariant: CD22, CD19, Siglec10. For subfractionating based on smIgs density, ibrutinib drastically reduced density differences for co-receptors and activation markers among IgM or IgD density subpopulations with IgMBright and IgDBright fractions more affected than the Dim and Intermediate density counterparts. Similarly for the CXCR4/CD5 subpopulations, lower differences in relative expression of coreceptors from RF to PF were found. As for IgM and IgD levels, the PF was the most reduced. The composite effect was a reduced slope of change among the original sets of density change categories (IgMDim -> IgMBright; IgDDim -> IgDBright; RF to PF), leading to more phenotypically homogenous subpopulations. In summary, prior to ibrutinib therapy, both the Ig and most of the associated molecules increase density in subsets marked by increased IgM and IgD densities and marked by decreasing CXCR4/CD5 densities. However, there was a major difference in density correlations for CXCR4 and CD22. CXCR4, levels were lowest on IgMBright and IgDBright cells which differs from published data using anti-IgM beads. For CD22 the highest levels were in IgDBright but not in IgMBright and in CXCR4/CD5 subset with the highest IgD and IgM (CXCR4Dim/CD5Bright). In contrast, ibrutinib treatment led to an overall change in coreceptor molecules altering considerably the density relationships with IgM and IgD. Concomitantly, these culminate in a downregulatory membrane stimulatory environment. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 5023-5023
Author(s):  
Y. Lynn Wang ◽  
Zibo Song ◽  
Pin Lu ◽  
John P. Leonard ◽  
Morton Coleman ◽  
...  

Abstract B cell receptor (BCR) signaling plays an essential role in the pathogenesis of chronic lymphocytic leukemia. In a subset of patients with a poor clinical outcome, BCR ligation leads to increased cell metabolism and cell survival (Cancer Research66, 7158–66, 2006). Based on these findings, we tested whether targeting BCR signaling with dasatinib, an inhibitor of Src kinase, would interfere with the signaling cascade and cause death of CLL B cells. CLL leukemic cells were isolated from 34 patients and were incubated with or without dasatinib at a low dose of 128 nM. Among 34 cases, viability of leukemic cells was reduced by 2% to 90%, with an average of ~50% reduction on day 4 of ex vivo culture. Further study showed that CLL B cells undergo death by apoptosis via the intrinsic pathway which involves the generation of reactive oxygen species. Analysis of the Src family kinases showed that phosphorylation of Src, Lyn and Hck was inhibited by dasatinib not only in those cases that responded to dasatinib with apoptosis, but also in those that did not respond well (&lt;20% apoptosis). Further analysis revealed that suppressed activity of two downstream molecules, Syk and PLC Statistical analysis showed a significant correlation between CLL dasatinib response and their IgVH mutation and ZAP70 status. Cases with worse prognoses by these criteria have a better response to the kinase inhibitor. Lastly, we have also found that ZAP70 positive cases showed a greater degree of PLC


Sign in / Sign up

Export Citation Format

Share Document