scholarly journals Development of hematopoietic spleen colonies in nonirradiated genetically normal mice

Blood ◽  
1977 ◽  
Vol 50 (6) ◽  
pp. 1121-1127 ◽  
Author(s):  
Y Kitamura ◽  
M Tamai ◽  
Y Miyano ◽  
M Shimada

Abstract The question as to whether prior irradiation or injection of cytotoxic drugs is essential for the development of spleen colonies was examined in genetically normal mice. Mixtures of lymph node and bone marrow cells from C57BL mice were injected into (C57BL X CBA-T6T6) F1 hybrid mice without pretreatment. Hematopoietic nodules were observed in the spleens of F1 hybrid mice killed 18 days after injection. The average number of nodules increased linearly with increased numbers of injected bone marrow cells. Hematopoietic stem cells (CFU-S) and dividing cells in the nodules were shown to be of C57BL origin. Histologic examination showed that erythroid cell colonies predominated over granulocytic cell colonies. These results suggest that any kind of treatment that causes the depletion of CFU-S in the spleen of hosts would provide a suitable environment for the production of colonies by transplanted CFU-S.

Blood ◽  
1977 ◽  
Vol 50 (6) ◽  
pp. 1121-1127
Author(s):  
Y Kitamura ◽  
M Tamai ◽  
Y Miyano ◽  
M Shimada

The question as to whether prior irradiation or injection of cytotoxic drugs is essential for the development of spleen colonies was examined in genetically normal mice. Mixtures of lymph node and bone marrow cells from C57BL mice were injected into (C57BL X CBA-T6T6) F1 hybrid mice without pretreatment. Hematopoietic nodules were observed in the spleens of F1 hybrid mice killed 18 days after injection. The average number of nodules increased linearly with increased numbers of injected bone marrow cells. Hematopoietic stem cells (CFU-S) and dividing cells in the nodules were shown to be of C57BL origin. Histologic examination showed that erythroid cell colonies predominated over granulocytic cell colonies. These results suggest that any kind of treatment that causes the depletion of CFU-S in the spleen of hosts would provide a suitable environment for the production of colonies by transplanted CFU-S.


1975 ◽  
Vol 142 (2) ◽  
pp. 321-331 ◽  
Author(s):  
J Sprent ◽  
H V Boehmer ◽  
M Nabholz

Semiallogenetic radiation chimeras were prepared by injecting heavily irradiated F1 hybrid mice with bone marrow cells from one parental strain; the bone marrow cells were treated with anti-theta serum and complement to remove T cells and injected in large numbers (2 times 10-7 cells). The mice survived in excellent health until sacrifice 6 mo later. Thoracic duct cannulation at this stage showed that the mice possessed normal numbers of recirculating lymphocytes. Close to 100% of thoracic duct lymphocytes and lymph node cells were shown to be of donor strain origin. The capacity of lymphocytes from the chimeras to respond to host-type determinants was tested in mixed leukocyte culture and in an assay for cell-mediated lympholysis (CML). Mixed leukocyte reactions (MLR) were measured both in vitro and in vivo; tumor cells and phytohemmaglutinin-stimulated blast cells were used as target cells for measuring CML. While responding normally to third party determinants, cells from the chimeras gave a definite, though reduced MLR when exposed to host-type determinants. However, this proliferative response to host-type determinants, unlike that to third party determinants, was not associated with differentiation into cytotoxic lymphocytes. No evidence could be found that unresponsiveness in this situation was due to blocking serum factors or suppressor T cells. It is argued that the results support the concept that lymphocytes responsive in mixed leukocyte culture have a different specificity to those exerting cell-mediated lympholysis.


Blood ◽  
1996 ◽  
Vol 87 (10) ◽  
pp. 4136-4142 ◽  
Author(s):  
I Kawashima ◽  
ED Zanjani ◽  
G Almaida-Porada ◽  
AW Flake ◽  
H Zeng ◽  
...  

Using in utero transplantation into fetal sheep, we examined the capability of human bone marrow CD34+ cells fractionated based on Kit protein expression to provide long-term in vivo engraftment. Twelve hundred to 5,000 CD34+ Kit-, CD34+ Kit(low), and CD34+ Kit(high) cells were injected into a total of 14 preimmune fetal sheep recipients using the amniotic bubble technique. Six fetuses were killed in utero 1.5 months after bone marrow cell transplantation. Two fetuses receiving CD34+ Kit(low) cells showed signs of engraftment according to analysis of CD45+ cells in their bone marrow cells and karyotype studies of the colonies grown in methylcellulose culture. In contrast, two fetuses receiving CD34+ Kit(high) cells and two fetuses receiving CD34+ Kit- cells failed to show evidence of significant engraftment. Two fetuses were absorbed. A total of six fetuses receiving different cell populations were allowed to proceed to term, and the newborn sheep were serially examined for the presence of chimerism. Again, only the two sheep receiving CD34+ Kit(low) cells exhibited signs of engraftment upon serial examination. Earlier in studies of murine hematopoiesis, we have shown stage-specific changes in Kit expression by the progenitors. The studies of human cells reported here are in agreement with observations in mice, and indicate that human hematopoietic stem cells are enriched in the Kit(low) population.


Blood ◽  
1977 ◽  
Vol 50 (5) ◽  
pp. 857-866
Author(s):  
BJ Torok-Starb ◽  
NS Wolf ◽  
DR Boggs

Cellulose acetate membranes (CAM) placed in the peritoneal cavity of mice develop a macrophage layer capable of supporting in vivo hematopoietic colonies from intraperitoneally injected bone marrow cells. Modifications allowing for routine morphologic identification of colonies showed that both erythrocytic (E) and granulocytic (G) colonies occur with a consistent E:G ratio of 0.19 +/- 0.037. Stimulating recipients by bleeding or phenylhydrazine injection did not produce a significant change in the total number of colonies and a reduction in granulocytic colonies so that the E:G ratio significnatly increased. Hypertransfusion of donor animals had no effect on the number of erythroid colonies that grew on CAM of average recipients. The total colony-forming ability of bone marrow cells from genetically anemic W/WV mice was found not to differ from that of normal +/+ littermates; however, the E:G ratio of W/WV marrow in bled recipients was significantly lower (p less than 0.01) then that of +/+ marrow. These studies suggest that a CAM system supports an erythroid progenitor which is not affected by hypotransfusion of the donor animal, yet is dependent upon erythropoietin for colony formation, and that it is defective in the W/WV mouse.


1994 ◽  
Vol 14 (7) ◽  
pp. 4834-4842
Author(s):  
A Dubart ◽  
F Feger ◽  
C Lacout ◽  
F Goncalves ◽  
W Vainchenker ◽  
...  

Erythropoietin (EPO) is a prime regulator of the growth and differentiation of erythroid blood cells. The EPO receptor (EPO-R) is expressed in late erythroid progenitors (mature BFU-E and CFU-E), and EPO induces proliferation and differentiation of these cells. By introducing, with a retroviral vector, a normal EPO-R cDNA into murine adult bone marrow cells, we showed that EPO is also able to induce proliferation in pluripotent progenitor cells. After 7 days of coculture with virus-producing cells, bone marrow cells were plated in methylcellulose culture in the presence of EPO, interleukin-3, or Steel factor alone or in combination. In the presence of EPO alone, EPO-R virus-infected bone marrow cells gave rise to mixed colonies comprising erythrocytes, granulocytes, macrophages and megakaryocytes. The addition of interleukin-3 or Steel factor to methylcellulose cultures containing EPO did not significantly modify the number of mixed colonies. The cells which generate these mixed colonies have a high proliferative potential as shown by the size and the ability of the mixed colonies to give rise to secondary colonies. Thus, it appears that EPO has the same effect on EPO-R-expressing multipotent cell proliferation as would a combination of several growth factors. Finally, our results demonstrate that inducing pluripotent progenitor cells to proliferate via the EPO signaling pathway has no major influence on their commitment.


Blood ◽  
2000 ◽  
Vol 95 (2) ◽  
pp. 700-704 ◽  
Author(s):  
Kimberly A. Gush ◽  
Kai-Ling Fu ◽  
Markus Grompe ◽  
Christopher E. Walsh

Fanconi anemia (FA) is a genetic disorder characterized by bone marrow failure, congenital anomalies, and a predisposition to malignancy. FA cells demonstrate hypersensitivity to DNA cross-linking agents, such as mitomycin C (MMC). Mice with a targeted disruption of the FANCC gene (fancc −/− nullizygous mice) exhibit many of the characteristic features of FA and provide a valuable tool for testing novel therapeutic strategies. We have exploited the inherent hypersensitivity offancc −/− hematopoietic cells to assay for phenotypic correction following transfer of the FANCC complementary DNA (cDNA) into bone marrow cells. Murine fancc −/− bone marrow cells were transduced with the use of retrovirus carrying the humanfancc cDNA and injected into lethally irradiated recipients. Mitomycin C (MMC) dosing, known to induce pancytopenia, was used to challenge the transplanted animals. Phenotypic correction was determined by assessment of peripheral blood counts. Mice that received cells transduced with virus carrying the wild-type gene maintained normal blood counts following MMC administration. All nullizygous control animals receiving MMC exhibited pancytopenia shortly before death. Clonogenic assay and polymerase chain reaction analysis confirmed gene transfer of progenitor cells. These results indicate that selective pressure promotes in vivo enrichment offancc-transduced hematopoietic stem/progenitor cells. In addition, MMC resistance coupled with detection of the transgene in secondary recipients suggests transduction and phenotypic correction of long-term repopulating stem cells.


Blood ◽  
1980 ◽  
Vol 55 (6) ◽  
pp. 1040-1046 ◽  
Author(s):  
J Tumen ◽  
LB Kline ◽  
JW Fay ◽  
DC Scullin ◽  
EG Reisner ◽  
...  

Abstract Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired disorder in which erythrocytes, granulocytes, and platelets are defective, as shown by increased susceptibility of RBCs, WBCs, and platelets to complement- mediated lysis in vitro. The purpose of this study is to determine the sensitivity to complement lysis of PNH and non-PNH erythroid and myeloid precursors using the release of 59Fe and myeloperoxidase as specific markers to monitor the lytic action of complement on erythroid and myeloid cell precursors, respectively. Erythroid cell precursors in four of four PNH patients demonstrated increased sensitivity to complement-mediated lysis. Myeloid cell precursors in four of five PNH patients also exhibited increased sensitivity to complement and antibody. In addition, CFU-c growth was below normal in the marrow of seven PNH patients. These findings support the hypothesis that the defect in PNH occurs at the level of the hematopoietic stem cell.


Blood ◽  
1987 ◽  
Vol 69 (5) ◽  
pp. 1363-1367 ◽  
Author(s):  
RJ Berenson ◽  
WI Bensinger ◽  
D Kalamasz ◽  
F Schuening ◽  
HJ Deeg ◽  
...  

Abstract Previous work has shown failure of engraftment in lethally irradiated dogs when autologous marrow was depleted of Ia-positive cells with an anti-Ia antibody and complement before infusion. In the current study, we have utilized an avidin-biotin immunoadsorption procedure to obtain a population of highly enriched Ia-positive cells for autologous bone marrow transplantation in dogs given lethal irradiation. Dog marrow cells (2.4 to 7.0 X 10(9) cells) that contained 8.6% to 19.9% Ia- positive cells were treated successively with monoclonal antibody 7.2, which reacts with a framework determinant of Ia-antigen, and biotin- conjugated goat antimouse immunoglobulin. These treated cells were passed over a column of avidin-Biogel (polyacrylamide) and the adherent cells removed by mechanical agitation. Seven lethally irradiated dogs were transplanted with 5.9 to 33.4 X 10(6) recovered adherent cells per kilogram of which 69.0% to 88.0% were Ia-positive. All dogs had hematologic recovery; six are alive and well with durable engraftment and one died on day 15 posttransplant. They are immunologically normal as determined by lymph node and bone marrow biopsies, lymphocyte function, and immunophenotyping of peripheral blood and bone marrow cells. These data provide further evidence that canine hematopoietic stem cells express Ia-like antigens and that these cells are capable of complete hematopoietic and immunologic reconstitution in an autologous model.


1966 ◽  
Vol 52 (1) ◽  
pp. 35-59 ◽  
Author(s):  
Natale Pennelli ◽  
Luciano Fiore-Donati ◽  
Luigi Chieco-Bianchi ◽  
Giuseppe Tridente

Bone marrow from C57BL mice with myeloid leukemia induced by Graffi virus has been studied with the electron microscope by ultrathin section and negative stain techniques. Virus particles were usually found in different types of bone marrow cells as well as in extracellular spaces. However, the highest number of particles in various stages of maturation was observed in the cytoplasm of megakaryocytes. Two main types of virus particle were found: the immature Al particle and the mature C particle. They were morphologically indistinguishable from other murine leukemogenic viruses. In partially purified preparations studied by negative staining, some of the particles which were not penetrated by PTA, frequently showed a tail-like structure of variable length. In ultrathin sections, particles were found to originate by budding from the cell membranes. Budding of particles was particularly evident in megakaryocytes and especially within the granules and cytoplasmic vesicles or in connection with the platelet demarcating membranes. The findings of a high number of virus particles in all stages of maturation in megakaryocytes together with a certain degree of megakaryocytosis observed in the bone marrow suggest that this type of cell is possibly one of the main source of production of the virus. A few particles resembling morphologically mycoplasma were detected within the cytoplasm of some immature bone marrow cells.


Sign in / Sign up

Export Citation Format

Share Document