scholarly journals Direct radioimmune detection in human plasma of the association between factor VIII procoagulant protein and von Willebrand factor, and the interaction of von Willebrand factor-bound procoagulant VIII with platelets

Blood ◽  
1983 ◽  
Vol 61 (6) ◽  
pp. 1163-1173 ◽  
Author(s):  
JL Moake ◽  
MJ Weinstein ◽  
JH Troll ◽  
LE Chute ◽  
NM Colannino

Abstract The predominant procoagulant factor VIII (VIII:C) form in normal human plasma containing various combinations of anticoagulants and serine/cysteine protease inhibitors is a protein with mol wt 2.6 +/- 0.2 X 10(5). This protein can be detected by 125I-anti-VIII:C Fab binding and gel electrophoresis in the presence and absence of sodium dodecylsulfate (SDS) and is distinct from the subunit of factor VIII/von Willebrand factor (VIII:vWF) multimers. No larger VIII:C form is present in plasma from patients with severe congenital deficiencies of each of the coagulation factors, other than VIII:C. The mol wt approximately 2.6 X 10(5) VIII:C form is, therefore, likely to be the in vivo procoagulant form of VIII:C, rather than a partially proteolyzed, partially activated derivative of a larger precursor. About 60% of this procoagulant mol wt approximately 2.6 X 10(5) VIII:C form in plasma is present in noncovalent complexes with larger VIII:vWF multimers, which attach reversibly to platelet surfaces in the presence of ristocetin. This VIII:vWF-bound protein of mol wt approximately 2.6 X 10(5) may be the plasma procoagulant form of VIII:C which, after proteolytic activation, accelerates the IXa-mediated cleavage and activation of X postulated to occur on platelet surfaces.

Blood ◽  
1983 ◽  
Vol 61 (6) ◽  
pp. 1163-1173
Author(s):  
JL Moake ◽  
MJ Weinstein ◽  
JH Troll ◽  
LE Chute ◽  
NM Colannino

The predominant procoagulant factor VIII (VIII:C) form in normal human plasma containing various combinations of anticoagulants and serine/cysteine protease inhibitors is a protein with mol wt 2.6 +/- 0.2 X 10(5). This protein can be detected by 125I-anti-VIII:C Fab binding and gel electrophoresis in the presence and absence of sodium dodecylsulfate (SDS) and is distinct from the subunit of factor VIII/von Willebrand factor (VIII:vWF) multimers. No larger VIII:C form is present in plasma from patients with severe congenital deficiencies of each of the coagulation factors, other than VIII:C. The mol wt approximately 2.6 X 10(5) VIII:C form is, therefore, likely to be the in vivo procoagulant form of VIII:C, rather than a partially proteolyzed, partially activated derivative of a larger precursor. About 60% of this procoagulant mol wt approximately 2.6 X 10(5) VIII:C form in plasma is present in noncovalent complexes with larger VIII:vWF multimers, which attach reversibly to platelet surfaces in the presence of ristocetin. This VIII:vWF-bound protein of mol wt approximately 2.6 X 10(5) may be the plasma procoagulant form of VIII:C which, after proteolytic activation, accelerates the IXa-mediated cleavage and activation of X postulated to occur on platelet surfaces.


Blood ◽  
1996 ◽  
Vol 87 (5) ◽  
pp. 1809-1816 ◽  
Author(s):  
AJ Vlot ◽  
SJ Koppelman ◽  
JC Meijers ◽  
C Dama ◽  
HM van den Berg ◽  
...  

The binding of factor VIII to von Willebrand factor (vWF) is essential for the protection of factor VIII against proteolytic degradation in plasma. We have characterized the binding kinetics of human factor VIII with vWF using a centrifugation binding assay. Purified or plasma vWF was immobilized with a monoclonal antibody (MoAb RU1) covalently linked to Sepharose (Pharmacia LKB Biotechnology, Uppsala, Sweden). Factor VIII was incubated with vWF-RU1-Sepharose and unbound factor VIII was separated from bound factor VIII by centrifugation. The amount of bound factor VIII was determined from the decrease of factor VIII activity in the supernatant. Factor VIII binding to vWF-RU1-Sepharose conformed to the Langmuir model for independent binding sites with a Kd of 0.46 +/- 0.12 nmol/L, and a stoichiometry of 1.3 factor VIII molecules per vWF monomer at saturation, suggesting that each vWF subunit contains a binding site for factor VIII. Competition experiments were performed with a recombinant vWF (deltaA2-rvWF), lacking residues 730 to 910 which contain the epitope for MoAB RU1. DeltaA2-rvWF effectively displaced previously bound factor VIII, confirming that factor VIII binding to vWF-RU1-Sepharose was reversible. To determine the association rate constant (k(on)) and the dissociation rate constant (k(off)), factor VIII was incubated with vWF-RU1-Sepharose for various time intervals. The observed association kinetics conformed to a simple bimolecular association reaction with k(on) = 5.9 +/- 1.9 x 10(6) M(-1) s(-1) and k(off) = 1.6 +/- 1.2 x 10(-3) s(-1) (mean +/- SD). Similar values were obtained from the dissociation kinetics measured after dilution of preformed factor VIII-vWF-RU1-Sepharose complexes. Identical rate constants were obtained for factor VIII binding to vWF from normal pooled plasma and to vWF from plasma of patients with hemophilia A. The kinetic parameters in this report allow estimation of the time needed for complex formation in vivo in healthy individuals and in patients with hemophilia A, in which monoclonally purified or recombinant factor VIII associates with endogenous vWF. Using the plasma concentration of vWF (50 nmol/L in monomers) and the obtained values for K(on) and K(off), the time needed to bind 50% of factor VIII is approximately 2 seconds.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1789-1789
Author(s):  
Anil K. Chauhan ◽  
Janka Kisucka ◽  
Colin B. Lamb ◽  
Wofgang Bergmeier ◽  
Denisa D. Wagner

Abstract von Willebrand factor (VWF) is a large adhesive glycoprotein synthesized in megakaryocytes and endothelial cells and stored in platelet a-granules and Weibel-Palade bodies respectively. It protects Factor VIII (FVIII) from proteolysis and mediates the initial contact of platelets with the injured vessel wall thus playing an important role in hemostasis and thrombosis. VWF is crucial for the formation of occlusive thrombi at arterial shear rates. However, with only a few conflicting studies published, the role of VWF in venous thrombosis is still unclear. Therefore in order to understand the in vivo role of VWF and FVIII in experimental thrombosis under venous flow conditions, we decided to evaluate thrombosis in VWF−/−, FVIII−/− and transgenic mice lacking the GPIbα extracellular domain which was replaced by human Interleukin-4 receptor (IL4Rα/GPIbα-tg). In ferric chloride-injured veins, platelet adhesion to subendothelium is decreased and thrombus growth is impaired in the VWF−/− mice when compared to wild-type (WT). In the WT mice, thrombi grew to occlusive size with a mean time of 18 min and all injured venules occluded, whereas in VWF−/− mice none of the vessels occluded by 40 min after injury, when observation was terminated. Venules of mice deficient in FVIII treated similarly also did not occlude because of embolization. The infusion of recombinant human-FVIII (r-hu-FVIII) in FVIII−/− mice normalized the occlusion time to WT values. We also observed thrombus instability in the VWF−/− mice, which was due to lower FVIII levels in these mice since r-huFVIII restored thrombus stability i.e. prevented breaking of the thrombi with large platelet aggregates moving downstream. Despite normalization of blood clotting time and thrombus stability after r-FVIII infusion, the VWF−/− thrombi grew at a slower rate than WT and the venules did not occlude. In transgenic mice lacking the GPIbα extracellular domain, all injured venules occluded. Thus, VWF uses other adhesion receptors besides GPIbα in thrombus growth under venous shear conditions. Our studies document crucial independent roles for VWF and FVIII in experimental thrombosis under venous flow conditions in vivo.


1989 ◽  
Vol 62 (02) ◽  
pp. 690-693
Author(s):  
M F López-Fernández ◽  
C López-Berges ◽  
J Fermoso ◽  
A Martín-Pascual ◽  
J J Sánchez-Hernández ◽  
...  

SummaryFactor VIII and von Willebrand factor proteins were evaluated in 115 patients having the chronic phase of the Toxic Epidemic Syndrome (TES), a new multisystemic disease probably caused by the ingestion of denatured rapeseed oil, and in 50 control volunteers. Higher circulating levels of factor VIII procoagulant activity (VIII :C) (158 ± 58.4 U/dl), von Willebrand factor antigen (vWF: Ag) (166.1 ± 55.5 U/dl) and von Willebrand factor ristocetin cofactor activity (vWF:RCo) (178.7 ± 55.2 U/dl) were seen in TES patients (p < 0.001, TES patients versus control subjects, for each parameter). The increased levels of vWF:Ag and vWF:RCo observed in TES patients correlated with the scleroderma like lesion of the skin, with the sicca syndrome and with Raynaud's phenomenon (p < 0.01), but not with other clinical manifestations. The multimeric analysis of vWF in 92% of the TES patients was similar to that found in normal plasma, but in the remaining 8% a very slight increase of larger vWF multimers in plasma were observed. The raised levels of vWF found in TES patients in the chronic phase may reflect an “in vivo” vascular injury.


1980 ◽  
Vol 44 (02) ◽  
pp. 056-061 ◽  
Author(s):  
Elizabeth V Potter ◽  
Martha A Shaughnessy ◽  
David Green

SummaryFactor VIII/von Willebrand factor (vWF) was sought by immunofluorescence in or on canine platelets and blood vessels. None was found on normal canine platelets and little was present in normal canine arteries, veins and capillaries compared with normal human blood vessels. However, free granules of vWF were scattered in platelet-rich canine plasma and occasional granules appeared on small clumps of platelets when ristocetin or collagen was added to the plasma. When the same platelets were suspended in human plasma and ristocetin or collagen was added, more clumps were formed and more vWF (human) was associated with these clumps. When thrombin was added to canine platelets in either canine or human serum, more solid, small clumps of platelets were formed and stained with the anti-vWF sera. When thrombin was added to canine platelets in either canine or human plasma, a single large clot was formed which stained brightly for vWF.


2018 ◽  
Vol 17 (1) ◽  
pp. 99-109 ◽  
Author(s):  
I. M. Rietveld ◽  
W. M. Lijfering ◽  
S. Cessie ◽  
M. H. A. Bos ◽  
F. R. Rosendaal ◽  
...  

1975 ◽  
Vol 141 (5) ◽  
pp. 1101-1113 ◽  
Author(s):  
R L Nachman ◽  
E A Jaffe

Subcellular membrane and granule fractions derived from human platelets contain factor VIIII antigen and von Willebrand factor activity but not factor VII procoagulant activity. Circulating platelets constitute a significant reservoir of plasma factor VIII antigen, containing approximately 15% of the amount of factor VIII antigen present in platelet-poor plasma. The antibiotic ristocetin, which aggregates human platelets in the presence of von Willebrand factor, nonspecifically precipitates platelet membrane factor VIII antigen. Thus normal platelets contain surface-bound as well as internally stored von Willebrand factor, a protein synthesized by endothelial cells which is necessary for normal platelet function in vivo.


Sign in / Sign up

Export Citation Format

Share Document