normal human blood
Recently Published Documents


TOTAL DOCUMENTS

186
(FIVE YEARS 5)

H-INDEX

33
(FIVE YEARS 1)

2021 ◽  
Vol 19 (10) ◽  
pp. 01-07
Author(s):  
Raneem Mohammed ◽  
Wajeha Abd-Aldaim ◽  
Sadiq Hassan

The blood of human has a number of optical characteristics resulting from irradiation by the beam of laser were studied. The samples of healthy blood were collimated of normal persons and persons with thalassemia, the sample of blood were exposed to laser beam. Continuous wave (CW) for diode pumped solid state lasers (DPSSL’S) were utilized in irradiate the samples of blood with wavelength (473 nm, 20 mW). The laser exposure time varied between (5 and10) min for each sample. Laser radiation has a great role in the absorption effects of the normal human blood after being compered with absorption spectrum of donors with thalassemia.


2020 ◽  
Vol 44 (5) ◽  
pp. 227-236 ◽  
Author(s):  
Siddharth Singh Yadav ◽  
Basant Singh Sikarwar ◽  
Priya Ranjan ◽  
Rajiv Janardhanan ◽  
Ayush Goyal

2019 ◽  
Vol 92 (2) ◽  
pp. 1956-1962 ◽  
Author(s):  
James Kim ◽  
Jenifer Gómez-Pastora ◽  
Christopher J. Gilbert ◽  
Mitchell Weigand ◽  
Nicole A. Walters ◽  
...  

2019 ◽  
Vol 95 (5) ◽  
pp. 478-487 ◽  
Author(s):  
James Kim ◽  
Jenifer Gómez‐Pastora ◽  
Mitchell Weigand ◽  
Marnie Potgieter ◽  
Nicole A. Walters ◽  
...  

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1071-1071
Author(s):  
Yankai Zhang ◽  
Samir K. Ballas ◽  
Vivien A Sheehan

Abstract Background: Patients with sickle cell disease (SCD) experience acute pain episodes in early childhood; over 50% of adult SCD patients go on to develop chronic pain. In animal models, microglia, derived from hematopoietic stem cells, play an important role in the transition from acute to chronic pain; in patients with chronic pain microglia are often activated with minimal stimuli, releasing TNF-alpha and stimulating neurons. Research involving microglia has been stymied by difficulty in obtaining and culturing microglia, particularly from humans. We therefore propose to culture microglia-like cells from peripheral blood mononuclear cells (PBMC) from pediatric patients with SCD with and without chronic pain (defined as pain for more than 50% of days for at least 3 months) and from normal blood donors. Objectives: Our goal was to determine if our cultured cells exhibited microglia morphology and surface markers, could be activated with inflammatory stimuli, and if donor characteristics were retained in the culture derived microglia-like cells. Methods: PBMC were obtained from peripheral blood by Ficoll separation from three unique patients with SCD and no history of chronic pain (SCD CP-), peripheral blood from three unique patients with SCD with history of chronic pain (SCD CP+), or buffy coat from three human blood donors. PBMC were cultured with recombinant human GM-CSF (10 ng/ml; R&D Systems, MN), recombinant human IL-34 (100 ng/ml; R&D Systems), as previously described (Ohgidani et al, 2014) to induce ramified microglia. On day 7 of culture, cells were collected and morphology analyzed by phase contrast microscopy, phenotyped by flow cytometry by staining with CD11b and CD45 antibodies, indirect immunofluorescence performed with anti-CX3CR1antibodies and imaging by confocal laser scanning microscope. Microglia-like cells from 3 normal blood donors, 3 SCD CP- and 3 SCD CP+, were stimulated by 100 ng/mL LPS for 24 hours, beginning on day 6 of culture. Deramification (activation) was assessed by immunofluorescence using anti-Iba1, and by flow using anti-CD68. Results: PBMCs from patients with SCD ± CP and normal blood donors developed microglial morphology, namely, soma bodies with branched collaterals, after incubation with GM-CSF and IL-34. When subjected to flow cytometry, treated cells were CD11bhigh and CD45low; fluorescence microscopy revealed CX3CR1 positivity in the cultured cells, all consistent with accepted microglia phenotype. PBMCs untreated with GM-CSF and IL-34 maintained their round morphology, and were CD11blow, CD45high by FACS. Microglia-like morphology differed significantly between PBMC sources. Microglia-like cells from SCD CP+ had shorter and fewer branches than normal individuals; branching of microglia-like cells from SCD CP- were intermediate in number and length, greater than to SCD CP+ but less than normal individuals. When treated with LPS, nearly 100% of microglia-like cells derived from patients with SCD CP+ became amoeboid in shape, indicating microglial deramification, or activation, compared to approximately 25% of microglial-like cells derived from normal human blood donors or SCD CP-. We also assessed deramification through flow measurement of CD68, a marker found on activated microglia and found that the microglia-like cells derived from HSPCs from SCD CP+ patients had significantly higher CD68 positivity compared to microglia-like cells derived from HSPCs from normal human blood donors or SCD CP-, and significantly higher Iba1 positivity as measured by immunofluorescence. Conclusions: We established the microglia-like nature of the cultured PBMCs derived from patients with SCD±CP and normal blood donors through morphologic examination and confirmation of characteristic surface markers via flow and fluorescence microscopy, and through demonstration of activation with LPS. Our microglial-like cells derived from patients with SCD CP+ were activated at higher percentages by LPs treatment than microglial-like cells derived from normal human blood donors and SCD CP-, suggesting that donor characteristics are retained by the microglial-like cells developed in culture. We propose to use this model system to derive mechanistic insights into the development of chronic pain in SCD, and to screen pharmacologic agents to treat and prevent chronic pain. Figure Figure. Disclosures No relevant conflicts of interest to declare.


Nature ◽  
2018 ◽  
Vol 561 (7724) ◽  
pp. 473-478 ◽  
Author(s):  
Henry Lee-Six ◽  
Nina Friesgaard Øbro ◽  
Mairi S. Shepherd ◽  
Sebastian Grossmann ◽  
Kevin Dawson ◽  
...  

Author(s):  
Krishna Veni R ◽  
Brindha Devi P ◽  
Ivo Romauld S

Blood is a liquid tissue, in which abundant chemical factors and millions of different cells are dissolved. It is one of the most demanding sources in clinical and medical aspects. The issues and cost of human blood collection and storage directed this procedure toward the use of alternative blood. Thus, came an invention of artificial blood and blood substitutes. These alternative blood or blood substitute is a substance which is made to play as a substitute of erythrocytes. Thus, the main objective is to replace the normal human blood with artificial blood substitutes in the place of blood transfusion during surgeries and organ transfusion. Two major and focused blood substitutes in pharmaceutical aspects are perfluorocarbons and hemoglobin-based oxygen carriers (HBOC’s). Among these HBOCs vaguely resemble normal human blood. These blood substitutes are to allow flow through the blood stream to carry the oxygen and supply it to heart and other parts of the blood. They are used to fill the lost fluid volume. They are also called as plastic blood with iron atom as the base. They are found to serve as a good oxygen carrier. The results showed by these products are discussed, and they proved that they can act as a blood substitute and also they can reach the human tissue easier than erythrocytes and can control oxygen directly. However, these artificial blood products are being processed in research laboratories for good outcome. Their important functions are oxygen carrying capacity and to replace the lost blood volume in the human body. Their special features are survivability over a wider range of temperatures, eliminating cross matching, cost efficient, pathogen free, long shelf life, minimal side effects. Thus, artificial blood products are really a good alternative source which we need for replacing normal human blood.


2016 ◽  
Vol 5 (10) ◽  
pp. 4920
Author(s):  
Amar M. Ali ◽  
Hussain. J. Mohammed*

A new, simple, sensitive and rapid spectrophotometric method is proposed for the determination of trace amount of Nickel (II). The method is based on the formation of a 1:2 complex with 4-(4-((2-hydroxy-6-nitrophenyl) diazenyl) -3-methyl-5-oxo-2, 5-dihydro-1H-pyrazol-1-yl) benzenesulfonic acid (2-ANASP) as a new reagent is developed. The complex has a maximum absorption at 516 nm and εmax of 1. 84 X 105 L. mol-1. cm-1. A linear correlation (0. 25 – 4. 0μg. ml-1) was found between absorbance at λmax and concentration. The accuracy and reproducibility of the determination method for various known amounts of Nickel (II) were tested. The results obtained are both precise (RSD was 1. 2 %) and accurate (relative error was 0. 787 %). The effect of diverse ions on the determination of Nickel (II) to investigate the selectivity of the method were also studied. The stability constant of the product was 0. 399 X 106 L. mol-1. The proposed method was successfully applied to the analysis of diabetes blood and normal human blood. 


Sign in / Sign up

Export Citation Format

Share Document