A monokine regulates colony-stimulating activity production by vascular endothelial cells

Blood ◽  
1983 ◽  
Vol 62 (3) ◽  
pp. 663-668 ◽  
Author(s):  
GC Jr Bagby ◽  
E McCall ◽  
KA Bergstrom ◽  
D Burger

Abstract Human umbilical vein endothelial cells were cultured in supernatants of peripheral blood monocytes that had been cultured for 3 days with and without lactoferrin. Colony-stimulating activity (CSA) was measured in supernatants of the endothelial cell cultures and appropriate control cultures using normal, T-lymphocyte-depleted, phagocyte-depleted, low- density bone marrow cells in colony growth (CFU-GM) assays. Monocyte- conditioned medium contained a nondialyzable, heat labile factor that enhanced 4–15--fold the production of CSA by endothelial cells. The addition of lactoferrin to monocyte cultures reduced the activity of this monokine by 69%. Lactoferrin did not inhibit CSA production by monokine-stimulated endothelial cells. Therefore, vascular endothelial cells are potent sources of CSA, the production of CSA by these cells is regulated by a stimulatory monokine, and the production and/or release of the monokine is inhibited by lactoferrin, a neutrophil- derived putative feedback inhibitor of granulopoiesis. Inasmuch as a similar monokine is known to stimulate CSA production by fibroblasts and T lymphocytes, we suggest that mononuclear phagocytes play a pivotal role in the regulation of granulopoiesis by recruiting a variety of cell types to produce CSA.

Blood ◽  
1983 ◽  
Vol 62 (3) ◽  
pp. 663-668
Author(s):  
GC Jr Bagby ◽  
E McCall ◽  
KA Bergstrom ◽  
D Burger

Human umbilical vein endothelial cells were cultured in supernatants of peripheral blood monocytes that had been cultured for 3 days with and without lactoferrin. Colony-stimulating activity (CSA) was measured in supernatants of the endothelial cell cultures and appropriate control cultures using normal, T-lymphocyte-depleted, phagocyte-depleted, low- density bone marrow cells in colony growth (CFU-GM) assays. Monocyte- conditioned medium contained a nondialyzable, heat labile factor that enhanced 4–15--fold the production of CSA by endothelial cells. The addition of lactoferrin to monocyte cultures reduced the activity of this monokine by 69%. Lactoferrin did not inhibit CSA production by monokine-stimulated endothelial cells. Therefore, vascular endothelial cells are potent sources of CSA, the production of CSA by these cells is regulated by a stimulatory monokine, and the production and/or release of the monokine is inhibited by lactoferrin, a neutrophil- derived putative feedback inhibitor of granulopoiesis. Inasmuch as a similar monokine is known to stimulate CSA production by fibroblasts and T lymphocytes, we suggest that mononuclear phagocytes play a pivotal role in the regulation of granulopoiesis by recruiting a variety of cell types to produce CSA.


1978 ◽  
Vol 77 (3) ◽  
pp. 774-788 ◽  
Author(s):  
D Gospodarowicz ◽  
KD Brown ◽  
CR Birdwell ◽  
BR Zetter

Because the response of human endothelial cells to growth factors and conditioning agents has broad implications for our understanding of wound healing angiogenesis, and human atherogenesis, we have investigated the responses of these cells to the fibroblast (FGF) and epidermal growth factors (EGF), as well as to the protease thrombin, which has been previously shown to potentiate the growth response of other cell types of FGF and EGF. Because the vascular endothelial cells that form the inner lining of blood vessels may be expected to be exposed to high thrombin concentrations after trauma or in pathological states associated with thrombosis, they are of particular interest with respect to the physiological role of this protease in potentiating cell proliferation. Our results indicate that human vascular endothelial cells respond poorly to either FGF or thrombin alone. In contrast, when cells are maintained in the presence of thrombin, their proliferative response to FGF is greatly increased even in cultures seeded at a density as low as 3 cells/mm2. Human vascular endothelial cells also respond to EGF and thrombin, although their rate of proliferation is much slower than when maintained with FGF and thrombin. In contrast, bovine vascular endothelial cells derived from vascular territories as diverse as the bovine heart, aortic arch, and umbilical vein respond maximally to FGF alone and neither respond to nor bind EGF. Furthermore, the response of bovine vascular endothelial cells to FGF was not potentiated by thrombin, indicating that the set of factors controlling the proliferation of vascular endothelial cells could be species-dependent. The requirement of cultured human vascular endothelial cells for thrombin could explain why the human cells, in contrast to bovine endothelial cells, are so difficult to maintain in tissue culture. Our results demonstrate that by using FGF and thrombin one can develop cultures of human vascular endothelial cells capable of being passage repeatedly while maintaining a high mitotic index. The stock cultures used for these studies have been passed weekly with a split ratio of 1 to 10 and are currently in their 30th passage. These cultures are indistinguishable from earlier passages when examined for the presence of Weibel-Palade bodies or Factor VIII antigen. We conclude that the use of FGF and thrombin can prevent the precocious senescence observed in most human endothelial cells cultures previously described.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Purum Kang ◽  
Seung Ho Han ◽  
Hea Kyung Moon ◽  
Jeong-Min Lee ◽  
Hyo-Keun Kim ◽  
...  

The purpose of the present study is to examine the effects of essential oil ofCitrus bergamiaRisso (bergamot, BEO) on intracellular Ca2+in human umbilical vein endothelial cells. Fura-2 fluorescence was used to examine changes in intracellular Ca2+concentration[Ca2+]i. In the presence of extracellular Ca2+, BEO increased[Ca2+]i, which was partially inhibited by a nonselective Ca2+channel blocker La3+. In Ca2+-free extracellular solutions, BEO increased[Ca2+]iin a concentration-dependent manner, suggesting that BEO mobilizes intracellular Ca2+. BEO-induced[Ca2+]iincrease was partially inhibited by a Ca2+-induced Ca2+release inhibitor dantrolene, a phospholipase C inhibitor U73122, and an inositol 1,4,5-triphosphate (IP3)-gated Ca2+channel blocker, 2-aminoethoxydiphenyl borane (2-APB). BEO also increased[Ca2+]iin the presence of carbonyl cyanide m-chlorophenylhydrazone, an inhibitor of mitochondrial Ca2+uptake. In addition, store-operated Ca2+entry (SOC) was potentiated by BEO. These results suggest that BEO mobilizes Ca2+from primary intracellular stores via Ca2+-induced and IP3-mediated Ca2+release and affect promotion of Ca2+influx, likely via an SOC mechanism.


1992 ◽  
Vol 176 (6) ◽  
pp. 1665-1671 ◽  
Author(s):  
E A Frey ◽  
D S Miller ◽  
T G Jahr ◽  
A Sundan ◽  
V Bazil ◽  
...  

CD14 is a 55-kD protein found both as a glycosylphosphatidyl inositol-linked protein on the surface of mononuclear phagocytes and as a soluble protein in the blood. CD14 on the cell membrane (mCD14) has been shown to serve as a receptor for complexes of lipopolysaccharide (LPS) with LPS binding protein, but a function for soluble CD14 (sCD14) has not been described. Here we show that sCD14 enables responses to LPS by cells that do not express CD14. We have examined induction of endothelial-leukocyte adhesion molecule 1 expression by human umbilical vein endothelial cells, interleukin 6 secretion by U373 astrocytoma cells, and cytotoxicity of bovine endothelial cells. None of these cell types express mCD14, yet all respond to LPS in a serum-dependent fashion, and all responses are completely blocked by anti-CD14 antibodies. Immunodepletion of sCD14 from serum prevents responses to LPS, and the responses are restored by addition of sCD14. These studies suggest that a surface anchor is not needed for the function of CD14 and further imply that sCD14 must bind to additional proteins on the cell surface to associate with the cell and transduce a signal. They also indicate that sCD14 may have an important role in potentiating responses to LPS in cells lacking mCD14.


1987 ◽  
Vol 242 (2) ◽  
pp. 347-352 ◽  
Author(s):  
D M L Morgan

The responses of human umbilical-vein vascular endothelial cells in culture to the naturally occurring polyamines spermine, spermidine and putrescine, their acetyl derivatives and oxidation products were examined. In the absence of human polyamine oxidase, exposure of cells to polyamines (up to 160 microM) had no adverse effects. In the presence of polyamine oxidase, spermine and spermidine were cytotoxic, but putrescine was not. Acetylation of the aminopropyl group of spermidine or both aminopropyl groups of spermine prevented this cytotoxicity. The amino acids corresponding to the polyamines, representing a further stage of oxidation, were also without effect. The cytotoxic effects were irreversible. Use of bovine serum amine oxidase in place of the human enzyme gave qualitatively similar results.


1992 ◽  
Vol 263 (5) ◽  
pp. L595-L601 ◽  
Author(s):  
C. Tiruppathi ◽  
H. Lum ◽  
T. T. Andersen ◽  
J. W. Fenton ◽  
A. B. Malik

We examined the binding characteristics of the recently described thrombin receptor amino-terminal peptide, SFLLRNPNDKYEPF (T. K. H. Vu, D. T. Hung, V. I. Wheaton, and S. R. Coughlin. Cell 64: 1057-1068, 1991), termed TRP-14, and its effect in activating intracellular calcium transients in pulmonary vascular endothelial cells. Binding of 125I-labeled TRP-14 was found to be saturable with a affinity constant of 2 microM and maximum binding of 41 pmol/mg of cell protein. The 125I-labeled TRP-14 also interacted with bovine pulmonary microvessel endothelial cells, human umbilical vein endothelial cells, and porcine pulmonary artery smooth muscle cells. Binding of 125I-labeled diisopropylphosphoryl (DIP)-alpha-thrombin, which is catalytically inactive but binds to thrombin receptors, was not inhibited by TRP-14 or vice versa, indicating that TRP-14 did not compete for the alpha-thrombin binding site(s) on the endothelial cell surface. TRP-14 (> 1 microM) increased the concentration of intracellular calcium ([Ca2+]i) in endothelial cells with kinetics similar to the increase in [Ca2+]i triggered by alpha-thrombin. In contrast, DIP-alpha-thrombin did not increase [Ca2+]i and also did not prevent the rise in [Ca2+]i induced by the subsequent challenge with either TRP-14 or alpha-thrombin. Because the generation of TRP-14 by the proteolytically active forms of thrombin stimulated a rise in endothelial [Ca2+]i, TRP-14 may be the agonist responsible for the activation of the alpha-thrombin receptor in pulmonary vascular endothelial cells.(ABSTRACT TRUNCATED AT 250 WORDS)


Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1645
Author(s):  
Ikjun Lee ◽  
Shuyu Piao ◽  
Seonhee Kim ◽  
Harsha Nagar ◽  
Su-Jeong Choi ◽  
...  

Elevated plasma homocysteine levels can induce vascular endothelial dysfunction; however, the mechanisms regulating homocysteine metabolism in impaired endothelial cells are currently unclear. In this study, we deleted the essential mitoribosomal gene CR6 interacting factor 1 (CRIF1) in human umbilical vein endothelial cells (HUVECs) and mice to induce endothelial cell dysfunction; then, we monitored homocysteine accumulation. We found that CRIF1 downregulation caused significant increases in intracellular and plasma concentrations of homocysteine, which were associated with decreased levels of folate cycle intermediates such as 5-methyltetrahydrofolate (MTHF) and tetrahydrofolate (THF). Moreover, dihydrofolate reductase (DHFR), a key enzyme in folate-mediated metabolism, exhibited impaired activity and decreased protein expression in CRIF1 knockdown endothelial cells. Supplementation with folic acid did not restore DHFR expression levels or MTHF and homocysteine concentrations in endothelial cells with a CRIF1 deletion or DHFR knockdown. However, the overexpression of DHFR in CRIF1 knockdown endothelial cells resulted in decreased accumulation of homocysteine. Taken together, our findings suggest that CRIF1-deleted endothelial cells accumulated more homocysteine, compared with control cells; this was primarily mediated by the disruption of DHFR expression.


2021 ◽  
Vol 22 (23) ◽  
pp. 13084
Author(s):  
Seung-Jin Lee ◽  
Dong-Soon Im

GPR55 recognizes several lipid molecules such as lysophosphatidylinositol. GPR55 expression was reported in human monocytes. However, its role in monocyte adhesion and atherosclerosis development has not been studied. The role of GPR55 in monocyte adhesion and atherosclerosis development was investigated in human THP-1 monocytes and ApoE−/− mice using O-1602 (a potent agonist of GPR55) and CID16020046 (a specific GPR55 antagonist). O-1602 treatment significantly increased monocyte adhesion to human umbilical vein endothelial cells, and the O-1602-induced adhesion was inhibited by treatment with CID16020046. O-1602 induced the expression of Mac-1 adhesion molecules, whereas CID16020046 inhibited this induction. Analysis of the promoter region of Mac-1 elucidated the binding sites of AP-1 and NF-κB between nucleotides −750 and −503 as GPR55 responsive elements. O-1602 induction of Mac-1 was found to be dependent on the signaling components of GPR55, that is, Gq protein, Ca2+, CaMKK, and PI3K. In Apo−/− mice, administration of CID16020046 ameliorated high-fat diet-induced atherosclerosis development. These results suggest that high-fat diet-induced GPR55 activation leads to the adhesion of monocytes to endothelial cells via induction of Mac-1, and CID16020046 blockage of GPR55 could suppress monocyte adhesion to vascular endothelial cells through suppression of Mac-1 expression, leading to protection against the development of atherosclerosis.


Sign in / Sign up

Export Citation Format

Share Document