scholarly journals Citrus bergamiaRisso Elevates Intracellular Ca2+in Human Vascular Endothelial Cells due to Release of Ca2+from Primary Intracellular Stores

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Purum Kang ◽  
Seung Ho Han ◽  
Hea Kyung Moon ◽  
Jeong-Min Lee ◽  
Hyo-Keun Kim ◽  
...  

The purpose of the present study is to examine the effects of essential oil ofCitrus bergamiaRisso (bergamot, BEO) on intracellular Ca2+in human umbilical vein endothelial cells. Fura-2 fluorescence was used to examine changes in intracellular Ca2+concentration[Ca2+]i. In the presence of extracellular Ca2+, BEO increased[Ca2+]i, which was partially inhibited by a nonselective Ca2+channel blocker La3+. In Ca2+-free extracellular solutions, BEO increased[Ca2+]iin a concentration-dependent manner, suggesting that BEO mobilizes intracellular Ca2+. BEO-induced[Ca2+]iincrease was partially inhibited by a Ca2+-induced Ca2+release inhibitor dantrolene, a phospholipase C inhibitor U73122, and an inositol 1,4,5-triphosphate (IP3)-gated Ca2+channel blocker, 2-aminoethoxydiphenyl borane (2-APB). BEO also increased[Ca2+]iin the presence of carbonyl cyanide m-chlorophenylhydrazone, an inhibitor of mitochondrial Ca2+uptake. In addition, store-operated Ca2+entry (SOC) was potentiated by BEO. These results suggest that BEO mobilizes Ca2+from primary intracellular stores via Ca2+-induced and IP3-mediated Ca2+release and affect promotion of Ca2+influx, likely via an SOC mechanism.

2017 ◽  
Vol 313 (3) ◽  
pp. R272-R279 ◽  
Author(s):  
Masayoshi Yamamoto ◽  
Katsuyuki Umebashi ◽  
Akinori Tokito ◽  
Junichi Imamura ◽  
Michihisa Jougasaki

Although interleukin-33 (IL-33), a member of the IL-1 cytokine family, plays proinflammatory roles in immune cells as an “alarmin,” little is known regarding the biological actions of IL-33 on vascular endothelial cells. To investigate the effects of IL-33 on vascular endothelial cells, we first screened the IL-33-regulated proteins in human umbilical vein endothelial cells (HUVECs) using a dot blot array and observed that IL-33 markedly increased growth-regulated oncogene-α (GRO-α), a chemokine that is also known as chemokine (C-X-C motif) ligand 1 (CXCL1). Real-time reverse transcription PCR and ELISA demonstrated that IL-33 induced GRO-α expression and secretion in HUVECs in a dose- and a time-dependent manner. Western immunoblot assay revealed that IL-33 activated the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun NH2 -terminal kinase (JNK). In addition, translocation of nuclear factor-κB (NF-κB) p65 to the nucleus of HUVECs was observed by IL-33 stimulation. Furthermore, treatment with pharmacological inhibitors against ERK1/2 (PD98059), JNK (SP600125), or NF-κB (BAY11-7085) significantly suppressed IL-33-induced GRO-α gene expression and secretion from HUVECs. Moreover, immunohistochemical staining demonstrated that IL-33 and GRO-α coexpressed in the endothelium of human carotid atherosclerotic plaque. Taken together, the present study indicates that IL-33 localized in the human atherosclerotic plaque increases GRO-α mRNA expression and protein secretion via activation of ERK1/2, JNK, and NF-κB in HUVECs, suggesting that IL-33 plays an important role in the pathophysiology and development of atherosclerosis.


2007 ◽  
Vol 293 (1) ◽  
pp. C458-C467 ◽  
Author(s):  
Jian-Zhong Sheng ◽  
Andrew P. Braun

The contribution of small-conductance (SKCa) and intermediate-conductance Ca2+-activated K+ (IKCa) channels to the generation of nitric oxide (NO) by Ca2+-mobilizing stimuli was investigated in human umbilical vein endothelial cells (HUVECs) by combining single-cell microfluorimetry with perforated patch-clamp recordings to monitor agonist-evoked NO synthesis, cytosolic Ca2+ transients, and membrane hyperpolarization in real time. ATP or histamine evoked reproducible elevations in NO synthesis and cytosolic Ca2+, as judged by 4-amino-5-methylamino-2′,7′-difluorofluorescein (DAF-FM) and fluo-3 fluorescence, respectively, that were tightly associated with membrane hyperpolarizations. Whereas evoked NO synthesis was unaffected by either tetraethylammonium (10 mmol/l) or BaCl2 (50 μmol/l) + ouabain (100 μmol/l), depleting intracellular Ca2+ stores by thapsigargin or removing external Ca2+ inhibited NO production, as did exposure to high (80 mmol/l) external KCl. Importantly, apamin and charybdotoxin (ChTx)/ triarylmethane (TRAM)-34, selective blockers SKCa and IKCa channels, respectively, abolished both stimulated NO synthesis and membrane hyperpolarization and decreased evoked Ca2+ transients. Apamin and TRAM-34 also inhibited an agonist-induced outwardly rectifying current characteristic of SKCa and IKCa channels. Under voltage-clamp control, we further observed that the magnitude of agonist-induced NO production varied directly with the degree of membrane hyperpolarization. Mechanistically, our data indicate that SKCa and IKCa channel-mediated hyperpolarization represents a critical early event in agonist-evoked NO production by regulating the influx of Ca2+ responsible for endothelial NO synthase activation. Moreover, it appears that the primary role of agonist-induced release of intracellular Ca2+ stores is to trigger the opening of both KCa channels along with Ca2+ entry channels at the plasma membrane. Finally, the observed inhibition of stimulated NO synthesis by apamin and ChTx/TRAM-34 demonstrates that SKCa and IKCa channels are essential for NO-mediated vasorelaxation.


Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1645
Author(s):  
Ikjun Lee ◽  
Shuyu Piao ◽  
Seonhee Kim ◽  
Harsha Nagar ◽  
Su-Jeong Choi ◽  
...  

Elevated plasma homocysteine levels can induce vascular endothelial dysfunction; however, the mechanisms regulating homocysteine metabolism in impaired endothelial cells are currently unclear. In this study, we deleted the essential mitoribosomal gene CR6 interacting factor 1 (CRIF1) in human umbilical vein endothelial cells (HUVECs) and mice to induce endothelial cell dysfunction; then, we monitored homocysteine accumulation. We found that CRIF1 downregulation caused significant increases in intracellular and plasma concentrations of homocysteine, which were associated with decreased levels of folate cycle intermediates such as 5-methyltetrahydrofolate (MTHF) and tetrahydrofolate (THF). Moreover, dihydrofolate reductase (DHFR), a key enzyme in folate-mediated metabolism, exhibited impaired activity and decreased protein expression in CRIF1 knockdown endothelial cells. Supplementation with folic acid did not restore DHFR expression levels or MTHF and homocysteine concentrations in endothelial cells with a CRIF1 deletion or DHFR knockdown. However, the overexpression of DHFR in CRIF1 knockdown endothelial cells resulted in decreased accumulation of homocysteine. Taken together, our findings suggest that CRIF1-deleted endothelial cells accumulated more homocysteine, compared with control cells; this was primarily mediated by the disruption of DHFR expression.


2021 ◽  
Vol 22 (23) ◽  
pp. 13084
Author(s):  
Seung-Jin Lee ◽  
Dong-Soon Im

GPR55 recognizes several lipid molecules such as lysophosphatidylinositol. GPR55 expression was reported in human monocytes. However, its role in monocyte adhesion and atherosclerosis development has not been studied. The role of GPR55 in monocyte adhesion and atherosclerosis development was investigated in human THP-1 monocytes and ApoE−/− mice using O-1602 (a potent agonist of GPR55) and CID16020046 (a specific GPR55 antagonist). O-1602 treatment significantly increased monocyte adhesion to human umbilical vein endothelial cells, and the O-1602-induced adhesion was inhibited by treatment with CID16020046. O-1602 induced the expression of Mac-1 adhesion molecules, whereas CID16020046 inhibited this induction. Analysis of the promoter region of Mac-1 elucidated the binding sites of AP-1 and NF-κB between nucleotides −750 and −503 as GPR55 responsive elements. O-1602 induction of Mac-1 was found to be dependent on the signaling components of GPR55, that is, Gq protein, Ca2+, CaMKK, and PI3K. In Apo−/− mice, administration of CID16020046 ameliorated high-fat diet-induced atherosclerosis development. These results suggest that high-fat diet-induced GPR55 activation leads to the adhesion of monocytes to endothelial cells via induction of Mac-1, and CID16020046 blockage of GPR55 could suppress monocyte adhesion to vascular endothelial cells through suppression of Mac-1 expression, leading to protection against the development of atherosclerosis.


Author(s):  
Zuodong Xuan ◽  
Chen Chen ◽  
Wenbin Tang ◽  
Shaopei Ye ◽  
Jianzhong Zheng ◽  
...  

Tyrosine kinase inhibitors (TKI)-resistant renal cancer is highly susceptible to metastasis, and enhanced vascular permeability promotes the process of metastasis. To evaluate the effect of cancer-derived exosomes on vascular endothelial cells and clarify the mechanism of metastasis in TKI-resistant renal cancer, we studied the crosstalk between clear cell renal cell carcinoma (ccRCC) cells and human umbilical vein endothelial cells (HUVECs). Exosomes from ccRCC cells enhanced the expression of vascular permeability-related proteins. Compared with sensitive strains, exosomes from resistant strains significantly enhanced vascular endothelial permeability, induced tumor angiogenesis and enhanced tumor lung metastasis in nude mice. The expression of miR-549a is lower in TKI-resistant cells and exosomes, which enhanced the expression of HIF1α in endothelial cells. In addition, TKI-resistant RCC cells reduced nuclear output of pre-miR-549a via the VEGFR2-ERK-XPO5 pathway, and reduced enrichment of mature miR-549a in cytoplasm, which in turn promoted HIF1α expression in RCC, leading to increased VEGF secretion and further activated VEGFR2 to form a feedback effect. miR-549a played an important role in the metastasis of renal cancer and might serve as a blood biomarker for ccRCC metastasis and even had the potential of becoming a new drug to inhibit TKI-resistance.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Yunfei Chai ◽  
Runying Yu ◽  
Yong Liu ◽  
Sheng Wang ◽  
Dongdong Yuan ◽  
...  

Current studies have identified the multifaceted protective functions of dexmedetomidine on multiple organs. For the first time, we clarify effects of dexmedetomidine on monocyte-endothelial adherence and whether its underlying mechanism is relative to connexin43 (Cx43), a key factor regulating monocyte-endothelial adherence. U937 monocytes and human umbilical vein endothelial cells (HUVECs) were used to explore monocyte-endothelial adherence. Two special siRNAs were designed to knock down Cx43 expression on HUVECs. U937-HUVEC adhesion, adhesion-related molecules, and the activation of the MAPK (p-ERK1/2, p-p38, and p-JNK1/2) signaling pathway were detected. Dexmedetomidine, at its clinically relevant concentrations (0.1 nM and 1 nM), was given as pretreatments to HUVECs. Its effects on Cx43 and U937-HUVEC adhesion were also investigated. The results show that inhibiting Cx43 on HUVECs could attenuate the contents of MCP-1, soluble ICAM-1 (sICAM-1), soluble VCAM-1 (sVCAM-1), and the nonprocessed variants of the adhesion molecules ICAM-1 and VCAM-1 and ultimately result in U937-HUVEC adhesion decrease. Meanwhile, the activation of MAPKs was also inhibited. U0126 (inhibiting p-ERK1/2) and SB202190 (inhibiting p38) decreased the contents of MCP-1, sICAM-1, and sVCAM-1, but SP600125 (inhibiting p-JNK1/2) had none of these effects. ICAM-1 and VCAM-1 could be regulated in a similar way. Dexmedetomidine pretreatment inhibited Cx43 on HUVECs, the activation of MAPKs, and U937-HUVEC adhesion. Therefore, we conclude that dexmedetomidine attenuates U937-HUVEC adhesion via inhibiting Cx43 on HUVECs modulating the activation of MAPK signaling pathways.


2020 ◽  
Vol 52 (2) ◽  
pp. 180-191 ◽  
Author(s):  
Qiaoli Chen ◽  
Xiaoye Li ◽  
Lingjun Kong ◽  
Qing Xu ◽  
Zi Wang ◽  
...  

Abstract Endothelial cell (EC) dysfunction represents an early key event in atherosclerosis. Recently, MicroRNAs have been demonstrated to regulate EC function. miR-101-3p has been discovered to regulate cell apoptosis and proliferation in cardiovascular diseases. Therefore, the aim of the current study was to clarify whether miR-101-3p regulates the dysfunction of vascular endothelial cells. In this study, the transfection of human umbilical vein endothelial cells (HUVECs) with miR-101-3p mimic induced reactive oxygen species (ROS) production, EC dysfunction, and activated nuclear factor-κB (NF-κB), whereas transfection with miR-101-3p inhibitor alleviated these events. The antioxidant N-acetylcysteine alleviated miR-101-3p-induced EC dysfunction. Moreover, we observed that miR-101-3p inhibited the expression of tet methylcytosine dioxygenase 2 (TET2) at the posttranscriptional level, resulting in increased ROS production and activated NF-κB. TET2 overexpression inhibited ROS production, EC dysfunction, and NF-κB activation in miR-101-3p-transfected HUVECs. These results indicate that miR-101-3p induces EC dysfunction by targeting TET2, which regulates ROS production, EC dysfunction, and NF-κB activation. Taken together, our current study reveals a novel pathway associated with EC dysfunction. The modulation of miR-101-3p and TET2 expression levels may serve as a potential target for therapeutic strategies for atherosclerosis.


1999 ◽  
Vol 276 (1) ◽  
pp. C176-C181 ◽  
Author(s):  
Sonia A. Cunningham ◽  
Tuan M. Tran ◽  
M. Pia Arrate ◽  
Robert Bjercke ◽  
Tommy A. Brock

We have prepared a polyclonal mouse antibody directed against the first three immunoglobulin-like domains of the kinase insert domain-containing receptor (KDR) tyrosine kinase. It possesses the ability to inhibit binding of the 165-amino acid splice variant of vascular endothelial cell growth factor (VEGF165) to recombinant KDR in vitro as well as to reduce VEGF165binding to human umbilical vein endothelial cells (HUVEC). These results confirm that the first three immunoglobulin-like domains of KDR are involved in VEGF165interactions. The anti-KDR antibody is able to completely block VEGF165-mediated intracellular Ca2+mobilization in HUVEC. Therefore, it appears that binding of VEGF165to the fms-like tyrosine kinase (Flt-1) in these cells does not translate into a Ca2+response. This is further exemplified by the lack of response to placental growth factor (PlGF), an Flt-1-specific ligand. Additionally, PlGF is unable to potentiate the effects of submaximal concentrations of VEGF165. Surprisingly, the VEGF-PlGF heterodimer was also very inefficient at eliciting a Ca2+signaling event in HUVEC. We conclude that KDR activation is crucial for mobilization of intracellular Ca2+in HUVEC in response to VEGF165.


Blood ◽  
2001 ◽  
Vol 98 (4) ◽  
pp. 995-1002 ◽  
Author(s):  
Maria Koziolkiewicz ◽  
Edyta Gendaszewska ◽  
Maria Maszewska ◽  
C. A. Stein ◽  
Wojciech J. Stec

Many reports indicate different nonantisense yet sequence-specific effects of antisense phosphorothioate oligonucleotides. Products of enzymatic degradation of the oligonucleotides can also influence cell proliferation. The cytotoxic effects of deoxyribonucleoside-5′-phosphates (dNMPs) and their 5′-phosphorothioate analogs, deoxyribonucleoside-5′-monophosphorothioates (dNMPSs) on 4 human cell types (HeLa, HL-60, K-562, and endothelial cells) were examined, and the effects were correlated with the catabolism of these compounds. The results indicate that differences in cytotoxicity of dNMPs or dNMPSs in these cells depend upon different activity of an ecto-5′-nucleotidase. It has also been found that dNMPSs stimulate proliferation of human umbilical vein endothelial cells and HL-60 cells in a concentration-dependent manner. This stimulation might be caused by the binding of deoxynucleoside-5′-phosphorothioates to as-yet unidentified nucleotide receptor(s) at the cell surface.


1989 ◽  
Vol 94 (3) ◽  
pp. 553-559 ◽  
Author(s):  
D.M. Morgan ◽  
V.L. Larvin ◽  
J.D. Pearson

Pro-inflammatory effects of cationic proteins secreted by human granulocytes include induction of increased vascular permeability and oedema, which are likely to be mediated by damage to vascular endothelium. We have shown previously that a series of synthetic polycationic amino acids produce a dose-, time- and Mr-dependent inhibition of [3H]leucine or [3H]thymidine incorporation into macromolecules by human umbilical vein endothelial cells, and that the extent of inhibition was correlated with changes in cell morphology, with release of cytoplasmic constituents and was irreversible. The experiments reported here characterise further the requirements for the induction of cytotoxicity by polycations. We have found that the extent of inhibition is related to both the identity of the monomer, for polymers of Mr 40,000 the order is ornithine greater than lysine greater than arginine, and to its configuration; poly-D-lysines are more potent inhibitors than poly-L-lysines of similar Mr. Only brief exposure to the agonist is required, 90% inhibition occurred after 10 min of exposure to poly-L-lysine (Mr 90,000). Treatment of endothelial cells with neuraminidase, heparinase, hyaluronidase, chondroitinase or trypsin did not reduce their susceptibility to polylysine. Inhibition of microtubule or microfilament formation also had no effect on polylysine cytotoxicity, indicating that internalisation of the polymer was not a prerequisite for the effect. Inhibition of protein synthesis or pretreatment with simple sugars likewise failed to block the effects of polylysine treatment. Natural cationic proteins exerted similar effects on endothelial cells, the extent of the effect apparently being related to the pI of the protein.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document