scholarly journals Arachidonic acid metabolism and the adhesion of human polymorphonuclear leukocytes to cultured vascular endothelial cells

Blood ◽  
1983 ◽  
Vol 62 (4) ◽  
pp. 889-895 ◽  
Author(s):  
MR Buchanan ◽  
MJ Vazquez ◽  
MA Jr Gimbrone

Abstract Polymorphonuclear leukocytes (PMN) adhere to the vascular endothelial lining in vivo and to the surfaces of cultured endothelial cells in vitro, but the mechanisms of these cellular interactions remain unclear. Arachidonic acid metabolites, both cyclooxygenase- and lipoxygenase-derived, have been shown to influence PMN locomotion, secretion, and adhesion to artificial surfaces. To determine whether such mediators also are involved in regulating PMN-endothelial cell interactions, we have examined the effects of prostacyclin and various inhibitors of arachidonic acid metabolism on the adherence of radiolabeled PMN to cultured bovine aortic endothelial cells. Confluent endothelial monolayers were incubated with washed suspensions of radiolabeled human PMN (which contained less than 1% platelet contamination) at 37 degrees C for 30 min, then subjected to a standardized wash procedure and the number of adherent leukocytes determined radiometrically. Under basal conditions, i.e., in the absence of exogenous activating stimuli, 4,163 +/- 545 PMN adhered per square millimeter of endothelial surface (mean +/- SEM, n = 12). This basal adhesion (which corresponds to approximately 4–5 leukocytes per endothelial cell) was unaffected when the leukocytes and endothelial monolayers were pretreated with cyclooxygenase inhibitors (100 microM aspirin or 1–5 microM indomethacin) or PGI2 (10(-9)-10(6) M). Thus, basal PMN-endothelial adhesion in this in vitro model system does not appear to be dependent on endogenous cyclooxygenase derivatives of arachidonate or to be sensitive to inhibition by exogenous prostacyclin. In contrast, leukocyte adhesion was significantly reduced by pretreatment with 5,8,11,14- or 4,7,10,13-eicosatetraynoic acid, 0.5- 5 mM sodium salicylate, or 10–1,000 microM indomethacin, antiinflammatory agents that can interfere with the metabolism of arachidonic acid via non-cyclooxygenase-dependent mechanisms. These observations may be relevant to the interactions of circulating PMN with vascular endothelium under both physiologic and pathophysiologic conditions in vivo.

Blood ◽  
1983 ◽  
Vol 62 (4) ◽  
pp. 889-895
Author(s):  
MR Buchanan ◽  
MJ Vazquez ◽  
MA Jr Gimbrone

Polymorphonuclear leukocytes (PMN) adhere to the vascular endothelial lining in vivo and to the surfaces of cultured endothelial cells in vitro, but the mechanisms of these cellular interactions remain unclear. Arachidonic acid metabolites, both cyclooxygenase- and lipoxygenase-derived, have been shown to influence PMN locomotion, secretion, and adhesion to artificial surfaces. To determine whether such mediators also are involved in regulating PMN-endothelial cell interactions, we have examined the effects of prostacyclin and various inhibitors of arachidonic acid metabolism on the adherence of radiolabeled PMN to cultured bovine aortic endothelial cells. Confluent endothelial monolayers were incubated with washed suspensions of radiolabeled human PMN (which contained less than 1% platelet contamination) at 37 degrees C for 30 min, then subjected to a standardized wash procedure and the number of adherent leukocytes determined radiometrically. Under basal conditions, i.e., in the absence of exogenous activating stimuli, 4,163 +/- 545 PMN adhered per square millimeter of endothelial surface (mean +/- SEM, n = 12). This basal adhesion (which corresponds to approximately 4–5 leukocytes per endothelial cell) was unaffected when the leukocytes and endothelial monolayers were pretreated with cyclooxygenase inhibitors (100 microM aspirin or 1–5 microM indomethacin) or PGI2 (10(-9)-10(6) M). Thus, basal PMN-endothelial adhesion in this in vitro model system does not appear to be dependent on endogenous cyclooxygenase derivatives of arachidonate or to be sensitive to inhibition by exogenous prostacyclin. In contrast, leukocyte adhesion was significantly reduced by pretreatment with 5,8,11,14- or 4,7,10,13-eicosatetraynoic acid, 0.5- 5 mM sodium salicylate, or 10–1,000 microM indomethacin, antiinflammatory agents that can interfere with the metabolism of arachidonic acid via non-cyclooxygenase-dependent mechanisms. These observations may be relevant to the interactions of circulating PMN with vascular endothelium under both physiologic and pathophysiologic conditions in vivo.


Blood ◽  
2010 ◽  
Vol 115 (20) ◽  
pp. 4130-4137 ◽  
Author(s):  
Jinmin Gao ◽  
Lei Sun ◽  
Lihong Huo ◽  
Min Liu ◽  
Dengwen Li ◽  
...  

Cylindromatosis (CYLD) is a deubiquitinase that was initially identified as a tumor suppressor and has recently been implicated in diverse normal physiologic processes. In this study, we have investigated the involvement of CYLD in angiogenesis, the formation of new blood vessels from preexisting ones. We find that knockdown of CYLD expression significantly impairs angiogenesis in vitro in both matrigel-based tube formation assay and collagen-based 3-dimensional capillary sprouting assay. Disruption of CYLD also remarkably inhibits angiogenic response in vivo, as evidenced by diminished blood vessel growth into the angioreactors implanted in mice. Mechanistic studies show that CYLD regulates angiogenesis by mediating the spreading and migration of vascular endothelial cells. Silencing of CYLD dramatically decreases microtubule dynamics in endothelial cells and inhibits endothelial cell migration by blocking the polarization process. Furthermore, we identify Rac1 activation as an important factor contributing to the action of CYLD in regulating endothelial cell migration and angiogenesis. Our findings thus uncover a previously unrecognized role for CYLD in the angiogenic process and provide a novel mechanism for Rac1 activation during endothelial cell migration and angiogenesis.


1991 ◽  
Vol 260 (2) ◽  
pp. L13-L28 ◽  
Author(s):  
E. Sigal

The metabolism of arachidonic acid by cyclooxygenase and lipoxygenase enzymes results in a wide range of oxidized products with potent biological activities. These metabolites, which include the prostaglandins and leukotrienes, have been implicated in the pathogenesis of a variety of inflammatory diseases. Research over the last decade has focused primarily on the elucidation of the chemical structure of the metabolites and their biological effects in vitro and in vivo. Recently, research on the enzymes that produce these bioactive metabolites through oxidization of arachidonic acid has intensified. Recombinant DNA techniques have enabled investigators to determine the nucleotide sequences for several of the enzymes in the arachidonic acid cascade. The resulting cDNAs are now being used to further investigate the biochemical and biological features of arachidonic acid metabolism. The purpose of this paper is to review how the cDNAs for these enzymes were obtained, what information they convey, and how they are being applied in current research.


1987 ◽  
Author(s):  
T J Williams ◽  
M Rampart ◽  
S Nourshargh ◽  
P G Hellewell ◽  
S D Brain ◽  
...  

The mechanisms involved in the accumulation of polymorphonuclear leukocytes (PMNs) in an inflammatory reaction are complex. A key phase in this process is the attachment of the PMN to the microvascular (venular in most tissues) endothelial cell, initiated by the extravascular generation of a chemical mediator. Experiments in vitro suggest that mediators, such as C5a, may act in vivo by stimulating the increased expression of the CD18 complex on the surface of the PMN within the venule lumen (1), whereas IL-1 may act by causing the expression of an adhesive molecule on the endothelial cell (2). In vitro the former process is rapid whereas the latter is slow in onset. We have measured the local accumulation of intravenously-injected Ulln-PMNs in response to intradermally-injected mediators in the rabbit, in order to investigate possible mechanisms in vivo. PMN accumulation was found to be rapid in onset in response to C5a, the rate of accumulation falling progressively to low levels by 4 hours. In contrast PMN accumulation in response to IL-1 was slow in onset, reaching a peak rate at 3-4 hours. Intradermal injection of the vasodilator prostaglandins PGI2; PGE2 and the neuropeptides VIP and CGRP caused a marked potentiation of the rate of leukocyte accumulation. PMN accumulation induced by C5a was associated with increased microvascular permeability, as indicated by the leakage of intravenously-injected 125I-albumin with a time-course in parallel with the rate of PMN accumulation enhanced by intradermally-injected vasodilators. Depletion of circulating PMNs abolishes these responses to C5a (3). In contrast, leukocyte accumulation induced by IL-1 was associated with little plasma protein leakage, even in the presence of intradermal vasodilators. This observation indicates that PMN emigration itself does not lead to increased microvascular permeability. C5a, but not IL-1, may stimulate emigrating PMNs to secrete an endogenous factor that increases permeability by an action on endothelial cells (3). This factor does not appear to be the phospholipid PAF (4). In contrast to the enhancing effects of local PGI2, intravenously-infused PGI2 inhibited PMN accumulation induced by C5a and IL-1, and plasma protein leakage induced by C5a (5). This effect is probably mediated by elevation of cyclic AMP in intravascular PMNs. We have shown that C5a stimulation of PMNs in contact with endothelial cells in vitro induces endothelial cell PGI2 secretion (6). Thus, PGI2 may be part of a negative feedback system in vivo to control interactions between PMNs and endothelial cells.These observations provide some clues to the intricacies of mechanisms of leukocyte accumulation in vivo.


Development ◽  
1995 ◽  
Vol 121 (4) ◽  
pp. 1089-1098 ◽  
Author(s):  
T.M. Schlaeger ◽  
Y. Qin ◽  
Y. Fujiwara ◽  
J. Magram ◽  
T.N. Sato

Vascular endothelial cells play essential roles in the function and development of the cardiovascular system. However, due to the lack of lineage-specific markers suitable for molecular and biochemical analyses, very little is known about the molecular mechanisms that regulate endothelial cell differentiation. We report the first vascular endothelial cell lineage-specific (including angioblastic precursor cells) 1.2 kb promoter in transgenic mice. Moreover, deletion analysis of this promoter region in transgenic embryos revealed multiple elements that are required for the maximum endothelial cell lineage-specific expression. This is a powerful molecular tool that will enable us to identify factors and cellular signals essential for the establishment of vascular endothelial cell lineage. It will also allow us to deliver genes specifically into this cell type in vivo to test specifically molecules that have been implicated in cardiovascular development. Furthermore, we have established embryonic stem (ES) cells from the blastocysts of the transgenic mouse that carry the 1.2 kb promoter-LacZ reporter transgene. These ES cells were able to differentiate in vitro to form cystic embryoid bodies (CEB) that contain endothelial cells determined by PECAM immunohistochemistry. However, these in vitro differentiated endothelial cells did not express the LacZ reporter gene. This indicates the lack of factors and/or cellular interactions which are required to induce the expression of the reporter gene mediated by this 1.2 kb promoter in this in vitro differentiation system. Thus this system will allow us to screen for the putative inducers that exist in vivo but not in vitro. These putative inducers are presumably important for in vivo differentiation of vascular endothelial cells.


Parasitology ◽  
1992 ◽  
Vol 105 (S1) ◽  
pp. S49-S60 ◽  
Author(s):  
R. M. Maizels ◽  
D. A. Denham

SUMMARYAnti-parasitic drugs may achieve their therapeutic effect either by direct activity against the pathogenic organism, or by altering host factors which lead to parasite killing. In this review, we discuss the evidence for an indirect mode of action for one major anti-filarial drug, diethylcarbamazine (DEC). The interpretation most consistent with existing data is that DEC alters arachidonic acid metabolism in microfilariae and in host endothelial cells. These changes may result in vasoconstriction and amplified endothelial adhesion leading to immobilization of microfilarial parasites, enhanced adherence and cytotoxic activity by host platelets and granulocytes. These events would represent activation of the innate, non-specific immune system, independent of the adaptive, antigen-specific, immune response. This model explains the paradox between rapid clearance in vivo and the lack of an in vitro effect, as well as the efficacy of DEC in non-immune animals.


Sign in / Sign up

Export Citation Format

Share Document