scholarly journals Interacting cytokines regulate in vitro human megakaryocytopoiesis

Blood ◽  
1989 ◽  
Vol 73 (3) ◽  
pp. 671-677 ◽  
Author(s):  
E Bruno ◽  
ME Miller ◽  
R Hoffman

The effects of hematopoietic growth factors on in vitro human megakaryocytopoiesis were studied using a serum-depleted culture system. Both recombinant interleukin-3 (r-IL-3) and recombinant granulocyte-macrophage colony-stimulating factor (rGM-CSF) increased megakaryocyte (MK) colony formation (P less than .01) above that observed in baseline cultures. Recombinant interleukin-4 (rIL-4) and interleukin 1 alpha (rIL-1 alpha) failed either to promote MK colony formation alone or to increase rIL-3 or rGM-CSF promoted colony formation. Recombinant erythropoietin (rEpo) and purified thrombocytopoiesis-stimulating factor (TSF) did not increase (P greater than .05) MK colony formation when added alone but synergized with rIL- 1 alpha, leading to a twofold increase in MK colony formation. Such a synergistic relationship was not observed between rIL-4 and rEpo. In addition, TSF enhanced the ability of rIL-3 but not rGM-CSF to promote MK colony formation. Addition of rEpo to optimal or suboptimal concentrations of rGM-CSF or suboptimal concentrations of rIL-3 resulted in a significant increase (P less than .05) in the total number of MK-containing colonies, due to the appearance of multilineage colonies containing MKs. The addition of rEpo to optimal concentrations of rIL-3 resulted in increased numbers of multilineage colonies containing MKs; however, the number of total MK-containing colonies was not significantly increased when compared to assays containing rIL-3 alone. By contrast, transforming growth factor-beta (TGF-beta) inhibited both rIL-3, and rGM-CSF promoted MK colony formation, with optimal inhibition resulting in a 35%-45% reduction of MK colony formation.

Blood ◽  
1989 ◽  
Vol 73 (3) ◽  
pp. 671-677 ◽  
Author(s):  
E Bruno ◽  
ME Miller ◽  
R Hoffman

Abstract The effects of hematopoietic growth factors on in vitro human megakaryocytopoiesis were studied using a serum-depleted culture system. Both recombinant interleukin-3 (r-IL-3) and recombinant granulocyte-macrophage colony-stimulating factor (rGM-CSF) increased megakaryocyte (MK) colony formation (P less than .01) above that observed in baseline cultures. Recombinant interleukin-4 (rIL-4) and interleukin 1 alpha (rIL-1 alpha) failed either to promote MK colony formation alone or to increase rIL-3 or rGM-CSF promoted colony formation. Recombinant erythropoietin (rEpo) and purified thrombocytopoiesis-stimulating factor (TSF) did not increase (P greater than .05) MK colony formation when added alone but synergized with rIL- 1 alpha, leading to a twofold increase in MK colony formation. Such a synergistic relationship was not observed between rIL-4 and rEpo. In addition, TSF enhanced the ability of rIL-3 but not rGM-CSF to promote MK colony formation. Addition of rEpo to optimal or suboptimal concentrations of rGM-CSF or suboptimal concentrations of rIL-3 resulted in a significant increase (P less than .05) in the total number of MK-containing colonies, due to the appearance of multilineage colonies containing MKs. The addition of rEpo to optimal concentrations of rIL-3 resulted in increased numbers of multilineage colonies containing MKs; however, the number of total MK-containing colonies was not significantly increased when compared to assays containing rIL-3 alone. By contrast, transforming growth factor-beta (TGF-beta) inhibited both rIL-3, and rGM-CSF promoted MK colony formation, with optimal inhibition resulting in a 35%-45% reduction of MK colony formation.


Blood ◽  
1989 ◽  
Vol 74 (1) ◽  
pp. 145-151 ◽  
Author(s):  
RA Briddell ◽  
JE Brandt ◽  
JE Straneva ◽  
EF Srour ◽  
R Hoffman

Abstract Two classes of human marrow megakaryocyte progenitor cells are described. Colony-forming unit-megakaryocyte (CFU-MK)-derived colonies appeared in vitro after 12-day incubation; burst-forming unit- megakaryocyte (BFU-MK)-derived colonies appeared after 21 days. CFU-MK- derived colonies were primarily unifocal and composed of 11.6 +/- 1.2 cells/colony; BFU-MK-derived colonies were composed of 2.3 +/- 0.4 foci and 108.6 +/- 4.4 cells/colony. CFU-MK and BFU-MK were separable by counterflow centrifugal elutriation. CFU-MK colony formation was diminished by exposure to 5-fluorouracil (5-FU); BFU-MK colony formation was unaffected. CFU-MK and BFU-MK were immunologically phenotyped. CFU-MK expressed the human progenitor cell antigen-1 (HPCA- 1, CD34, clone My10) and a major histocompatibility class II locus, HLA- DR, and BFU-MK expressed only detectable amounts of CD34. BFU-MK colony formation was entirely dependent on addition of exogenous hematopoietic growth factors. Recombinant granulocyte macrophage colony-stimulating factor (GM-CSF) and interleukin-3 (IL-3) possessed such colony- stimulating activity, whereas recombinant erythropoietin (Epo), G-CSF, IL-1 alpha, IL-4, and purified thrombocytopoiesis-stimulating factor did not. These studies indicate the existence of a human megakaryocyte progenitor cell, the BFU-MK, which has unique properties allowing it to be distinguished from the CFU-MK.


Blood ◽  
1989 ◽  
Vol 74 (1) ◽  
pp. 145-151 ◽  
Author(s):  
RA Briddell ◽  
JE Brandt ◽  
JE Straneva ◽  
EF Srour ◽  
R Hoffman

Two classes of human marrow megakaryocyte progenitor cells are described. Colony-forming unit-megakaryocyte (CFU-MK)-derived colonies appeared in vitro after 12-day incubation; burst-forming unit- megakaryocyte (BFU-MK)-derived colonies appeared after 21 days. CFU-MK- derived colonies were primarily unifocal and composed of 11.6 +/- 1.2 cells/colony; BFU-MK-derived colonies were composed of 2.3 +/- 0.4 foci and 108.6 +/- 4.4 cells/colony. CFU-MK and BFU-MK were separable by counterflow centrifugal elutriation. CFU-MK colony formation was diminished by exposure to 5-fluorouracil (5-FU); BFU-MK colony formation was unaffected. CFU-MK and BFU-MK were immunologically phenotyped. CFU-MK expressed the human progenitor cell antigen-1 (HPCA- 1, CD34, clone My10) and a major histocompatibility class II locus, HLA- DR, and BFU-MK expressed only detectable amounts of CD34. BFU-MK colony formation was entirely dependent on addition of exogenous hematopoietic growth factors. Recombinant granulocyte macrophage colony-stimulating factor (GM-CSF) and interleukin-3 (IL-3) possessed such colony- stimulating activity, whereas recombinant erythropoietin (Epo), G-CSF, IL-1 alpha, IL-4, and purified thrombocytopoiesis-stimulating factor did not. These studies indicate the existence of a human megakaryocyte progenitor cell, the BFU-MK, which has unique properties allowing it to be distinguished from the CFU-MK.


Blood ◽  
1993 ◽  
Vol 81 (3) ◽  
pp. 624-630 ◽  
Author(s):  
Y Sonoda ◽  
Y Kuzuyama ◽  
S Tanaka ◽  
S Yokota ◽  
T Maekawa ◽  
...  

Abstract We studied the effects of recombinant human interleukin-4 (rhIL-4) on megakaryocyte colony formation from enriched hematopoietic progenitors. IL-4 strongly inhibited pure and mixed megakaryocyte colony formation in a dose-dependent manner. Formation of erythroid bursts, eosinophil colonies, and erythrocyte-containing mixed colonies was not affected by the addition of IL-4 as reported previously (Sonoda Y, et al; Blood 75:1615, 1990). Delayed addition experiments suggested that IL-4 acts on an early stage of proliferation of megakaryocyte progenitors. Neutralizing antibodies (antisera) prepared against transforming growth factor beta, tumor necrosis factor alpha, interferon alpha (IFN alpha), and IFN gamma did not affect the inhibitory effects of IL-4 on pure and mixed megakaryocyte colony formation. In addition, the inhibitory effects of IL-4 was also seen in serum-free cultures and in cultures containing highly enriched CD34+, HLA-DR+ cells as a target population. These results indicate that IL-4 may function as one of the negative regulators in human megakaryocytopoiesis in vitro.


Blood ◽  
1993 ◽  
Vol 81 (3) ◽  
pp. 624-630
Author(s):  
Y Sonoda ◽  
Y Kuzuyama ◽  
S Tanaka ◽  
S Yokota ◽  
T Maekawa ◽  
...  

We studied the effects of recombinant human interleukin-4 (rhIL-4) on megakaryocyte colony formation from enriched hematopoietic progenitors. IL-4 strongly inhibited pure and mixed megakaryocyte colony formation in a dose-dependent manner. Formation of erythroid bursts, eosinophil colonies, and erythrocyte-containing mixed colonies was not affected by the addition of IL-4 as reported previously (Sonoda Y, et al; Blood 75:1615, 1990). Delayed addition experiments suggested that IL-4 acts on an early stage of proliferation of megakaryocyte progenitors. Neutralizing antibodies (antisera) prepared against transforming growth factor beta, tumor necrosis factor alpha, interferon alpha (IFN alpha), and IFN gamma did not affect the inhibitory effects of IL-4 on pure and mixed megakaryocyte colony formation. In addition, the inhibitory effects of IL-4 was also seen in serum-free cultures and in cultures containing highly enriched CD34+, HLA-DR+ cells as a target population. These results indicate that IL-4 may function as one of the negative regulators in human megakaryocytopoiesis in vitro.


Blood ◽  
1991 ◽  
Vol 78 (9) ◽  
pp. 2239-2247 ◽  
Author(s):  
SE Jacobsen ◽  
JR Keller ◽  
FW Ruscetti ◽  
P Kondaiah ◽  
AB Roberts ◽  
...  

Transforming growth factor-beta (TGF-beta) has potent antiproliferative effects on human hematopoietic progenitor cells. We report here that TGF-beta 1 and -beta 2 also exert bimodal dose-dependent stimulation of granulocyte-macrophage colony-stimulating factor (CSF) and granulocyte- CSF-induced day 7 granulocyte-macrophage colony-forming units. This increase in colony formation was restricted to low doses (0.01 to 1.0 ng/mL) of TGF-beta 1 and was due to increased granulopoiesis, showing that TGF-beta can affect the differentiation as well as the proliferation of hematopoietic progenitors. Furthermore, TGF-beta 3 was found to be a more potent inhibitor of hematopoietic progenitor cells than TGF-beta 1 and -beta 2. In contrast to the bidirectional proliferative effects of TGF-beta 1 and -beta 2, the effects of TGF- beta 3 on human hematopoiesis were only inhibitory, showing for the first time that TGF-beta isoforms differ not only in potencies but also with regard to the nature of the response they elicit.


Blood ◽  
1994 ◽  
Vol 84 (12) ◽  
pp. 4151-4156 ◽  
Author(s):  
S Jiang ◽  
JD Levine ◽  
Y Fu ◽  
B Deng ◽  
R London ◽  
...  

Primary human bone marrow megakaryocytes were studied for their ability to express and release cytokines potentially relevant to their proliferation and/or differentiation. The purity of the bone marrow megakaryocytes was assessed by morphologic and immunocytochemical criteria. Unstimulated marrow megakaryocytes constitutively expressed genes for interleukin-1 beta (IL-1 beta), IL-6, granulocyte-macrophage colony-stimulating factor (GM-CSF), and tumor necrosis factor-alpha (TNF-alpha), by the polymerase chain reaction (PCR) and Northern blot analysis. At the protein level, megakaryocytes secreted significant amounts of IL-1 beta (53.6 +/- 3.6 pg/mL), IL-6 (57.6 +/- 15.6 pg/mL), and GM-CSF (24 +/- 4 pg/mL) but not TNF-alpha. Exposure of human marrow megakaryocytes to IL-1 beta increased the levels of IL-6 (87.3 +/- 2.3 pg/mL) detected in the culture supernatants. Transforming growth factor- beta was also able to stimulate IL-6, IL-1 beta, and GM-CSF secretion, but was less potent than stimulation with phorbol-12-myristate-13- acetate (PMA). The secreted cytokines acted additively to maintain and increase the number of colony-forming unit-megakaryocytes colonies (approximately 35%). These studies demonstrate the production of multiple cytokines by isolated human bone marrow megakaryocytes constitutively or stimulated in vitro. The capacity of human megakaryocytes to synthesize several cytokines known to modulate hematopoietic cells supports the concept that there may be an autocrine mechanism operative in the regulation of megakaryocytopoiesis.


2014 ◽  
Vol 34 (4) ◽  
pp. 877-886 ◽  
Author(s):  
Allison Ostriker ◽  
Henrick N. Horita ◽  
Joanna Poczobutt ◽  
Mary C.M. Weiser-Evans ◽  
Raphael A. Nemenoff

Objective— To define the contribution of vascular smooth muscle cell (SMC)–derived factors to macrophage phenotypic modulation in the setting of vascular injury. Approach and Results— By flow cytometry, macrophages (M4) were the predominant myeloid cell type recruited to wire-injured femoral arteries, in mouse, compared with neutrophils or eosinophils. Recruited macrophages from injured vessels exhibited a distinct expression profile relative to circulating mononuclear cells (peripheral blood monocytes; increased: interleukin-6, interleukin-10, interleukin-12b, CC chemokine receptor [CCR]3, CCR7, tumor necrosis factor-α, inducible nitric oxide synthase, arginase 1; decreased: interleukin-12a, matrix metalloproteinase [MMP]9). This phenotype was recapitulated in vitro by maturing rat bone marrow cells in the presence of macrophage-colony stimulating factor and 20% conditioned media from cultured rat SMC (sMφ) compared with maturation in macrophage-colony stimulating factor alone (M0). Recombinant transforming growth factor (TGF)-β1 recapitulated the effect of SMC conditioned media. Macrophage maturation studies performed in the presence of a pan-TGF-β neutralizing antibody, a TGF-β receptor inhibitor, or conditioned media from TGF-β–depleted SMCs confirmed that the SMC-derived factor responsible for macrophage activation was TGF-β. Finally, the effect of SMC-mediated macrophage activation on SMC biology was assessed. SMCs cocultured with sMφ exhibited increased rates of proliferation relative to SMCs cultured alone or with M0 macrophages. Conclusions— SMC-derived TGF-β modulates the phenotype of maturing macrophages in vitro, recapitulating the phenotype found in vascular lesions in vivo. SMC-modulated macrophages induce SMC activation to a greater extent than control macrophages.


Sign in / Sign up

Export Citation Format

Share Document