scholarly journals Graft failure after T-cell-depleted human leukocyte antigen identical marrow transplants for leukemia: I. Analysis of risk factors and results of secondary transplants

Blood ◽  
1989 ◽  
Vol 74 (6) ◽  
pp. 2227-2236 ◽  
Author(s):  
NA Kernan ◽  
C Bordignon ◽  
G Heller ◽  
I Cunningham ◽  
H Castro-Malaspina ◽  
...  

Abstract Risk factors for graft failure were analyzed in 122 recipients of an allogeneic T-cell-depleted human leukocyte antigen (HLA)-identical sibling marrow transplant as treatment for leukemia. In each case pretransplant immunosuppression included 1,375 to 1,500 cGy hyperfractionated total body irradiation and cyclophosphamide (60 mg/kg/d x 2). No patient received immunosuppression prosttransplant for graft-versus-host disease (GVHD) prophylaxis. Nineteen patients in this group experienced graft failure. The major factors associated with graft failure were transplants from male donors and the age of the patient (or donor). Among male recipients of male donor-derived grafts a low dose per kilogram of nucleated cells, progenitor cells (colony forming unit-GM) and T cells was also associated with graft failure. Additional irradiation to 1,500 cGy, high dose corticosteroids posttransplant, and additional peripheral blood donor T cells did not decrease the incidence of graft failure. In addition, type of leukemia, time from diagnosis to transplant, an intact spleen, or the presence of antidonor leukocyte antibodies did not correlate with graft failure. To ensure engraftment of secondary transplants, further immunosuppression was necessary but was poorly tolerated. However, engraftment and survival could be achieved with an immunosuppressive regimen in which antithymocyte globulin and high dose methylprednisolone were administered both before and after infusions of secondary partially T- cell-depleted marrow grafts.

Blood ◽  
1989 ◽  
Vol 74 (6) ◽  
pp. 2227-2236 ◽  
Author(s):  
NA Kernan ◽  
C Bordignon ◽  
G Heller ◽  
I Cunningham ◽  
H Castro-Malaspina ◽  
...  

Risk factors for graft failure were analyzed in 122 recipients of an allogeneic T-cell-depleted human leukocyte antigen (HLA)-identical sibling marrow transplant as treatment for leukemia. In each case pretransplant immunosuppression included 1,375 to 1,500 cGy hyperfractionated total body irradiation and cyclophosphamide (60 mg/kg/d x 2). No patient received immunosuppression prosttransplant for graft-versus-host disease (GVHD) prophylaxis. Nineteen patients in this group experienced graft failure. The major factors associated with graft failure were transplants from male donors and the age of the patient (or donor). Among male recipients of male donor-derived grafts a low dose per kilogram of nucleated cells, progenitor cells (colony forming unit-GM) and T cells was also associated with graft failure. Additional irradiation to 1,500 cGy, high dose corticosteroids posttransplant, and additional peripheral blood donor T cells did not decrease the incidence of graft failure. In addition, type of leukemia, time from diagnosis to transplant, an intact spleen, or the presence of antidonor leukocyte antibodies did not correlate with graft failure. To ensure engraftment of secondary transplants, further immunosuppression was necessary but was poorly tolerated. However, engraftment and survival could be achieved with an immunosuppressive regimen in which antithymocyte globulin and high dose methylprednisolone were administered both before and after infusions of secondary partially T- cell-depleted marrow grafts.


Blood ◽  
2011 ◽  
Vol 117 (3) ◽  
pp. 788-797 ◽  
Author(s):  
Aaron P. Rapoport ◽  
Nicole A. Aqui ◽  
Edward A. Stadtmauer ◽  
Dan T. Vogl ◽  
Hong-Bin Fang ◽  
...  

AbstractIn a phase 1/2 two-arm trial, 54 patients with myeloma received autografts followed by ex vivo anti-CD3/anti-CD28 costimulated autologous T cells at day 2 after transplantation. Study patients positive for human leukocyte antigen A2 (arm A, n = 28) also received pneumococcal conjugate vaccine immunizations before and after transplantation and a multipeptide tumor antigen vaccine derived from the human telomerase reverse transcriptase and the antiapoptotic protein survivin. Patients negative for human leukocyte antigen A2 (arm B, n = 26) received the pneumococcal conjugate vaccine only. Patients exhibited robust T-cell recoveries by day 14 with supraphysiologic T-cell counts accompanied by a sustained reduction in regulatory T cells. The median event-free survival (EFS) for all patients is 20 months (95% confidence interval, 14.6-24.7 months); the projected 3-year overall survival is 83%. A subset of patients in arm A (36%) developed immune responses to the tumor antigen vaccine by tetramer assays, but this cohort did not exhibit better EFS. Higher posttransplantation CD4+ T-cell counts and a lower percentage of FOXP3+ T cells were associated with improved EFS. Patients exhibited accelerated polyclonal immunoglobulin recovery compared with patients without T-cell transfers. Adoptive transfer of tumor antigen vaccine-primed and costimulated T cells leads to augmented and accelerated cellular and humoral immune reconstitution, including antitumor immunity, after autologous stem cell transplantation for myeloma. This study was registered at www.clinicaltrials.gov as NCT00499577.


1978 ◽  
Vol 147 (1) ◽  
pp. 137-146 ◽  
Author(s):  
E G Engleman ◽  
A J McMichael ◽  
M E Batey ◽  
H O McDevitt

It has previously been shown that J.H., a human leukocyte antigen (HLA)-Dw2 homozygous multiparous woman, fails to respond in a mixed lymphocyte reaction (MLR) to her Dw1 homozygous husband W.H., and that her T cells suppress the responses of HLA matched responders to W.H. The present studies take advantage of the observation that J.H. suppressor cells resist a dose of gamma-irradiation which functionally eliminates her MLR responder cells. J.H. cells, depleted of alloreactive cells, suppress the responses of Dw2 heterozygous or homozygous cells to W.H., regardless of their associated HLA-A or B antigens. Only when W.H. or a few other cells are present as the irradiated stimulator is J.H. suppression of Dw2 responses detected. Thus, the J.H. suppressor T cell recognizes determinants in the irradiated stimulator cells as well as D locus products in the responder.


Blood ◽  
2000 ◽  
Vol 96 (13) ◽  
pp. 4344-4349 ◽  
Author(s):  
Susanna M. Müller ◽  
Thomas Kohn ◽  
Ansgar S. Schulz ◽  
Klaus-Michael Debatin ◽  
Wilhelm Friedrich

Donor T cells after stem cell transplantation reconstitute by 2 different pathways: by expansion from grafted, mature T cells and by intrathymic maturation from progenitor cells. This study characterized thymic-dependent reconstitution of CD4+ T cells following different transplant modalities in patients with severe combined immunodeficiency (SCID). Three groups of patients were studied: one group after transplantation from human leukocyte antigen (HLA)–identical siblings with unmanipulated grafts without conditioning, a second group after transplantation from HLA-nonidentical parents with T-cell–depleted grafts without preconditioning, and a third group with prior conditioning. Reconstitution of the T-cell compartment was monitored by determining the expression of CD45 isoforms by developing CD4+ cells in the peripheral blood and in discriminating expanded (CD45RO+) and newly generated (CD45RA+) T cells. Concomitantly, changes in the size of the thymus were evaluated sequentially by ultrasonography. Reconstitution of CD4+CD45RA+ cells was delayed in all patients for several months, including patients after HLA-identical transplantation, and was always paralleled by normalization of the size of the thymus. No engraftment of donor progenitor cells was observed, as studied in one patient transplanted without conditioning. CD4+CD45RO+ cells were detected early after transplantation only in patients given unmanipulated grafts. The study showed that thymic-dependent T-cell maturation in these patients with SCID runs an autonomous course, independent of graft manipulation, of major HLA disparities, and of whether conditioning is used or not. In addition, thymic maturation may not require engraftment of donor-derived CD34+ cells in the marrow.


Blood ◽  
2000 ◽  
Vol 96 (13) ◽  
pp. 4344-4349 ◽  
Author(s):  
Susanna M. Müller ◽  
Thomas Kohn ◽  
Ansgar S. Schulz ◽  
Klaus-Michael Debatin ◽  
Wilhelm Friedrich

Abstract Donor T cells after stem cell transplantation reconstitute by 2 different pathways: by expansion from grafted, mature T cells and by intrathymic maturation from progenitor cells. This study characterized thymic-dependent reconstitution of CD4+ T cells following different transplant modalities in patients with severe combined immunodeficiency (SCID). Three groups of patients were studied: one group after transplantation from human leukocyte antigen (HLA)–identical siblings with unmanipulated grafts without conditioning, a second group after transplantation from HLA-nonidentical parents with T-cell–depleted grafts without preconditioning, and a third group with prior conditioning. Reconstitution of the T-cell compartment was monitored by determining the expression of CD45 isoforms by developing CD4+ cells in the peripheral blood and in discriminating expanded (CD45RO+) and newly generated (CD45RA+) T cells. Concomitantly, changes in the size of the thymus were evaluated sequentially by ultrasonography. Reconstitution of CD4+CD45RA+ cells was delayed in all patients for several months, including patients after HLA-identical transplantation, and was always paralleled by normalization of the size of the thymus. No engraftment of donor progenitor cells was observed, as studied in one patient transplanted without conditioning. CD4+CD45RO+ cells were detected early after transplantation only in patients given unmanipulated grafts. The study showed that thymic-dependent T-cell maturation in these patients with SCID runs an autonomous course, independent of graft manipulation, of major HLA disparities, and of whether conditioning is used or not. In addition, thymic maturation may not require engraftment of donor-derived CD34+ cells in the marrow.


2016 ◽  
Vol 24 ◽  
pp. S78 ◽  
Author(s):  
Christina Pham ◽  
Aaron Martin ◽  
Jeyaraj Antony ◽  
Daniel MacLeod ◽  
Audrey Brown ◽  
...  

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A107-A107
Author(s):  
Dmitry Pankov ◽  
Ioanna Eleftheriadou ◽  
Anna Domogala ◽  
Sara Brett ◽  
Lea Patasic ◽  
...  

BackgroundNY-ESO-1–specific T cells (letetresgene autoleucel [lete-cel] GSK3377794) are autologous CD4+ and CD8+ T cells transduced to express a high-affinity T-cell receptor (TCR) capable of recognizing NY-ESO-1 and LAGE-1a antigens in complex with human leukocyte antigen (HLA)-A*02. NY-ESO-1 (CTAG1B) and LAGE-1a (CTAG2) are tumor-associated antigens (TAA) that share the SLLMWITQC peptide bound to human leukocyte antigen HLA-A*02 and are expressed in various cancers. Emerging evidence suggests that TCR-engineered T cells targeting NY-ESO-1 hold promise for patients with solid tumors.1 Approximately 75% of synovial sarcomas can over-express NY-ESO-1 vs 12% of NSCLC,2 however, NSCLC expression of NY-ESO-1/LAGE1-a may have therapeutic potential.3 A separate study using engineered T cells targeting NY-ESO-1 has shown a partial response in a patient with advanced lung adenocarcinoma.4 Decitabine (DAC) is a hypomethylating agent and potent inducer of TAA, including NY-ESO-1.5 We have reported in vitro use of DAC to selectively modulate TAA expression in TAA low-expressing tumor cell lines in order to enhance lete-cel therapy.3 The aim of this study was to assess enhancement of combination therapy with lete-cel and DAC in an in vivo NSCLC model.MethodsNOD scid gamma (NSG) mice were injected subcutaneously with the human NSCLC tumor cell line NCI-H1703. Upon engraftment, tumor-bearing mice were treated with a 5-day course of DAC or vehicle control followed by 2 days of rest. Lete-cel was infused on Day 8. RNA was isolated from tumor formalin-fixed paraffin-embedded blocks, and levels of NY-ESO-1 and LAGE-1a transcript were measured by RT-qPCR. Expression pattern of the NY-ESO-1 protein was assessed via immunohistochemistry. Efficacy was defined by changes in tumor volume and systemic IFN-γ secretion.ResultsConsistent with our previous in vitro studies, DAC treatment in vivo resulted in induction of NY-ESO-1 and LAGE-1a in NSCLC tumors. Lete-cel in combination with DAC significantly enhanced antitumor efficacy in vivo compared with lete-cel alone. This was associated with increased interferon-γ secretion. Mice that received DAC treatment only did not show statistically significant tumor reduction compared with untreated mice.Ethics ApprovalAll animal studies were ethically reviewed and carried out in accordance with Animals (Scientific Procedures) Act 1986 and the GSK Policy on the Care, Welfare and Treatment of Animals. Human biological samples were sourced ethically and their research use was in accord with the terms of the informed consents under an Institutional Review Board/Ethics Committee approved protocol.ConclusionsGSK is currently enrolling a Phase Ib/IIa, multi-arm, open-label pilot study (NCT03709706) of lete-cel as a monotherapy or in combination with pembrolizumab in HLA-A*02–positive patients with NSCLC whose tumors express NY-ESO-1/LAGE-1a. This work may support rationale for the use of DAC in combination with lete-cel to improve adoptive T-cell therapy by increasing levels of target antigens and antitumor effect in NSCLC.AcknowledgementsFunding: GSKReferencesD’Angelo SP, Melchiori L, Merchant MS, et al. Cancer Discov 2018;8:944–957.Kerkar SP, Wang Z-F, Lasota J, et al. J Immunother 2016;39:181–187.Eleftheriadou I, Brett S, Domogala A, et al. Ann Oncol 2019:30(Suppl 5):v475–v532.Xia Y, Tian X, Wang J, et al. Oncol Lett 2018;16:6998–7007.Schrump DS, Fischette MR, Nguyen DM, et al. Clin Cancer Res 2006;12:5777–5785.


Blood ◽  
2010 ◽  
Vol 116 (20) ◽  
pp. 4360-4367 ◽  
Author(s):  
Tobias Feuchtinger ◽  
Kathrin Opherk ◽  
Wolfgang A. Bethge ◽  
Max S. Topp ◽  
Friedhelm R. Schuster ◽  
...  

Abstract Cytomegalovirus (CMV) disease and infection refractory to antiviral treatment after allogeneic stem cell transplantation (allo-SCT) is associated with a high mortality. Adoptive transfer of CMV-specific T cells could reconstitute viral im-munity after SCT and could protect from CMV-related complications. However, logistics of producing virus-specific T-cell grafts limited the clinical application. We treated 18 patients after allo-SCT from human leukocyte antigen–mismatched/haploidentical or human leukocyte antigen–matched unrelated donors with polyclonal CMV-specific T cells generated by ex vivo stimulation with pp65, followed by isolation of interferon-γ–producing cells. Patients with CMV disease or viremia refractory to antiviral chemotherapy or both were eligible for adoptive T-cell transfer and received a mean of 21 × 103/kg pp65-specific T cells. In 83% of cases CMV infection was cleared or viral burden was significantly reduced, even in cases of CMV encephalitis (n = 2). Viral control was associated with in vivo expansion of CMV-specific T lymphocytes in 12 of 16 evaluable cases, resulting in reconstitution of antiviral T-cell responses, without graft-versus-host disease induction or acute side effects. Our findings indicate that the infusion of low numbers of CMV-specific T cells is safe, feasible, and effective as a treatment on demand for refractory CMV infection and CMV disease after allo-SCT.


1991 ◽  
Vol 174 (5) ◽  
pp. 1139-1146 ◽  
Author(s):  
B Gulwani-Akolkar ◽  
D N Posnett ◽  
C H Janson ◽  
J Grunewald ◽  
H Wigzell ◽  
...  

We compared T cell receptor (TCR) V-segment frequencies in human leukocyte antigen (HLA) identical siblings to sibling pairs who differ at one or both HLA haplotypes using four V beta-specific and one V alpha-specific monoclonal antibody. In every one of nine families HLA-identical sibs had the most similar patterns of V-segment frequencies in their peripheral blood, whereas totally mismatched sibs were, in general, the most dissimilar; HLA haploidentical sibs tended to be intermediate between the two groups. The degree of similarity among HLA-identical sibs was comparable to that observed among three pairs of identical twins suggesting that HLA is the major genetic component influencing TCR V-segment frequency. Consistent with this observation, it was found that the frequency of T cells expressing particular V beta segments was skewed towards either CD4+ or CD8+ cells indicating that T cells expressing some V beta genes may be positively selected primarily by class I or class II major histocompatibility complex proteins. Finally, it was observed that individuals who express the HLA class I specificity, B38, tend to express high levels of V alpha 2.3+ cells among their CD8+ T cells. These observations represent definitive proof that human V-segment frequencies are profoundly influenced by the HLA complex.


Blood ◽  
2010 ◽  
Vol 115 (23) ◽  
pp. 4923-4933 ◽  
Author(s):  
Marie Bleakley ◽  
Brith E. Otterud ◽  
Julia L. Richardt ◽  
Audrey D. Mollerup ◽  
Michael Hudecek ◽  
...  

Abstract T-cell immunotherapy that targets minor histocompatibility (H) antigens presented selectively by recipient hematopoietic cells, including leukemia, could prevent and treat leukemic relapse after hematopoietic cell transplantation without causing graft-versus-host disease. To provide immunotherapy that can be applied to a majority of transplantation recipients, it is necessary to identify leukemia-associated minor H antigens that result from gene polymorphisms that are balanced in the population and presented by common human leukocyte antigen alleles. Current approaches for deriving minor H antigen–specific T cells, which provide essential reagents for the molecular identification and characterization of the polymorphic genes that encode the antigens, rely on in vivo priming and are often unsuccessful. We show that minor H antigen–specific cytotoxic T lymphocyte precursors are found predominantly in the naive CD8+ T-cell subset and provide an efficient strategy for in vitro priming of native T cells to generate T cells to a broad diversity of minor H antigens presented with common human leukocyte antigen alleles. We used this approach to derive a panel of stable cytotoxic T lymphocyte clones for discovery of genes that encode minor H antigens and identify a novel antigen expressed on acute myeloid leukemia stem cells and minimally in graft-versus-host disease target tissues.


Sign in / Sign up

Export Citation Format

Share Document