scholarly journals Leukemia-associated minor histocompatibility antigen discovery using T-cell clones isolated by in vitro stimulation of naive CD8+ T cells

Blood ◽  
2010 ◽  
Vol 115 (23) ◽  
pp. 4923-4933 ◽  
Author(s):  
Marie Bleakley ◽  
Brith E. Otterud ◽  
Julia L. Richardt ◽  
Audrey D. Mollerup ◽  
Michael Hudecek ◽  
...  

Abstract T-cell immunotherapy that targets minor histocompatibility (H) antigens presented selectively by recipient hematopoietic cells, including leukemia, could prevent and treat leukemic relapse after hematopoietic cell transplantation without causing graft-versus-host disease. To provide immunotherapy that can be applied to a majority of transplantation recipients, it is necessary to identify leukemia-associated minor H antigens that result from gene polymorphisms that are balanced in the population and presented by common human leukocyte antigen alleles. Current approaches for deriving minor H antigen–specific T cells, which provide essential reagents for the molecular identification and characterization of the polymorphic genes that encode the antigens, rely on in vivo priming and are often unsuccessful. We show that minor H antigen–specific cytotoxic T lymphocyte precursors are found predominantly in the naive CD8+ T-cell subset and provide an efficient strategy for in vitro priming of native T cells to generate T cells to a broad diversity of minor H antigens presented with common human leukocyte antigen alleles. We used this approach to derive a panel of stable cytotoxic T lymphocyte clones for discovery of genes that encode minor H antigens and identify a novel antigen expressed on acute myeloid leukemia stem cells and minimally in graft-versus-host disease target tissues.

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A107-A107
Author(s):  
Dmitry Pankov ◽  
Ioanna Eleftheriadou ◽  
Anna Domogala ◽  
Sara Brett ◽  
Lea Patasic ◽  
...  

BackgroundNY-ESO-1–specific T cells (letetresgene autoleucel [lete-cel] GSK3377794) are autologous CD4+ and CD8+ T cells transduced to express a high-affinity T-cell receptor (TCR) capable of recognizing NY-ESO-1 and LAGE-1a antigens in complex with human leukocyte antigen (HLA)-A*02. NY-ESO-1 (CTAG1B) and LAGE-1a (CTAG2) are tumor-associated antigens (TAA) that share the SLLMWITQC peptide bound to human leukocyte antigen HLA-A*02 and are expressed in various cancers. Emerging evidence suggests that TCR-engineered T cells targeting NY-ESO-1 hold promise for patients with solid tumors.1 Approximately 75% of synovial sarcomas can over-express NY-ESO-1 vs 12% of NSCLC,2 however, NSCLC expression of NY-ESO-1/LAGE1-a may have therapeutic potential.3 A separate study using engineered T cells targeting NY-ESO-1 has shown a partial response in a patient with advanced lung adenocarcinoma.4 Decitabine (DAC) is a hypomethylating agent and potent inducer of TAA, including NY-ESO-1.5 We have reported in vitro use of DAC to selectively modulate TAA expression in TAA low-expressing tumor cell lines in order to enhance lete-cel therapy.3 The aim of this study was to assess enhancement of combination therapy with lete-cel and DAC in an in vivo NSCLC model.MethodsNOD scid gamma (NSG) mice were injected subcutaneously with the human NSCLC tumor cell line NCI-H1703. Upon engraftment, tumor-bearing mice were treated with a 5-day course of DAC or vehicle control followed by 2 days of rest. Lete-cel was infused on Day 8. RNA was isolated from tumor formalin-fixed paraffin-embedded blocks, and levels of NY-ESO-1 and LAGE-1a transcript were measured by RT-qPCR. Expression pattern of the NY-ESO-1 protein was assessed via immunohistochemistry. Efficacy was defined by changes in tumor volume and systemic IFN-γ secretion.ResultsConsistent with our previous in vitro studies, DAC treatment in vivo resulted in induction of NY-ESO-1 and LAGE-1a in NSCLC tumors. Lete-cel in combination with DAC significantly enhanced antitumor efficacy in vivo compared with lete-cel alone. This was associated with increased interferon-γ secretion. Mice that received DAC treatment only did not show statistically significant tumor reduction compared with untreated mice.Ethics ApprovalAll animal studies were ethically reviewed and carried out in accordance with Animals (Scientific Procedures) Act 1986 and the GSK Policy on the Care, Welfare and Treatment of Animals. Human biological samples were sourced ethically and their research use was in accord with the terms of the informed consents under an Institutional Review Board/Ethics Committee approved protocol.ConclusionsGSK is currently enrolling a Phase Ib/IIa, multi-arm, open-label pilot study (NCT03709706) of lete-cel as a monotherapy or in combination with pembrolizumab in HLA-A*02–positive patients with NSCLC whose tumors express NY-ESO-1/LAGE-1a. This work may support rationale for the use of DAC in combination with lete-cel to improve adoptive T-cell therapy by increasing levels of target antigens and antitumor effect in NSCLC.AcknowledgementsFunding: GSKReferencesD’Angelo SP, Melchiori L, Merchant MS, et al. Cancer Discov 2018;8:944–957.Kerkar SP, Wang Z-F, Lasota J, et al. J Immunother 2016;39:181–187.Eleftheriadou I, Brett S, Domogala A, et al. Ann Oncol 2019:30(Suppl 5):v475–v532.Xia Y, Tian X, Wang J, et al. Oncol Lett 2018;16:6998–7007.Schrump DS, Fischette MR, Nguyen DM, et al. Clin Cancer Res 2006;12:5777–5785.


Blood ◽  
2000 ◽  
Vol 95 (12) ◽  
pp. 3693-3701 ◽  
Author(s):  
Ypke V. J. M. van Oosterhout ◽  
Liesbeth van Emst ◽  
Anton V. M. B. Schattenberg ◽  
Wil J. M. Tax ◽  
Dirk J. Ruiter ◽  
...  

Abstract This study evaluated the anti-graft versus host disease (GVHD) potential of a combination of immunotoxins (IT), consisting of a murine CD3 (SPV-T3a) and CD7 (WT1) monoclonal antibody both conjugated to deglycosylated ricin A. In vitro efficacy data demonstrated that these IT act synergistically, resulting in an approximately 99% elimination of activated T cells at 10−8 mol/L (about 1.8 μg/mL). Because most natural killer (NK) cells are CD7+, NK activity was inhibited as well. Apart from the killing mediated by ricin A, binding of SPV-T3a by itself impaired in vitro cytotoxic T-cell cytotoxicity. Flow cytometric analysis revealed that this was due to both modulation of the CD3/T-cell receptor complex and activation-induced cell death. These results warranted evaluation of the IT combination in patients with refractory acute GVHD in an ongoing pilot study. So far, 4 patients have been treated with 3 to 4 infusions of 2 or 4 mg/m2 IT combination, administered intravenously at 48-hour intervals. The T1/2 was 6.7 hours, and peak serum levels ranged from 258 to 3210 ng/mL. Drug-associated side effects were restricted to limited edema, fever, and a modest rise of creatine kinase levels. One patient developed low-titer antibodies against ricin A. Infusions were associated with an immediate drop of circulating T cells, followed by a more gradual but continuing elimination of T/NK cells. One patient mounted an extensive CD8 T-cell response directly after treatment, not accompanied with aggravating GVHD. Two patients showed nearly complete remission of GVHD, despite unresponsiveness to the extensive pretreatment. These findings justify further investigation of the IT combination for treatment of diseases mediated by T cells.


Blood ◽  
1993 ◽  
Vol 81 (12) ◽  
pp. 3440-3448 ◽  
Author(s):  
G Hoffmann-Fezer ◽  
C Gall ◽  
U Zengerle ◽  
B Kranz ◽  
S Thierfelder

Abstract Surprisingly little graft-versus-host disease (GVHD) has been observed in severe combined immunodeficient (SCID) mice injected intraperitoneally (IP) with human blood lymphocytes (hu-PBL-SCID), which raised the question as to whether GVHD in such a distant species is sporadic or suppressed because of immunologic reasons. After screening for blood T-cell chimerism, we hereby describe generalized lethal xenogeneic human GVHD in unconditioned SCID chimeras, which resembles GVHD in SCID mice injected with allogeneic lymphocytes. We adapted an immunocytochemical slide method for minute cell numbers, which allowed us to follow, by multimarker phenotyping of weekly mouse- tail bleeds, the chimeric status of 100 hu-PBL-SCID injected with 10(7) or 10(8) hu-PBL of Epstein-Barr virus- (EBV-) donors. More than half of the mice showed no or less than 2% T cells. However, 13% to 21% developed substantial blood T-lymphocyte chimerism (10% to 80% human CD+ cells) and high mortality. Immunohistology showed more human CD8+ than CD4+ T cells in the splenic white pulp. The cells developed HLA-DR activation markers and infiltrated the red pulp where human B cells also appeared. Expression of activation and proliferation markers increased within 5 to 6 weeks. Many human CD3+ cells were also found in the portal triads of the liver and in the lung, pancreas, and kidney. The thymus also became heavily infiltrated. The intestines and skin of hu-PBL-SCID were less infiltrated by donor cells than in SCID with allogeneic GVHD. The tongue contained almost no human T cells. Our data show that a relatively low overall incidence of human xenogeneic GVHD, even when high numbers of human PBL are injected, is the consequence of a dichotomy between mice with no or transient T-cell chimerism and a minority of mice with high-blood T-lymphocyte chimerism and GVHD mortality.


Blood ◽  
1989 ◽  
Vol 74 (6) ◽  
pp. 2227-2236 ◽  
Author(s):  
NA Kernan ◽  
C Bordignon ◽  
G Heller ◽  
I Cunningham ◽  
H Castro-Malaspina ◽  
...  

Abstract Risk factors for graft failure were analyzed in 122 recipients of an allogeneic T-cell-depleted human leukocyte antigen (HLA)-identical sibling marrow transplant as treatment for leukemia. In each case pretransplant immunosuppression included 1,375 to 1,500 cGy hyperfractionated total body irradiation and cyclophosphamide (60 mg/kg/d x 2). No patient received immunosuppression prosttransplant for graft-versus-host disease (GVHD) prophylaxis. Nineteen patients in this group experienced graft failure. The major factors associated with graft failure were transplants from male donors and the age of the patient (or donor). Among male recipients of male donor-derived grafts a low dose per kilogram of nucleated cells, progenitor cells (colony forming unit-GM) and T cells was also associated with graft failure. Additional irradiation to 1,500 cGy, high dose corticosteroids posttransplant, and additional peripheral blood donor T cells did not decrease the incidence of graft failure. In addition, type of leukemia, time from diagnosis to transplant, an intact spleen, or the presence of antidonor leukocyte antibodies did not correlate with graft failure. To ensure engraftment of secondary transplants, further immunosuppression was necessary but was poorly tolerated. However, engraftment and survival could be achieved with an immunosuppressive regimen in which antithymocyte globulin and high dose methylprednisolone were administered both before and after infusions of secondary partially T- cell-depleted marrow grafts.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3045-3045
Author(s):  
Yoshinobu Maeda ◽  
Pavan Reddy ◽  
Chen Liu ◽  
D. Keith Bishop ◽  
James L.M. Ferrara

Abstract Large numbers of T cells bearing γd T cell receptors are present in graft-versus-host disease (GVHD) target tissues. We investigated the potential role of host γd T cells during acute GVHD in a well-characterized GVHD model following full intensity conditioning (11 Gy TBI). BM and spleen T cells from BALB/c (H2d) donors were transplanted into wild type (wt) B6, aß T cell deficient B6 (aß −/−) or γd T cell deficient B6 (γd −/−) hosts. γd −/− hosts demonstrated significantly better day 35 survival (85%) than wt (40%) or aß−/− hosts (18%) (P<0.05). Reconstitution of γd −/− B6 hosts with B6 type γd T cells 24 hr prior to BMT restored lethal GVHD (50 % day 35 survival). In vivo, γd −/− B6 hosts demonstrated at least a five fold reduction in donor T cell expansion and cytokine production. In vitro, T cells proliferated less when co-cultured with allogeneic γd −/− dendritic cells (DCs) than with wt DCs (40,127 ± 1634 vs. 72,503 ± 1296, P<0.05). BM-derived DCs cultured with γd T cells caused greater proliferation of allogeneic T cells than DCs cultured with aß T cells (15.1 ± 21 x 104 vs. 5.1 ± 1.2 x 104, P<0.05). We next tested the effect of γd T cells on host DCs in vivo using a model system in which only the DCs injected prior to BMT expressed the alloantigen that stimulated the GVHD reaction. MHC Class II −/− B6 mice that had been depleted of γd T cells were given 11 Gy TBI and injected one day prior to BMT with B6 DCs that had been co-cultured either with γd T cells or with medium. On day 0 both groups of recipient mice were injected with BM plus splenic T cells from allogeneic bm12 donors. On day +5, CD4+ donor T cells expanded four times more in recipients of DCs co-cultured with γd T cells than in recipients of control DCs and serum levels of TNF-a were significantly higher (36.7 + 6.8 vs. 21.3 + 3.7 pg/ml, P<0.05). Together these data demonstrate that γd T cells amplify the stimulatory function of host DCs and increase the severity of GVHD, suggesting that a new therapeutic target for the prevention of the major BMT toxicity.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1972-1972
Author(s):  
Gerald P. Morris ◽  
Geoffrey L Uy ◽  
David L Donermeyer ◽  
Paul M Allen ◽  
John F. DiPersio

Abstract Abstract 1972 The nature of the T cell repertoire mediating pathologic in vivo alloreactivity is an important question for understanding the development of acute graft-versus-host disease (aGvHD) following clinical allogeneic transplantation. We have previously demonstrated that the small proportion of T cells that naturally express 2 T cell receptors (TCR) as a consequence of incomplete TCRa allelic exclusion during thymic development contribute disproportionately to the alloreactive T cell repertoire, both in vitro and in vivo in a mouse model of graft versus host disease (GvHD) (J. Immunol., 182:6639, 2009). Here, we extend these findings to human biology, examining dual TCR T cells from healthy volunteer donors (n = 12) and patients who have undergone allogeneic hematopoietic stem cell transplantation (HSCT) (n = 19). Peripheral blood was collected at day 30 post-HSCT or at the time of presentation with symptomatic acute GvHD. Dual TCR T cells were measured in peripheral blood by pair-wise staining with 3 commercially-available and 2 novel TCRa mAbs. Dual TCR T cells were consistently and significantly expanded in patients with symptomatic aGvHD, representing 5.3±3.8 % of peripheral T cells, compared to 1.7±0.8 % of T cells in healthy controls (p < 0.005) (Figure 1). There was no correlation between dual TCR T cell frequency and GvHD severity. Furthermore, sequential analysis of peripheral blood in 2 patients demonstrated expansion of dual TCR T cells concurrent with the development of aGvHD (Figure 2). Dual TCR T cells from patients with symptomatic aGvHD demonstrated increased expression of CD69 as compared to T cells expressing a single TCR, indicative of preferential activation of dual TCR T cells during aGvHD. Similarly, dual TCR T cells isolated from patients with symptomatic aGvHD demonstrate increased production of IFN-g ex vivo, indicative of the ability to mediate pathogenic alloreactive responses. Dual TCR T cell clones isolated from healthy donors and patients post-HSCT by single cell FACS sorting demonstrate alloreactive responses against a range of allogeneic cell lines in vitro. We propose that the increased alloreactivity of dual TCR T cells results from the less stringent thymic selection for secondary TCR, and thus provides a link between thymic selection, the TCR repertoire, and alloreactivity. These findings may lead to simple ways of phenotypically identifying specific T cells predisposed to inducing aGvHD for subsequent examination of T cell repertoires and functional studies. Furthermore, these data suggest that dual TCR T cells represent a potential predictive biomarker for aGvHD and a potential target for selective T cell depletion in HSCT. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4484-4484 ◽  
Author(s):  
Antonio Pierini ◽  
Lucrezia Colonna ◽  
Maite Alvarez ◽  
Dominik Schneidawind ◽  
Byung-Su Kim ◽  
...  

Adoptive transfer of CD4+CD25+FoxP3+ regulatory T cells (Tregs) prevents graft versus host disease (GvHD) in several animal models and following allogeneic hematopoietic cell transplantation (HCT) in clinical trials. In these models donor derived Tregs have been mainly used as they share the same major histocompatibility complex (MHC) with conventional CD4+ and CD8+ T cells (Tcons) that are primarily responsible for GvHD onset and persistence. Third-party derived Tregs are a promising alternative tool for cellular therapy as they can be prepared in advance, screened for pathogens and activity and banked. In this study we explored MHC disparities between Tregs and Tcons in HCT to evaluate the impact of these different cell populations in GvHD prevention and survival after transplant. Methods and Results We evaluated the ability of highly purified Treg to suppress proliferation of C57BL/6 (H-2b) Tcons following exposure to irradiated splenocytes from BALB/C (H-2d) mice in vitro in a mixed lymphocyte reaction (MLR). Either donor derived C57BL/6 (H-2b) or third party FVB (H-2q) Tregs suppressed Tcon proliferation at the Treg/Tcon ratios of 1:2 and 1:4. The same Treg population effectively suppressed different MHC derived Tcons where BALB/C (H-2d) or FVB (H-2q, third-party) Tcons were incubated with irradiated splenocytes from C57BL/6 (H-2b) mice and were effectively suppressed with BALB/C (H-2d) Tregs. In the MLR, third-party Tregs present the same activation molecule expression patterns as MHC matched Tregs: CTLA4 and LAG3 expression is enhanced after stimulation with interleukin-2 (IL-2) and anti-CD3/CD28 beads, while MHC class II molecule expression is increased after 3-4 days of culture with Tcons and irradiated splenocytes. Furthermore third-party and MHC matched Tregs express the same levels of interleukin-10 (IL-10). We translated these results to in vivo studies in animal models. In these studies T cell depleted bone marrow (TCD BM) from C57BL/6 (H-2b) mice was injected into lethally irradiated (total body irradiation, 8 Gy) BALB/C (H-2d) recipient mice. 2 days later GvHD was induced by injecting luc+ donor derived Tcons (1x106/mouse). Using this model GvHD was evaluated following the adoptive transfer of freshly isolated CD4+CD25+FoxP3+ Tregs derived from BALB/C (H-2d, host type), C57BL/6 (H-2b, donor type), FVB (H-2q, third-party) or BALB/B (H-2b, minor mismatched with the donor, major mismatched with the host) mice at the different Treg/Tcon ratios of 1:1, 1:2 and 1:4. As expected, donor Tregs exerted the strongest dose dependent GvHD protection (p = 0.028), while host Tregs did not improve mouse survival (p = 0.58). Third-party and minor mismatched with the donor Tregs improved mouse survival (third-party and minor mismatched with the donor respectively, p = 0.028 and p = 0.17) but mice had worse GvHD score profiles (both p< 0.001) and could not recover their weight as well as mice treated with donor Tregs (both p< 0.001). In vivoTcon bioluminescent imaging confirmed these results showing a reduced Tcon proliferation in mice treated with donor, third-party and minor mismatched with the donor Tregs, the first exerting the strongest effect (after 6 weeks of observation, p< 0.001). Conclusions Our studies indicate that MHC disparities between Tregs and Tcons do not represent an insurmountable barrier for Treg function. In vitro and in vivo data strongly suggest that Tregs can suppress Tcon proliferation without requiring MHC matching. In vivo GvHD prevention efficiency was affected by MHC disparities with donor derived Treg being the most effective, however, third party Treg also resulted in GvHD attenuation. These studies indicate that both donor and third party Treg could be effective in clinical application raising the possibility of screening and banking Treg for use. Further, these studies highlight the need for activation of the Treg on host tissues to effectively suppress conventional T cell proliferation and GvHD induction. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document