scholarly journals Subcellular distribution and characterization of acetylcholinesterase activities from sheep platelets: relationships between temperature- dependence and environment

Blood ◽  
1990 ◽  
Vol 76 (4) ◽  
pp. 737-744
Author(s):  
J Sanchez-Yague ◽  
JA Cabezas ◽  
M Llanillo

Acetylcholinesterase is a key enzyme in cholinergic neurotransmission for hydrolyzing acetylcholine and has been shown to possess arylacylamidase activity in addition to esterase activity. The enzyme is found at various loci, where its functional significance remains to be clarified, and it exists in multiple molecular forms. Sheep platelets have been shown to exhibit acetylcholinesterase activity associated with plasma membrane (Bp), endoplasmic reticulum (Cp), mitochondria granules (Dp), and soluble (As) fractions. These activities show differences in some physicochemical and kinetic properties. The soluble acetylcholinesterase is the most thermostable, and the enzyme from the Cp fractions shows the lowest affinity for the acetylthiocholine substrate and the strongest inhibition by fluoride. In all cases a noncompetitive inhibition of the enzyme by this ion is found. When membrane-bound acetylcholinesterases were assayed at temperatures between 12 degrees C and 33 degrees C, the Arrhenius plots of all activities exhibited a break point at about 17 degrees C. This discontinuity was abolished by addition of detergent to the assay medium (0.02% Triton X-100, final concentration). Their Hill coefficients were calculated in the presence of fluoride, showing unitary values in all cases, which points to a noncooperative effect and nonallosteric behavior in the particulate enzyme. These results suggest that the sheep platelet acetylcholinesterase associated with membrane-bound systems is modulated by the physical state of its environment, despite the fact that the enzyme might be lipid- or nonlipid-dependent.

Blood ◽  
1990 ◽  
Vol 76 (4) ◽  
pp. 737-744 ◽  
Author(s):  
J Sanchez-Yague ◽  
JA Cabezas ◽  
M Llanillo

Abstract Acetylcholinesterase is a key enzyme in cholinergic neurotransmission for hydrolyzing acetylcholine and has been shown to possess arylacylamidase activity in addition to esterase activity. The enzyme is found at various loci, where its functional significance remains to be clarified, and it exists in multiple molecular forms. Sheep platelets have been shown to exhibit acetylcholinesterase activity associated with plasma membrane (Bp), endoplasmic reticulum (Cp), mitochondria granules (Dp), and soluble (As) fractions. These activities show differences in some physicochemical and kinetic properties. The soluble acetylcholinesterase is the most thermostable, and the enzyme from the Cp fractions shows the lowest affinity for the acetylthiocholine substrate and the strongest inhibition by fluoride. In all cases a noncompetitive inhibition of the enzyme by this ion is found. When membrane-bound acetylcholinesterases were assayed at temperatures between 12 degrees C and 33 degrees C, the Arrhenius plots of all activities exhibited a break point at about 17 degrees C. This discontinuity was abolished by addition of detergent to the assay medium (0.02% Triton X-100, final concentration). Their Hill coefficients were calculated in the presence of fluoride, showing unitary values in all cases, which points to a noncooperative effect and nonallosteric behavior in the particulate enzyme. These results suggest that the sheep platelet acetylcholinesterase associated with membrane-bound systems is modulated by the physical state of its environment, despite the fact that the enzyme might be lipid- or nonlipid-dependent.


2002 ◽  
Vol 227 (7) ◽  
pp. 480-486 ◽  
Author(s):  
Lauren R. Plageman ◽  
Giovanni M. Pauletti ◽  
Kenneth A. Skau

Acetylcholinesterase (acetylcholine hydrolase, EC 3.1.1.7) was solubilized from cultured Caco-2 cells. It was established that this enzyme activity is acetylcholinesterase by substrate specificity (acetylthiocholine, acetyl-β-methylthiocholine>propionylthiocholine>butyrylthiocholine), substrate inhibition, and specificity of inhibitors (BW284c51>iso-OMPA). The acetylcholinesterase activity increased proportional to the degree of differentiation of the cells. Most of the enzyme was membrane bound, requiring detergent for solubilization, and the active site faced the external fluid. Only one peak of activity, which corresponded to a monomeric form, could be detected on linear sucrose density gradients. The sedimentation of this form of the enzyme was shifted depending on whether Triton X-100 or Brij 96 detergent was used. These results indicate that the epithelial-derived Caco-2 cells produce predominantly an amphiphilic, monomeric form of acetylcholinesterase that is bound to the plasma membrane and whose catalytic center faces the extracellular fluid.


2002 ◽  
Vol 68 (6) ◽  
pp. 2869-2876 ◽  
Author(s):  
Krishnan Chandra Raj ◽  
Lee A. Talarico ◽  
Lonnie O. Ingram ◽  
Julie A. Maupin-Furlow

ABSTRACT Pyruvate decarboxylase (PDC) is the key enzyme in all homo-ethanol fermentations. Although widely distributed among plants, yeasts, and fungi, PDC is absent in animals and rare in bacteria (established for only three organisms). Genes encoding the three known bacterial pdc genes have been previously described and expressed as active recombinant proteins. The pdc gene from Zymomonas mobilis has been used to engineer ethanol-producing biocatalysts for use in industry. In this paper, we describe a new bacterial pdc gene from Zymobacter palmae. The pattern of codon usage for this gene appears quite similar to that for Escherichia coli genes. In E. coli recombinants, the Z. palmae PDC represented approximately 1/3 of the soluble protein. Biochemical and kinetic properties of the Z. palmae enzyme were compared to purified PDCs from three other bacteria. Of the four bacterial PDCs, the Z. palmae enzyme exhibited the highest specific activity (130 U mg of protein−1) and the lowest Km for pyruvate (0.24 mM). Differences in biochemical properties, thermal stability, and codon usage may offer unique advantages for the development of new biocatalysts for fuel ethanol production.


1997 ◽  
Vol 115 (3) ◽  
pp. 1001-1007 ◽  
Author(s):  
A. Sonesson ◽  
M. Berglund ◽  
I. Staxen ◽  
S. Widell

2008 ◽  
Vol 55 (1) ◽  
pp. 135-140 ◽  
Author(s):  
Anna Potocka ◽  
Jan Zimowski

A membrane-bound phospholipid : steryl glucoside acyltransferase from Solanum melongena leaves was partially purified and its specificity and molecular as well as kinetic properties were defined. Among the steryl glycosides tested (e.g. typical plant steryl glucosides, steryl galactosides and cholesteryl xyloside) the highest activity was found with cholesteryl glucoside, but some structurally related compounds such as sito- and stigmasteryl glucoside or galactoside as well as cholesteryl galactoside were also acylated, albeit at lower rates. The investigated enzyme was able to use all classes of phosphoglycerolipids (phosphatidylethanolamine, phosphatidylcholine, phosphatidylserine, phosphatidylinositol, phosphatidylglycerol) as an acyl source for biosynthesis of acylated steryl glucoside. Among them 1,2-dimirystoylphosphatidylic acid appeared to be the best acyl donor. Apart from phosphoglycerolipids, 1,2-diacylglycerols were also used as acyl donor for steryl glucoside acylation, although at a distinctly lower rate. The acyl moiety was transferred from the C-1 position of phospholipid molecule. The investigated acyltransferase activity was stimulated by 2-mercaptoethanol, Triton X-100, 1-monoacylglycerols and inhibited in the presence of divalent cations such as Ca(2+), Mn(2+), Zn(2+) or Co(2+), some lipids (MDGD, ceramide), detergents (Tween 20, 40, 60 and 80, Tyloxapol, sodium deoxycholate) and high ionic strength.


1981 ◽  
Vol 36 (11-12) ◽  
pp. 968-972 ◽  
Author(s):  
K.-P. Rueß ◽  
M. Liefländer

Abstract Membrane bound, Triton X-100 solubilized bovine nucleus caudatus acetylcholinesterase is sedimenting in presence of Triton X-100 concentrations higher than the CMC as a 10.5 S-detergent-enzyme complex. There is evidence that this complex does neither represent the molecular enzyme arrangement present in the membrane, nor the molecular form originally released from the membrane. The purified, cytoplasmatic acetylcholinesterase is sedimenting as a 10.5 S-form too. This form is clearly to be distinguished from the detergent enzyme complex, for it is obviously not capable of aggregating, whereas the 10.5 S-detergent-enzyme complex aggregates on detergent removal to defined water soluble oligomers with sedimentation coefficients of 16 S (700000 ± 10000), 20.6 S (960000 ± 60000) and 23.3 S (~ 1200000). In contrast to acetylcholinesterase from erythrocytes this aggregation is not easily reversibly by incubation with Triton X-100, reflecting differences in the hydrophobic part of the enzymes. Purified acetylcholinesterase solubilized without detergent under autolytic or tryptic conditions is mainly sedimenting as a 4.5 S-form. Such slow sedimenting forms detected in crude solubilisates of neuronal tissues, may originate at least partially form autolytic solubilization.


1983 ◽  
Vol 213 (1) ◽  
pp. 43-51 ◽  
Author(s):  
C Ferreira ◽  
W R Terra

The midgut caecal cells from Rhynchosciara americana larvae possess a plasma-membrane-bound beta-D-glucosidase (cellobiase, EC 3.2.1.21), which is recovered (75-95%) in soluble form both after treatment with Triton X-100 and after treatment with papain. The Triton X-100-solubilized beta-D-glucosidase displays Mr106000 and pI 5.4, whereas the papain-released beta-D-glucosidase shows Mr65000 and pI 4.7. Thermal inactivations of the detergent-solubilized and the papain-released forms of beta-D-glucosidase both follow apparent first-order kinetics with similar half-lives. The papain-released beta-D-glucosidase, after being purified by density-gradient centrifugation, hydrolyses beta-D-glucosides, beta-D-galactosides and beta-D-fucosides at the same active site, as inferred from experiments of competition between substrates. The beta-D-glucosidase seems to operate in accordance with rapid-equilibrium kinetics, since the Km (0.61 mM) for the enzyme is constant over a wide range of pH. The hydrolysis of the beta-D-glucosidic bond catalysed by the beta-D-glucosidase occurs without inversion of configuration, delta-gluconolactone is a strong (Ki 0.5 microM) inhibitor of the enzyme and substituents in the substrate aglycone affect the catalytic constant of the reaction. These data support the assumption that the mechanism of the reaction catalysed by the beta-D-glucosidase involves the intermediary formation of a carbonium ion, rather than a glucosyl-enzyme intermediate.


1985 ◽  
Vol 229 (1) ◽  
pp. 81-86 ◽  
Author(s):  
G Deliconstantinos ◽  
S Tsakiris

The evoked effects of the negatively charged drugs phenobarbital and barbituric acid, the positively charged imipramine, perphenazine and trifluoperazine, and the neutral primidone, on the synaptosome-associated acetylcholinesterase activity were studied. A marked increase in the enzyme activity was exhibited in the presence of low concentrations (up to 3 mM) of phenobarbital, barbituric acid and primidone. Higher concentrations (up to 10 mM), however, led to a progressive inhibition of the enzyme activity. However, the activity of the enzyme was not affected by imipramine, but it was decreased by perphenazine and trifluoperazine. Arrhenius plots of acetylcholinesterase activity exhibited a break point at 23.4 degrees C for the untreated (control) synaptosomes, which was shifted to around 16 degrees C in the synaptosomes treated with the charged drugs. The allosteric inhibition by F- of acetylcholinesterase was studied in control synaptosomes and in those treated with the charged drugs. Changes in the Hill coefficients in combination with changes in Arrhenius activation energy produced by the charged drugs would be expected if it is assumed that charged drugs ‘fluidize’ the synaptosomal plasma membranes.


Sign in / Sign up

Export Citation Format

Share Document