scholarly journals Identification and comparison of CD34-positive cells and their subpopulations from normal peripheral blood and bone marrow using multicolor flow cytometry

Blood ◽  
1991 ◽  
Vol 77 (12) ◽  
pp. 2591-2596 ◽  
Author(s):  
JG Bender ◽  
KL Unverzagt ◽  
DE Walker ◽  
W Lee ◽  
DE Van Epps ◽  
...  

Four-color flow cytometry was used with a cocktail of antibodies to identify and isolate CD34+ hematopoietic progenitors from normal human peripheral blood (PB) and bone marrow (BM). Mature cells that did not contain colony forming cells were resolved from immature cells using antibodies for T lymphocytes (CD3), B lymphocytes (CD20), monocytes (CD14), and granulocytes (CD11b). Immature cells were subdivided based on the expression of antigens found on hematopoietic progenitors (CD34, HLA-DR, CD33, CD19, CD45, CD71, CD10, and CD7). CD34+ cells were present in the circulation in about one-tenth the concentration of BM (0.2% v 1.8%) and had a different spectrum of antigen expression. A higher proportion of PB-CD34+ cells expressed the CD33 myeloid antigen (84% v 43%) and expressed higher levels of the pan leukocyte antigen CD45 than BM-CD34+ cells. Only a small fraction of PB-CD34+ cells expressed CD71 (transferrin receptors) (17%) while 94% of BM-CD34+ expressed CD71+. The proportion of PB-CD34+ cells expressing the B-cell antigens CD19 (10%) and CD10 (3%) was not significantly different from BM-CD34+ cells (14% and 17%, respectively). Few CD34+ cells in BM (2.7%) or PB (7%) expressed the T-cell antigen CD7. CD34+ cells were found to be predominantly HLA-DR+, with a wide range of intensity. These studies show that CD34+ cells and their subsets can be identified in normal PB and that the relative frequency of these cells and their subpopulations differs in PB versus BM.

Blood ◽  
1991 ◽  
Vol 77 (12) ◽  
pp. 2591-2596 ◽  
Author(s):  
JG Bender ◽  
KL Unverzagt ◽  
DE Walker ◽  
W Lee ◽  
DE Van Epps ◽  
...  

Abstract Four-color flow cytometry was used with a cocktail of antibodies to identify and isolate CD34+ hematopoietic progenitors from normal human peripheral blood (PB) and bone marrow (BM). Mature cells that did not contain colony forming cells were resolved from immature cells using antibodies for T lymphocytes (CD3), B lymphocytes (CD20), monocytes (CD14), and granulocytes (CD11b). Immature cells were subdivided based on the expression of antigens found on hematopoietic progenitors (CD34, HLA-DR, CD33, CD19, CD45, CD71, CD10, and CD7). CD34+ cells were present in the circulation in about one-tenth the concentration of BM (0.2% v 1.8%) and had a different spectrum of antigen expression. A higher proportion of PB-CD34+ cells expressed the CD33 myeloid antigen (84% v 43%) and expressed higher levels of the pan leukocyte antigen CD45 than BM-CD34+ cells. Only a small fraction of PB-CD34+ cells expressed CD71 (transferrin receptors) (17%) while 94% of BM-CD34+ expressed CD71+. The proportion of PB-CD34+ cells expressing the B-cell antigens CD19 (10%) and CD10 (3%) was not significantly different from BM-CD34+ cells (14% and 17%, respectively). Few CD34+ cells in BM (2.7%) or PB (7%) expressed the T-cell antigen CD7. CD34+ cells were found to be predominantly HLA-DR+, with a wide range of intensity. These studies show that CD34+ cells and their subsets can be identified in normal PB and that the relative frequency of these cells and their subpopulations differs in PB versus BM.


2008 ◽  
Vol 132 (5) ◽  
pp. 813-819
Author(s):  
Xiaohong Han ◽  
Jeffrey L. Jorgensen ◽  
Archana Brahmandam ◽  
Ellen Schlette ◽  
Yang O. Huh ◽  
...  

Abstract Context.—The immunophenotypic profile of basophils is not yet fully established, and the immunophenotypic changes in chronic myelogenous leukemia are not fully characterized. Objective.—To establish a comprehensive immunophenotypic spectrum of normal basophils and to assess the range of immunophenotypic aberrations of basophils in chronic myelogenous leukemia. Design.—Using 4-color flow cytometry, we compared the immunophenotypic profile of basophils in peripheral blood or bone marrow samples from 20 patients with no evidence of neoplasia to basophils from 15 patients with chronic myelogenous leukemia. Results.—Basophils in control cases were all positive for CD9, CD13, CD22, CD25 (dim), CD33, CD36, CD38 (bright), CD45 (dimmer than lymphocytes and brighter than myeloblasts), and CD123 (bright), and were negative for CD19, CD34, CD64, CD117, and HLA-DR. Basophils in all chronic myelogenous leukemia patients possessed 1 to 5 immunophenotypic aberrancies. The most common aberrancies were underexpression of CD38, followed by aberrant expression of CD64 and underexpression of CD123. CD34 and CD117 were present in cases with basophilic precursors. Myeloblasts showed a distinct immunophenotypic profile, as they typically expressed CD34 and CD117, showed dimmer expression (compared with basophils) of CD38, CD45, and CD123, and lacked expression of CD22. Conclusions.—Flow cytometric immunophenotyping can identify immunophenotypic aberrations of basophils in chronic myelogenous leukemia, and discriminate basophils from myeloblasts.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 5195-5195
Author(s):  
Lulu Lu ◽  
Yongping Song ◽  
Baogen Ma ◽  
Xiongpeng Zhu ◽  
Xudong Wei ◽  
...  

Abstract Background and objectives: Normal human bone marrow (BM), cord blood (CB) and mobilized peripheral blood (MPB) are the most commonly used sources for allogeneic hematopoietic stem cell transplantation (HSCT). The aim of this study was to detect the expression of CXCR4 on CD34+ cells and to assess the distribution of lymphocyte subsets in each type allograft. Methods: CD34+ cells were separated from BM (n=30), CB (n=30) and MPB (n=30) by the CD34 MultiSort Kit immunomagnetic bead system. The expression of CXCR4 on CD34+cells was assayed by double color flow cytometry. The lymphocyte subsets in each type of allograft were detected by three-color flow cytometry. The groups of monoclonal antibodies were used as the following: CXCR4-PE/CD34−Pecy5, CD8−FITC/CD4−R-PE/CD3−TC, CD45RA-FITC/CD45RO-PE/CD4−Pecy5, CD45RA-FITC/CD45RO-PE/CD8−Pecy5, and CD3−FITC/CD16+56-PE. Isotype-specific antibodies were used as controls. Results: The expression of CXCR4 of cord blood and mobilized peripheral blood CD34+ cells was lower than that of bone marrow cells (BM 40.21%±6.72%, CB 20.93%±3.96%, MPB 20.93%±3.96%, P <0.05). The difference between cord blood and mobilized peripheral blood was not significant (P>0.05). The CD3+CD8low and CD3+CD4−CD8low subsets were higher in BM than that of CB and MPB (BM 8.61%±1.40%, CB 3.31%±0.88%, MPB 5.11%±0.76%,P<0.01). The relative frequencies of the naïve CD45RA+ CD45RO− phenotype among CD4+ and CD8high T cells were highest in CB, and it was higher in MPB than in BM grafts (BM 28.09%±4.52%, 41.86 %±3.31%; CB83.83%±12.24%, 86.69%±6.12%; MPB 43.58%±4.54%, 57.64%±4.77%, P<0.01). Naïve T cells (CD45RA+ CD45RO−) were mobilized preferentially compared to memory T cells (CD45RA− CD45RO+)(P <0.01); The relative frequencies of NKT (CD3+CD16+56+) among lymphocytes were lower in CB than that in BM and MPB (CB 0.77±0.19, BM4.15±1.10, MPB 4.13±0.84, P<0.01). Conclusion: BM, CB and MPB allografts differ widely in cellular makeup of CD34+ cells and lymphocyte subsets, which are associated with the distinct characteristics after allogeneic HSCT from different allogeneic hematological sources.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 5240-5240
Author(s):  
Archana M Agarwal ◽  
Scott James Samuelson ◽  
Sergey Preobrazhensky ◽  
Charles J. Parker ◽  
Kimberly Hickman ◽  
...  

Abstract Primary myelofibrosis (PMF) is a clonal chronic myeloproliferative disorder characterized by the accumulation of megakaryocytes in the bone marrow (BM), variable degrees of BM fibrosis, tear-drop erythrocytes, increased numbers of CD34+ hematopoietic progenitors in the peripheral blood (PB), and extramedullary hematopoiesis. Since the antigenic properties of the circulating CD34 cells may yield clues to disease pathogenesis and have not been extensively studied, we used five-color flow cytometry to examine these cells from 20 well characterized patients with PMF and 10 normal controls. Bone marrow biopsies, molecular and cytogenetic studies were also reviewed. As expected, the percentages of peripheral-blood CD34 cells were significantly higher in the PMF patients (mean 1.4%, range, range 0.065–7.15) compared to the controls (mean 0.05%, range 0.01–0.57). The mean fluorescence intensity (MFI) values related to HLA-DR expression were increased (more than 3 fold) on the CD34+ cells in 12/20 (60%) PMF patients relative to normal control levels, while increased levels of CD13 were seen in 5/20 (25%) of PMF patients. CD33 and CD117 expression were similar on the CD34+ cells in both groups. Aberrant expression of lymphoid antigens was observed in 6/20 (30%) with CD7, 6/20 (30%) with CD4, and 3/20 (15%) with CD56 on CD34 positive cells in PMF. In the18 cases also studied with antibodies against CD45RA and CD123, the majority of CD34+ CD38 + cells phenotypically resembled megakaryocyte-erythroid precursors (CD45RA−, CD123−) in 5 cases, common myeloid progenitors (CD45RA−, CD123+) in 12 cases, and granulocyte-macrophage progenitors (CD45RA+, CD123 +) in 1 case. JAK2-V617F mutations were detected in 9 of 20 cases, but were present in only 1 of 5 cases showing predominately megakaryocyte-erythroid precursors. The percentage of CD34+ cells also expressing CXCR4 (CD184) appears to be increased in some patients relative to normal controls in contrast to other reported studies. In conclusion, the peripheral blood CD34+, progenitor cells in PMF patients are heterogeneous phenotypically resembling megakaryocyte-erythroid precursors in approximately 30% of cases, and common myeloid progenitors in approximately 70% of cases. In addition, these cells often show phenotypic abnormalities (increased intensity of HLA-DR and CD13 expression) that can be detected with flow cytometry relative to normal peripheral blood CD34+ cells. Patterns of antigen expression in PMF also appear to differ from those reported for CD34 positive cells in other myeloproliferative disorders which may help in early diagnosis and/or monitoring treatment responses.


2013 ◽  
Vol 7 (1) ◽  
pp. 99-111 ◽  
Author(s):  
Hai-Su Yang ◽  
Min Yang ◽  
Xiaoyu Li ◽  
Sorina Tugulea ◽  
Henry Dong

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2803-2803
Author(s):  
Xiaohui Zhang ◽  
Lynn Moscinski ◽  
John M. Bennett ◽  
Reza Setoodeh ◽  
Deniz Peker ◽  
...  

Abstract Abstract 2803 Myelodysplastic syndrome (MDS) and T-cell large granular (T-LGL) leukemia are both bone marrow failure disorders. It has been reported in a small number of cases that clonal T-LGL proliferation or leukemia can coincidentally occur with MDS. Also, clonal CD8+/CD57+ effector T cells expansion was detected in as many as 50% of MDS bone marrows [Epling-Burnette, 2007]. How clonal LGL cells that reside in the bone marrow interfere with hematopoiesis remains unclear, particularly in the setting of MDS. We analyzed the clinicopathological features of concomitant MDS and T-LGL, and evaluated bone marrow status for lineage or pan-hypoplasia in these patients. Design: Clinical and pathologic data from patients with a diagnosis of MDS and flow cytometry performed on the peripheral blood between 1/2005 and 12/2009 were reviewed. The concurrent bone marrow biopsies from each patient at the time of flow cytometric analysis were reviewed by two hematopathologists. Bone marrow cellularity, lineage hypoplasia (M:E >5: 1 or <1:2) were documented. Peripheral lymphocyte count and CD3+/CD57+ and CD8+/CD57+ populations by flow cytometry were calculated and T cell gene receptor (TCR) rearrangements were correlated. Results: We performed LGL flow cytometry panel on 76 MDS patients (high grade MDS, n=23; low grade, n=54), as well as TCR gene rearrangements, and identified clonal T-LGL cells in peripheral blood of 37 patients (48.7%), including 15 high grade MDS (40.5%, RAEB-I and RAEB-II), and 22 low grade MDS (59.4%), including RCMD(13), RA(1), RS(1), RCMD-RA(1), RCMD-RS (2), 5q- MDS(1), and MDS unclassifiable(3). The immunophenotype of the T-LGL cells was typically CD3+/CD57+/CD7 dim+/CD5 dim+/CD8+ with variable CD11b,CD11c, CD16, CD56 and HLA-DR. A frequent variant in these MDS patients was CD11b-,CD11c -, CD16+/−, CD56+/−, HLA-DR- and CD62L+.The TCRβ or/and TCRγ gene rearrangements were positive in 35 of the 38 cases (92.1%). The peripheral blood lymphocyte counts were 300–3820 cells/μL (1199±799 cells/μL); the CD3+/CD8+/CD57+ T-LGL cell counts were 30–624 cells/μL (229±154 cells/μL). In comparison, the remaining 39 patients with non-clonal T-LGL included 11 high grade MDS cases, and 28 low grade MDS cases. The peripheral blood lymphocyte counts were 308–2210 cells/μL (1030±461 cells/μL). CD3+/CD57+ cells were 1–425 cells/μL (105±98 cells/μL). There was no identifiable phenotypic features suggestive of clonal T-LGL cells such as dim CD5 and/or dim CD7 with aforementioned aberrant expressions on T-cells, although 7 of the 39 cases had TCRβ or/and TCRγ gene rearrangements. Thirty healthy donors were included for controls with absolute lymphocyte counts of 2136±661 cells/μL and baseline CD3+/CD57+ cells of 162±109 cells/μL. All showed no clonal LGL phenotype and negative TCR gene rearrangements. Since the presence of T-LGL cells may impair bone marrow hematopoiesis, we examined if there are bone marrow status differences between these two groups. All the bone marrows were obtained at diagnosis or not on chemotherapy. The bone marrow cellularity of the MDS patients with clonal T-LGL ranged from <3% to almost 100%, averaging 56%, with 8 cases with dramatic hypocellularity (<3%-20%), while the bone marrow cellularity of the MDS patients without clonal T-LGL ranged from 20% to 90%, averaging 62%, with only 2 cases with mild hypocellularity (20% in 73- and 65-year-old). In addition, among MDS patients with clonal T-LGL cells, 14 of 37 (37.8%; 5 high grade, and 9 low grade) bone marrows had certain lineage hypoplasia, including 3 cases of trilineal hypoplasia, 9 cases of erythroid hypoplasia, and 2 cases of myeloid hypoplasia. In contrast, among 39 MDS patients without T-LGL, there were only 1 bone marrow with trilineal hypoplasia and 3 others with erythroid hypoplasia (10.2%). The difference between the two groups was statistically significant (p=0.004, chi square test). In conclusion, our studies indicate that clonal T-LGL cells expansion is a fairly common finding in high grade as well as low grade MDS. The clonal T-LGL cells have more than one variant immunophenotypes and are typically positive for TCR gene rearrangements. Additionally, we observed that the clonal LGL cells present in MDS bone marrows could be associated with lineage hypoplasia, which, in this respect, might impact clinical treatment. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2749-2749
Author(s):  
Montreh Tavakkoli ◽  
Dong H. Lee ◽  
Benjamin Durham ◽  
Stephen S. Chung ◽  
Christopher Y. Park

Abstract CD99 is a 32-kDa glycoprotein involved in leukocyte migration and homotypic cell aggregation. Since its initial discovery as a marker on acute lymphoblastic leukemia (ALL), few studies have investigated its potential targeting and biological role in this disease. We have shown that CD99 is up-regulated in malignant stem cells in acute myeloid leukemia (AML) and the myelodysplastic syndromes (MDS), and that monoclonal antibodies (mAbs) targeting CD99 induce cell death. Given that targeting CD99 holds promise in AML/MDS, we sought to determine whether it is an effective target in other hematologic malignancies. We began by screening 15 T-, B-, and plasma cell lines as well as normal peripheral blood and umbilical cord CD34+ cells for CD99 expression by flow cytometry. CD99 expression was 7- and 10-fold higher on 1/1 T-ALL and 1/2 anaplastic large cell lymphoma (ALCL) cell lines compared with CD34+ cells, and 2- and 3-fold higher relative to normal peripheral blood T cells, respectively. However, it was minimally expressed in 11/12 B cell lymphomas, plasma cell dyscrasias, and peripheral T cell neoplasms. CD99 expression (degree, localization) was also assessed on 264 lymphoma patient samples by immunohistochemistry (IHC) using the CD99 mAb, 12E7. We found that 11/20 (55%) T-lymphoblastic lymphomas, 7/16 (44%) angioimmunoblastic T-cell lymphomas, 4/13 (31%) ALCLs, 10/63 (16%) peripheral T-cell lymphomas, and 0/3 (0%) of NK/T cell lymphomas express CD99 by IHC, while only 1/70 (1.4%) diffuse large B cell lymphomas, 2/24 (8%) mantle cell lymphomas, 2/17 (12%) follicular lymphomas, 4/22 (18%) chronic lymphocytic leukemias, and 3/16 (19%) marginal zone lymphomas express CD99. Staining was predominately moderate and cytoplasmic. Using a BioGPS dataset from T-ALL patient bone marrow samples, CD99 transcript was found to be up-regulated in T-ALL bone marrow (n=117) relative to normal bone marrow (n=7) (p<0.0001), and was expressed at similar levels at diagnosis (n=14) and relapse (n=14), suggesting it is stably expressed and may be a candidate therapeutic target. To test whether CD99 mAbs are cytotoxic to T-ALL and ALCL cell lines, cells were incubated with 5µg/ml CD99 mAb in the presence of 7µg/ml anti-IgG antibody, and cell survival was assessed by flow cytometry following 72-hours relative to IgG isotype control. 4/5 T-ALL cell lines (KOPTK1, Loucy, CCRF HSB-2, PF283) were sensitive to the cytotoxicity of CD99 mAb, mediating 30-96% cell death (p≤0.003), with 2/4 cell lines displaying 90-96% cytotoxicity. Remarkably, incubating CD99 mAb with a primary T-ALL patient sample induced 100% cell death within 48 hours of treatment (p<0.0001). 1/2 ALCL cell lines (Karpas-299) were sensitive to cytotoxic CD99 mAb (46% cell death, p=0.02). Furthermore, CD99 mAb treatment induced Annexin V positivity, and cell death occurred independent of complement and within 3 hours of treatment. To determine whether CD99 mAb cytotoxicity depends on the level of CD99 expression, we stably transduced KOPTK1 cells with an optimized CD99 shRNA (199-fold reduction in CD99 mean fluorescence intensity [MFI]), stably transduced CD99-low Mac2A (ALCL) cells with TetOn CD99 (17-fold increase in CD99 MFI), and analyzed the cells for cytotoxicity following 24-hour incubations with CD99 mAbs. CD99 mAb-induced cell death increased from 4.4% to 88% upon overexpressing CD99, and decreased from 89% to 20% upon knocking down CD99, suggesting that cell death is dependent on the level of CD99 expression. To elucidate the functional role of CD99 in T-cell neoplasms, we xenografted KOPTK1 cells expressing CD99 shRNA into sublethally irradiated NOD/SCID/IL-2Rgc-null (NSG) mice. Animals transplanted with CD99 knockdown showed no improved survival compared to controls (n=4 and 5 in each group, respectively). We further evaluated the potential oncogenic role of CD99 in vitro, and observed no effect of CD99 knock down in KOPTK1 or overexpression in Mac2A on cell cycle status or proliferation by PI staining and cell counting. Our data indicate that CD99 is expressed in a subset of T-lineage neoplasms. While there is no evidence for a functional role of CD99 in the growth or survival of T-ALL and ALCL, CD99 can be targeted by CD99 mAbs to induce apoptosis with rapid kinetics and in a manner that is dependent on levels of CD99 expression and independent of complement. Thus, CD99 is a promising target in the treatment of a subset of T-cell neoplasms. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2003 ◽  
Vol 101 (10) ◽  
pp. 3784-3793 ◽  
Author(s):  
Ryan Reca ◽  
Dimitrios Mastellos ◽  
Marcin Majka ◽  
Leah Marquez ◽  
Janina Ratajczak ◽  
...  

Abstract Complement has recently been implicated in developmental pathways and noninflammatory processes. The expression of various complement components and receptors has been shown in a wide range of circulating myeloid and lymphoid cells, but their role in normal hematopoiesis and stem cell homing has not yet been investigated. We report that normal human CD34+ cells and lineage-differentiated hematopoietic progenitors express the complement anaphylatoxin C3a receptor (C3aR) and respond to C3a. Moreover, C3a, but not the biologically inactive desArg-C3a, induces calcium flux in these cells. Furthermore, we found that C3 is secreted by bone marrow stroma and that, although C3a does not influence directly the proliferation/survival of hematopoietic progenitors, it (1) potentiates the stromal cell–derived factor 1 (SDF-1)–dependent chemotaxis of human CD34+ cells and lineage-committed myeloid, erythroid, and megakaryocytic progenitors; (2) primes SDF-1–dependent trans-Matrigel migration; and (3) stimulates matrix metalloproteinase-9 secretion and very late antigen 4 (VLA-4)–mediated adhesion to vascular cell adhesion molecule 1 (VCAM-1). Furthermore, we found that murine Sca-1+ cells primed by C3a engrafted faster in lethally irradiated animals. These results indicate that normal human hematopoietic stem and progenitor cells express functional C3aR and that the C3aR-C3a axis sensitizes the responses of these cells to SDF-1 and thus may be involved in promoting their homing into the bone marrow via cross talk with the SDF–CXC chemokine receptor-4 (CXCR4) signaling axis. C3a is the first positive regulator of this axis to be identified.


Blood ◽  
2009 ◽  
Vol 113 (10) ◽  
pp. 2213-2216 ◽  
Author(s):  
Masayuki Kai ◽  
Tetsuya Hagiwara ◽  
Chie Emuta ◽  
Yukiko Chisaka ◽  
Kumi Tsuruhata ◽  
...  

Abstract In a previous study, we generated novel antithrombopoietin receptor agonist antibodies as therapeutic candidates. In this report, we investigated the in vivo effects of one of these antibodies, MA01G4344U, on primary human hematopoietic cells using xenotransplantation. NOD/Shi-scid, IL-2Rγnull (NOG) mice were pretreated by total-body irradiation and received a transplant of human cord blood–derived CD34+ cells. Weekly intraperitoneal injection of MA01G4344U (100 μg/mouse per week) or Peg-rhMGDF (5 μg/mouse per week) or phosphate-buffered saline (PBS) was performed. Human cells in peripheral blood were analyzed by flow cytometry and bone marrow cells were analyzed by flow cytometry and colony assay. MA01G4344U successfully increased the number of human CD41+ platelets and human CD45+ cells in peripheral blood. In the bone marrow, MA01G4344U increased the number of human CD45+/CD34+ cells, which resulted in more multilineage progenitor cells. The efficacy of MA01G4344U in promoting primary human hematopoietic cells in vivo suggests its therapeutic potential for thrombocytopenic and pancytopenic disorders.


Sign in / Sign up

Export Citation Format

Share Document