Flow Cytometry Analysis of Peripheral Blood CD34+ Cells in Patients with Primary Myelofibrosis

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 5240-5240
Author(s):  
Archana M Agarwal ◽  
Scott James Samuelson ◽  
Sergey Preobrazhensky ◽  
Charles J. Parker ◽  
Kimberly Hickman ◽  
...  

Abstract Primary myelofibrosis (PMF) is a clonal chronic myeloproliferative disorder characterized by the accumulation of megakaryocytes in the bone marrow (BM), variable degrees of BM fibrosis, tear-drop erythrocytes, increased numbers of CD34+ hematopoietic progenitors in the peripheral blood (PB), and extramedullary hematopoiesis. Since the antigenic properties of the circulating CD34 cells may yield clues to disease pathogenesis and have not been extensively studied, we used five-color flow cytometry to examine these cells from 20 well characterized patients with PMF and 10 normal controls. Bone marrow biopsies, molecular and cytogenetic studies were also reviewed. As expected, the percentages of peripheral-blood CD34 cells were significantly higher in the PMF patients (mean 1.4%, range, range 0.065–7.15) compared to the controls (mean 0.05%, range 0.01–0.57). The mean fluorescence intensity (MFI) values related to HLA-DR expression were increased (more than 3 fold) on the CD34+ cells in 12/20 (60%) PMF patients relative to normal control levels, while increased levels of CD13 were seen in 5/20 (25%) of PMF patients. CD33 and CD117 expression were similar on the CD34+ cells in both groups. Aberrant expression of lymphoid antigens was observed in 6/20 (30%) with CD7, 6/20 (30%) with CD4, and 3/20 (15%) with CD56 on CD34 positive cells in PMF. In the18 cases also studied with antibodies against CD45RA and CD123, the majority of CD34+ CD38 + cells phenotypically resembled megakaryocyte-erythroid precursors (CD45RA−, CD123−) in 5 cases, common myeloid progenitors (CD45RA−, CD123+) in 12 cases, and granulocyte-macrophage progenitors (CD45RA+, CD123 +) in 1 case. JAK2-V617F mutations were detected in 9 of 20 cases, but were present in only 1 of 5 cases showing predominately megakaryocyte-erythroid precursors. The percentage of CD34+ cells also expressing CXCR4 (CD184) appears to be increased in some patients relative to normal controls in contrast to other reported studies. In conclusion, the peripheral blood CD34+, progenitor cells in PMF patients are heterogeneous phenotypically resembling megakaryocyte-erythroid precursors in approximately 30% of cases, and common myeloid progenitors in approximately 70% of cases. In addition, these cells often show phenotypic abnormalities (increased intensity of HLA-DR and CD13 expression) that can be detected with flow cytometry relative to normal peripheral blood CD34+ cells. Patterns of antigen expression in PMF also appear to differ from those reported for CD34 positive cells in other myeloproliferative disorders which may help in early diagnosis and/or monitoring treatment responses.

Blood ◽  
1991 ◽  
Vol 77 (12) ◽  
pp. 2591-2596 ◽  
Author(s):  
JG Bender ◽  
KL Unverzagt ◽  
DE Walker ◽  
W Lee ◽  
DE Van Epps ◽  
...  

Four-color flow cytometry was used with a cocktail of antibodies to identify and isolate CD34+ hematopoietic progenitors from normal human peripheral blood (PB) and bone marrow (BM). Mature cells that did not contain colony forming cells were resolved from immature cells using antibodies for T lymphocytes (CD3), B lymphocytes (CD20), monocytes (CD14), and granulocytes (CD11b). Immature cells were subdivided based on the expression of antigens found on hematopoietic progenitors (CD34, HLA-DR, CD33, CD19, CD45, CD71, CD10, and CD7). CD34+ cells were present in the circulation in about one-tenth the concentration of BM (0.2% v 1.8%) and had a different spectrum of antigen expression. A higher proportion of PB-CD34+ cells expressed the CD33 myeloid antigen (84% v 43%) and expressed higher levels of the pan leukocyte antigen CD45 than BM-CD34+ cells. Only a small fraction of PB-CD34+ cells expressed CD71 (transferrin receptors) (17%) while 94% of BM-CD34+ expressed CD71+. The proportion of PB-CD34+ cells expressing the B-cell antigens CD19 (10%) and CD10 (3%) was not significantly different from BM-CD34+ cells (14% and 17%, respectively). Few CD34+ cells in BM (2.7%) or PB (7%) expressed the T-cell antigen CD7. CD34+ cells were found to be predominantly HLA-DR+, with a wide range of intensity. These studies show that CD34+ cells and their subsets can be identified in normal PB and that the relative frequency of these cells and their subpopulations differs in PB versus BM.


Blood ◽  
1991 ◽  
Vol 77 (12) ◽  
pp. 2591-2596 ◽  
Author(s):  
JG Bender ◽  
KL Unverzagt ◽  
DE Walker ◽  
W Lee ◽  
DE Van Epps ◽  
...  

Abstract Four-color flow cytometry was used with a cocktail of antibodies to identify and isolate CD34+ hematopoietic progenitors from normal human peripheral blood (PB) and bone marrow (BM). Mature cells that did not contain colony forming cells were resolved from immature cells using antibodies for T lymphocytes (CD3), B lymphocytes (CD20), monocytes (CD14), and granulocytes (CD11b). Immature cells were subdivided based on the expression of antigens found on hematopoietic progenitors (CD34, HLA-DR, CD33, CD19, CD45, CD71, CD10, and CD7). CD34+ cells were present in the circulation in about one-tenth the concentration of BM (0.2% v 1.8%) and had a different spectrum of antigen expression. A higher proportion of PB-CD34+ cells expressed the CD33 myeloid antigen (84% v 43%) and expressed higher levels of the pan leukocyte antigen CD45 than BM-CD34+ cells. Only a small fraction of PB-CD34+ cells expressed CD71 (transferrin receptors) (17%) while 94% of BM-CD34+ expressed CD71+. The proportion of PB-CD34+ cells expressing the B-cell antigens CD19 (10%) and CD10 (3%) was not significantly different from BM-CD34+ cells (14% and 17%, respectively). Few CD34+ cells in BM (2.7%) or PB (7%) expressed the T-cell antigen CD7. CD34+ cells were found to be predominantly HLA-DR+, with a wide range of intensity. These studies show that CD34+ cells and their subsets can be identified in normal PB and that the relative frequency of these cells and their subpopulations differs in PB versus BM.


2008 ◽  
Vol 132 (5) ◽  
pp. 813-819
Author(s):  
Xiaohong Han ◽  
Jeffrey L. Jorgensen ◽  
Archana Brahmandam ◽  
Ellen Schlette ◽  
Yang O. Huh ◽  
...  

Abstract Context.—The immunophenotypic profile of basophils is not yet fully established, and the immunophenotypic changes in chronic myelogenous leukemia are not fully characterized. Objective.—To establish a comprehensive immunophenotypic spectrum of normal basophils and to assess the range of immunophenotypic aberrations of basophils in chronic myelogenous leukemia. Design.—Using 4-color flow cytometry, we compared the immunophenotypic profile of basophils in peripheral blood or bone marrow samples from 20 patients with no evidence of neoplasia to basophils from 15 patients with chronic myelogenous leukemia. Results.—Basophils in control cases were all positive for CD9, CD13, CD22, CD25 (dim), CD33, CD36, CD38 (bright), CD45 (dimmer than lymphocytes and brighter than myeloblasts), and CD123 (bright), and were negative for CD19, CD34, CD64, CD117, and HLA-DR. Basophils in all chronic myelogenous leukemia patients possessed 1 to 5 immunophenotypic aberrancies. The most common aberrancies were underexpression of CD38, followed by aberrant expression of CD64 and underexpression of CD123. CD34 and CD117 were present in cases with basophilic precursors. Myeloblasts showed a distinct immunophenotypic profile, as they typically expressed CD34 and CD117, showed dimmer expression (compared with basophils) of CD38, CD45, and CD123, and lacked expression of CD22. Conclusions.—Flow cytometric immunophenotyping can identify immunophenotypic aberrations of basophils in chronic myelogenous leukemia, and discriminate basophils from myeloblasts.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2803-2803
Author(s):  
Xiaohui Zhang ◽  
Lynn Moscinski ◽  
John M. Bennett ◽  
Reza Setoodeh ◽  
Deniz Peker ◽  
...  

Abstract Abstract 2803 Myelodysplastic syndrome (MDS) and T-cell large granular (T-LGL) leukemia are both bone marrow failure disorders. It has been reported in a small number of cases that clonal T-LGL proliferation or leukemia can coincidentally occur with MDS. Also, clonal CD8+/CD57+ effector T cells expansion was detected in as many as 50% of MDS bone marrows [Epling-Burnette, 2007]. How clonal LGL cells that reside in the bone marrow interfere with hematopoiesis remains unclear, particularly in the setting of MDS. We analyzed the clinicopathological features of concomitant MDS and T-LGL, and evaluated bone marrow status for lineage or pan-hypoplasia in these patients. Design: Clinical and pathologic data from patients with a diagnosis of MDS and flow cytometry performed on the peripheral blood between 1/2005 and 12/2009 were reviewed. The concurrent bone marrow biopsies from each patient at the time of flow cytometric analysis were reviewed by two hematopathologists. Bone marrow cellularity, lineage hypoplasia (M:E >5: 1 or <1:2) were documented. Peripheral lymphocyte count and CD3+/CD57+ and CD8+/CD57+ populations by flow cytometry were calculated and T cell gene receptor (TCR) rearrangements were correlated. Results: We performed LGL flow cytometry panel on 76 MDS patients (high grade MDS, n=23; low grade, n=54), as well as TCR gene rearrangements, and identified clonal T-LGL cells in peripheral blood of 37 patients (48.7%), including 15 high grade MDS (40.5%, RAEB-I and RAEB-II), and 22 low grade MDS (59.4%), including RCMD(13), RA(1), RS(1), RCMD-RA(1), RCMD-RS (2), 5q- MDS(1), and MDS unclassifiable(3). The immunophenotype of the T-LGL cells was typically CD3+/CD57+/CD7 dim+/CD5 dim+/CD8+ with variable CD11b,CD11c, CD16, CD56 and HLA-DR. A frequent variant in these MDS patients was CD11b-,CD11c -, CD16+/−, CD56+/−, HLA-DR- and CD62L+.The TCRβ or/and TCRγ gene rearrangements were positive in 35 of the 38 cases (92.1%). The peripheral blood lymphocyte counts were 300–3820 cells/μL (1199±799 cells/μL); the CD3+/CD8+/CD57+ T-LGL cell counts were 30–624 cells/μL (229±154 cells/μL). In comparison, the remaining 39 patients with non-clonal T-LGL included 11 high grade MDS cases, and 28 low grade MDS cases. The peripheral blood lymphocyte counts were 308–2210 cells/μL (1030±461 cells/μL). CD3+/CD57+ cells were 1–425 cells/μL (105±98 cells/μL). There was no identifiable phenotypic features suggestive of clonal T-LGL cells such as dim CD5 and/or dim CD7 with aforementioned aberrant expressions on T-cells, although 7 of the 39 cases had TCRβ or/and TCRγ gene rearrangements. Thirty healthy donors were included for controls with absolute lymphocyte counts of 2136±661 cells/μL and baseline CD3+/CD57+ cells of 162±109 cells/μL. All showed no clonal LGL phenotype and negative TCR gene rearrangements. Since the presence of T-LGL cells may impair bone marrow hematopoiesis, we examined if there are bone marrow status differences between these two groups. All the bone marrows were obtained at diagnosis or not on chemotherapy. The bone marrow cellularity of the MDS patients with clonal T-LGL ranged from <3% to almost 100%, averaging 56%, with 8 cases with dramatic hypocellularity (<3%-20%), while the bone marrow cellularity of the MDS patients without clonal T-LGL ranged from 20% to 90%, averaging 62%, with only 2 cases with mild hypocellularity (20% in 73- and 65-year-old). In addition, among MDS patients with clonal T-LGL cells, 14 of 37 (37.8%; 5 high grade, and 9 low grade) bone marrows had certain lineage hypoplasia, including 3 cases of trilineal hypoplasia, 9 cases of erythroid hypoplasia, and 2 cases of myeloid hypoplasia. In contrast, among 39 MDS patients without T-LGL, there were only 1 bone marrow with trilineal hypoplasia and 3 others with erythroid hypoplasia (10.2%). The difference between the two groups was statistically significant (p=0.004, chi square test). In conclusion, our studies indicate that clonal T-LGL cells expansion is a fairly common finding in high grade as well as low grade MDS. The clonal T-LGL cells have more than one variant immunophenotypes and are typically positive for TCR gene rearrangements. Additionally, we observed that the clonal LGL cells present in MDS bone marrows could be associated with lineage hypoplasia, which, in this respect, might impact clinical treatment. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1461-1461
Author(s):  
Serena Marotta ◽  
Giovanna Giagnuolo ◽  
Giulia Scalia ◽  
Maddalena Raia ◽  
Santina Basile ◽  
...  

Abstract Abstract 1461 The differential diagnosis of myelofibrotic disorders encompasses chronic primary myelofibrosis (PMF), myelodysplastic syndromes with fibrosis (MDS-F), acute panmyelosis with myelofibrosis (APMF) and acute megakaryoblastic leukemia (AMKL). Most of these conditions are recognized as distinct entities by the WHO 2008 revised classification of myeloid neoplasms; however, the WHO admits that often a definitive diagnosis is problematic, mostly because of specimens with insufficient cellularity (e.g., “dry tap”). Nevertheless, the correct identification of the most aggressive fibrotic disorders (APMF and AMKL) remains crucial, given their poor prognosis and subsequent need of intensive treatment (including transplantation). Even the most recent molecular studies did not result in any contribution in the differential diagnosis. Here we report our experience on a cohort of about 300 patients who were admitted in our bone marrow failure unit because of cytopenia in the last 7 years. All these patients were evaluated by standard peripheral blood and bone marrow cytology, karyotype analysis and bone marrow thephine biopsy, aiming to a definitive hematological diagnosis. Flow cytometry analysis was performed at initial presentation and then serially during the follow up on both peripheral blood and bone marrow aspirate. All patients were classified according to the WHO 2008 revised classification of myeloid neoplasms, and received the best standard treatment based on the specific disease, age and comorbidities. This report focuses on 8 patients who shared a unique flow cytometry finding of an aberrant megakaryocyte-derived cell population, which seems associated with a distinct disease evolution. Two of these patients received the diagnosis of AMKL according to bone marrow aspirate and trephine biopsy; the karyotype was complex in one case (monosomal karyotype, including a 5q-), whereas no Jak-2 mutation or any other genetic lesions could be demonstrated. Their blast cells were CD34+, CD38+, CD45+, CD117+, CD33+, CD13+; in addition, in the peripheral blood, we detected the presence of an aberrant cell population which was CD45-, CD42b+ (CD34+ in one case and CD34- in the other one). In the blood smear, we observed megakaryocyte fragments which likely correspond to this aberrant cell population, as identified by flow cytometry. Other three patients presented with a severe pancytopenia: all of them had a dry tap, and their trephine biopsies documented a massive fibrosis. They had no previous hematological disorder (one suffered from Behcet syndrome), normal karyotype and absence of any typical genetic lesion (i.e., wild-type Jak-2). All of them did not show splenomegaly, increased LDH or leukoerythroblastosis; their peripheral blood smear showed abnormal giant platelets, often resembling megakaryocyte fragments. Flow cytometry documented in the peripheral blood the presence of a distinct population of CD45-, CD42b+, CD61+ cells, which was also CD34+ in one case. These 3 patients were initially classified as PMF, even if APMF could not be ruled out; however, within 6 months they all progressed to AMKL. At this stage, typical CD34+, CD45+ blast cells were accompanied by a progressive increase of CD45+, CD42b+, CD61+ cells. This aberrant megakaryocyte-derived cell population (which could not be demonstrated in patients with thrombocytopenia) was also identified in 3 additional patients, who have a previous history of hematologic disorders: two had a history of pure red cell aplasia (successfully treated by immunosuppressive therapy), and one a 5q- melodysplastic syndrome (responding to lenalidomide, even with transient cytogenetic remission). In all of them we observed the appearance of CD45-, CD42b+ cells in the peripheral blood, which appeared as giant platelets/megakaryocyte fragments in the blood film; this finding within a few weeks was followed by progression to AMKL (5q- was detected in 2 of 3 cases). In conclusion, we demonstrate that aberrant circulating megakaryocyte-derived cells detected by flow cytometry may be useful in the differential diagnosis of myelofibrotic disorders. These giant platelets or megakaryocyte fragments, regardless the initial diagnosis, were associated with early evolution into AMKL, likely representing a surrogate marker for aggressive neoplasms of the megakaryocytic lineage. Disclosures: Risitano: Alexion: Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4130-4130
Author(s):  
Peipei Li ◽  
Xin Wang ◽  
Chen Na ◽  
Lili Feng ◽  
Xueling Ge ◽  
...  

Abstract Introduction Dysregulation of proliferation and apoptosis is associated the pathogenesis of CLL. More recently, Metadherin (MTDH) involved in aberrant proliferation, survival, and increased migration, invasiveness, and metastasis of tumor cells, has been demonstrated as a potential crucial mediator of various types of huamn malignancies. MTDH promotes tumor progression by modulating multiple oncogenic signaling pathways (NF-kB, PI3K/Akt and Wnt/beta-catenin). However, there is no report about the role of MTDH in CLL. Since Wnt signaling pathway had been proven to be unusual activated in CLL, the objective of this study was to investigate the role of MTDH in CLL and the relationship between MTDH and Wnt/beta-catenin signaling pathway. Methods Peripheral blood mononuclear cells (PBMCs) came from samples of 31 CLL patients. The characteristics of CLL patients were shown in Table 1. CD19+B cells were selected from peripheral blood of age-matched heathy donor, cord blood, bone marrow and tonsil of normal controls using CD19+ magnetic selection kits and detected the purity with anti-CD19-PE antibody by flow cytometry. Qantitative PCR and Western blot were used to detect the expression of mRNA and protein for MTDH, and the key functional components of Wnt/beta-catenin signaling pathway (beta-catenin and LEF-1). We also measured MTDH level in B cells by flow cytometry after intracellular staining. CLL cell line(MEC-1) were infected by lentivirus to interfer MTDH and the infection efficiencies were determined by fluorescence microscope and flow cytometry. Both primary CLL cells and MEC-1 were exposed to 10ug/ml goat F(ab`)2 anti-human IgM for 48hours to mimic activation of BCR. The proliferation and apoptosis of these cells were evaluated by CCK-8 method and Annexin V kits. Results mRNA of MTDH in PBMCs of 31 CLL patients were overexpression compared with CD19+ B cells coming from 15 age-matched healthy donors (Figure 1A). 27 out of 31 CLL samples were detected MTDH expression in protein level but none in normal controls (Figure 1B). The expression of MTDH was associated with Rai staging of CLL. There were no MTDH detection in CD19+ B cells collected from bone marrow, peripheral blood, tonsil and cord blood, which stand for precursor, mature, germinal center, and lineage B cells, respectively. The transfection efficiency of MEC-1 cells by interfering MTDH expression with Lentivirus was shown in Figure 1C. The level of MTDH knockdown was accompanied with LEF-1 downregulation (Figure 1D, 1E), as well as the downregulation of c-myc and cyclinD1 expression (Figure 1F). siRNA targeting MTDH treatment in MEC-1 decreased the proliferation and increased the apoptosis(Figure 2A, 2B). We further observed that the proliferation and MTDH expression both in CLL cells and MEC-1 were upregulation after stimulation of anti-human IgM (Figure 2C, 2D, 2E). This effect in the proliferation was blocked by MTDH inteference (Figure 2F). Conclusions Our results demonstrated that MTDH is aberrant expression in B cells of CLL patients and correlated with clinical staging of CLL. MTDH was not expression in any subsets of normal B cells. MTDH may exert a preservative role through activation of Wnt signaling pathway. The CLL cell proliferation activation by BCR signaling pathway may be inhibited by MTDH interference. Our findings indicated that MTDH may be a potential therapeutic target of CLL. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2001 ◽  
Vol 98 (10) ◽  
pp. 2917-2921 ◽  
Author(s):  
James M. Croop ◽  
Ryan Cooper ◽  
Christine Fernandez ◽  
Vicki Graves ◽  
Susan Kreissman ◽  
...  

Abstract A potential therapeutic option for patients with Fanconi anemia is collection of peripheral blood stem cells prior to the development of severe pancytopenia. These hematopoietic cells potentially could be infused when symptomatic bone marrow failure develops, as autologous rescue after chemotherapy in the event of leukemic transformation, or as targets for gene therapy. Eight patients with Fanconi anemia were mobilized with 10 μg/kg per day of granulocyte colony-stimulating factor (median, 10 ± 4 days) to determine the feasibility of collecting peripheral blood stem cells for future use. Six patients achieved a peripheral blood CD34+ count of ≥ 6/μL and underwent apheresis. The collection goal was 2 × 106 CD34+ cells/kg based on a predicted weight 5 years from the date of collection. A mean of 2.6 ± 0.9 × 106 CD34+ cells/kg of the weight at the time of collection were collected, which corresponded to 1.9 ± 0.4 × 106 CD34+cells/kg of the target weight. The collections required a mean of 4 ± 3 days (range, 2-8 days) of apheresis. Six of the 8 subjects had ≥ 1 × 106 CD34+ cells/kg cryopreserved based on both actual and target weights, and 4 subjects had ≥ 2 × 106 CD34+ cells/kg cryopreserved based on the target weight. These results suggest that some patients with Fanconi anemia can have adequate numbers of CD34+ cells mobilized and collected from the peripheral blood prior to the onset of severe bone marrow failure, but they may require an extended mobilization and multiple days of collection.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 258-258 ◽  
Author(s):  
Margherita Massa ◽  
Vittorio Rosti ◽  
Alessandro M. Vannuccchi ◽  
Rita Campanelli ◽  
Alessandro Pecci ◽  
...  

Abstract Spontaneous mobilization of HPC is a key feature of MMM. We investigated the CXCR4/SDF-1 (stromal derived factor-1) axis in 52 consecutive MMM patients. The percentage of circulating CD34+ cells co-expressing CXCR4 at the cytofluorimetric analysis was significantly lower (P=0.02) in MMM patients (median, 37%, range, 0 to 92%) than in the normal controls (n=12; median, 75%; range, 39 to 91%). CXCR4 mean fluorescence intensity was also highly significantly lower in MMM patients (median 0.73; range, 0.06 to 7.05) than in normal controls (median, 1.84; range, 0.41 to 6.69; P=0.004). By analyzing the association between CXCR4 expression and the mobilization of progenitor cells, an inverse correlation was found between CXCR4 expression and the number of circulating CD45+/CD34+ HPC (R=−0.40; P=0.005). By restricting the relation analysis of CXCR4 expression and clinical features to those patients who were not receiving cytoreductive treatment (n=41), there was no correlation between CXCR4 expression and patients’ sex, hemoglobin concentration, WBC, prefibrotic stage. By contrast, CXCR4 expression was inversely correlated with clinical characteristics that portrayed an advanced disease, such as older age (R=−0.31; P=0.026), longer disease duration (R=−0.37; P=0.008), larger splenomegaly (r=−0.33; P=0.015) and lower platelet count (r=0.42; P=0.007). The levels of CXCR4 mRNA, measured in peripheral blood CD34+ cells of patients with MMM were lower as compared with those of cells purified from normal peripheral blood (ΔCT by real time RT-PCR using GAPDH as housekeeping reference gene: 5.33 ± 0.49 vs. 1.53 ± 0.79, mean ± SD; P=0.003). SDF-1 plasma levels were significantly increased in patients with MMM but no correlation was documented with CXCR4 expression. We conclude that reduced expression of CXCR4 on CD34+ cells is a mechanism for the constitutive mobilization of HPC in MMM.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 5195-5195
Author(s):  
Lulu Lu ◽  
Yongping Song ◽  
Baogen Ma ◽  
Xiongpeng Zhu ◽  
Xudong Wei ◽  
...  

Abstract Background and objectives: Normal human bone marrow (BM), cord blood (CB) and mobilized peripheral blood (MPB) are the most commonly used sources for allogeneic hematopoietic stem cell transplantation (HSCT). The aim of this study was to detect the expression of CXCR4 on CD34+ cells and to assess the distribution of lymphocyte subsets in each type allograft. Methods: CD34+ cells were separated from BM (n=30), CB (n=30) and MPB (n=30) by the CD34 MultiSort Kit immunomagnetic bead system. The expression of CXCR4 on CD34+cells was assayed by double color flow cytometry. The lymphocyte subsets in each type of allograft were detected by three-color flow cytometry. The groups of monoclonal antibodies were used as the following: CXCR4-PE/CD34−Pecy5, CD8−FITC/CD4−R-PE/CD3−TC, CD45RA-FITC/CD45RO-PE/CD4−Pecy5, CD45RA-FITC/CD45RO-PE/CD8−Pecy5, and CD3−FITC/CD16+56-PE. Isotype-specific antibodies were used as controls. Results: The expression of CXCR4 of cord blood and mobilized peripheral blood CD34+ cells was lower than that of bone marrow cells (BM 40.21%±6.72%, CB 20.93%±3.96%, MPB 20.93%±3.96%, P &lt;0.05). The difference between cord blood and mobilized peripheral blood was not significant (P&gt;0.05). The CD3+CD8low and CD3+CD4−CD8low subsets were higher in BM than that of CB and MPB (BM 8.61%±1.40%, CB 3.31%±0.88%, MPB 5.11%±0.76%,P&lt;0.01). The relative frequencies of the naïve CD45RA+ CD45RO− phenotype among CD4+ and CD8high T cells were highest in CB, and it was higher in MPB than in BM grafts (BM 28.09%±4.52%, 41.86 %±3.31%; CB83.83%±12.24%, 86.69%±6.12%; MPB 43.58%±4.54%, 57.64%±4.77%, P&lt;0.01). Naïve T cells (CD45RA+ CD45RO−) were mobilized preferentially compared to memory T cells (CD45RA− CD45RO+)(P &lt;0.01); The relative frequencies of NKT (CD3+CD16+56+) among lymphocytes were lower in CB than that in BM and MPB (CB 0.77±0.19, BM4.15±1.10, MPB 4.13±0.84, P&lt;0.01). Conclusion: BM, CB and MPB allografts differ widely in cellular makeup of CD34+ cells and lymphocyte subsets, which are associated with the distinct characteristics after allogeneic HSCT from different allogeneic hematological sources.


Sign in / Sign up

Export Citation Format

Share Document