scholarly journals Effects of actin filaments on fibrin clot structure and lysis

Blood ◽  
1992 ◽  
Vol 80 (4) ◽  
pp. 928-936 ◽  
Author(s):  
PA Janmey ◽  
JA Lamb ◽  
RM Ezzell ◽  
S Hvidt ◽  
SE Lind

Abstract The muscle and cytoskeletal protein actin is released from cells as a consequence of cell death and interacts with components of the hemostatic and fibrinolytic systems, including platelets, plasmin, and fibrin. We report here that incorporation of actin filaments into fibrin clots changes their viscoelastic properties by increasing their shear modulus at low deforming stresses and by nearly eliminating their tendency to become more rigid with increasing deformation (ie, exhibit strain-hardening). The viscoelastic effects depended on the length of the actin filaments as shown by the effects of the plasma filament- severing protein, gelsolin. Binding of actin to fibrin clots also varied with actin filament length. The plasma actin-binding proteins gelsolin and vitamin D-binding protein reduced, but did not eliminate, the incorporation of actin in the clot. Fluorescence microscopy showed a direct association of rhodamine-labeled actin filaments with the fibrin network. Incubation of clots containing long actin filaments in solutions containing physiologic concentrations of gelsolin (2 mumol/L) released 60% of the actin trapped in the clot. Reduction of the actin content of a fibrin clot by incubation in a gelsolin-containing solution resulted in an increased rate of clot lysis. The ability of plasma gelsolin to shorten actin filaments may therefore be of physiologic and potentially of therapeutic importance insofar as gelsolin-mediated diffusion of actin from the clot may restore the clot's rheologic properties and render it more sensitive to the lytic action of plasmin.

Blood ◽  
1992 ◽  
Vol 80 (4) ◽  
pp. 928-936
Author(s):  
PA Janmey ◽  
JA Lamb ◽  
RM Ezzell ◽  
S Hvidt ◽  
SE Lind

The muscle and cytoskeletal protein actin is released from cells as a consequence of cell death and interacts with components of the hemostatic and fibrinolytic systems, including platelets, plasmin, and fibrin. We report here that incorporation of actin filaments into fibrin clots changes their viscoelastic properties by increasing their shear modulus at low deforming stresses and by nearly eliminating their tendency to become more rigid with increasing deformation (ie, exhibit strain-hardening). The viscoelastic effects depended on the length of the actin filaments as shown by the effects of the plasma filament- severing protein, gelsolin. Binding of actin to fibrin clots also varied with actin filament length. The plasma actin-binding proteins gelsolin and vitamin D-binding protein reduced, but did not eliminate, the incorporation of actin in the clot. Fluorescence microscopy showed a direct association of rhodamine-labeled actin filaments with the fibrin network. Incubation of clots containing long actin filaments in solutions containing physiologic concentrations of gelsolin (2 mumol/L) released 60% of the actin trapped in the clot. Reduction of the actin content of a fibrin clot by incubation in a gelsolin-containing solution resulted in an increased rate of clot lysis. The ability of plasma gelsolin to shorten actin filaments may therefore be of physiologic and potentially of therapeutic importance insofar as gelsolin-mediated diffusion of actin from the clot may restore the clot's rheologic properties and render it more sensitive to the lytic action of plasmin.


Blood ◽  
2012 ◽  
Vol 119 (14) ◽  
pp. 3342-3351 ◽  
Author(s):  
Daria Zamolodchikov ◽  
Sidney Strickland

Abstract Alzheimer disease is characterized by the presence of increased levels of the β-amyloid peptide (Aβ) in the brain parenchyma and cerebral blood vessels. This accumulated Aβ can bind to fibrin(ogen) and render fibrin clots more resistant to degradation. Here, we demonstrate that Aβ42 specifically binds to fibrin and induces a tighter fibrin network characterized by thinner fibers and increased resistance to lysis. However, Aβ42-induced structural changes cannot be the sole mechanism of delayed lysis because Aβ overlaid on normal preformed clots also binds to fibrin and delays lysis without altering clot structure. In this regard, we show that Aβ interferes with the binding of plasminogen to fibrin, which could impair plasmin generation and fibrin degradation. Indeed, plasmin generation by tissue plasminogen activator (tPA), but not streptokinase, is slowed in fibrin clots containing Aβ42, and clot lysis by plasmin, but not trypsin, is delayed. Notably, plasmin and tPA activities, as well as tPA-dependent generation of plasmin in solution, are not decreased in the presence of Aβ42. Our results indicate the existence of 2 mechanisms of Aβ42 involvement in delayed fibrinolysis: (1) through the induction of a tighter fibrin network composed of thinner fibers, and (2) through inhibition of plasmin(ogen)–fibrin binding.


2017 ◽  
Vol 117 (02) ◽  
pp. 295-302 ◽  
Author(s):  
Katie A. Greenhalgh ◽  
Mark W. Strachan ◽  
Saad Alzahrani ◽  
Paul D. Baxter ◽  
Kristina F. Standeven ◽  
...  

SummaryBoth type 2 diabetes (T2DM) and Bß448Lys variant of fibrinogen are associated with dense fibrin clots, impaired fibrinolysis and increased cardiovascular risk. It was our objective to investigate whether BßArg448Lys adds to vascular risk by modulating fibrin network structure and/or fibrinolysis in diabetes. The primary aim was to study effects of BßArg448Lys on fibrin network characteristics in T2DM. Secondary aims investigated interactions between gender and BßArg448Lys substitution in relation to fibrin clot properties and vascular disease. Genotyping for BßArg448Lys and dynamic clot studies were carried out on 822 T2DM patients enrolled in the Edinburgh Type 2 Diabetes Study. Turbidimetric assays of individual plasma samples analysed fibrin clot characteristics with additional experiments conducted on clots made from purified fibrinogen, further examined by confocal and electron microscopy. Plasma clot lysis time in Bß448Lys was longer than Bß448Arg variant (mean ± SD; 763 ± 322 and 719 ± 351 seconds [s], respectively; p<0.05). Clots made from plasma-purified fibrinogen of individuals with Arg/Arg, Arg/Lys and Lys/Lys genotypes showed differences in fibre thickness (46.75 ± 8.07, 38.40 ± 6.04 and 25 ± 4.99 nm, respectively; p<0.001) and clot lysis time (419 ± 64, 442 ± 87 and 517 ± 65 s, respectively; p=0.02), directly implicating the polymorphism in the observed changes. Women with Bß448Lys genotype had increased risk of cerebrovascular events and were younger compared with Bß448Arg variant (67.2 ± 4.0 and 68.2 ± 4.4 years, respectively; p=0.035). In conclusion, fibrinogen Bβ448Lys variant is associated with thrombotic fibrin clots in diabetes independently of traditional risk factors. Prospective studies are warranted to fully understand the role of BβArg448Lys in predisposition to vascular ischaemia in T2DM with the potential to develop individualised antithrombotic management strategies.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1218-1218
Author(s):  
Amanda P. Waller ◽  
Katelyn J Wolfgang ◽  
Bryce A. Kerlin

Abstract Introduction Nephrotic syndrome (NS) is characterized by massive proteinuria (secondary to podocyte injury), hypoalbuminemia, and edema. Importantly, NS is associated with a complex acquired hypercoagulopathy and a high incidence (~25%) of life-threatening thrombotic complications. Both hypercoagulopathy and hypofibrinolysis are described contributors to NS-related VTE risk. However, the mechanisms underlying the latter are poorly understood. We previously showed NS disease severity is directly proportional to both hypercoagulopathy and fibrinolytic resistance There is evidence that fibrin clot structural density contributes to clot stability and has been observed in the presence of both increased plasma thrombin generation and fibrinogen levels, both of which we have previously demonstrated in NS. Thus the aim of the present study was to investigate the mechanistic relationship between fibrin clot structure and fibrinolysis using two rodent models of NS and a cohort of human NS patients. We hypothesized that hypofibrinolysis arises from increased fibrin network density in a manner directly proportional to NS disease severity. Methods Using two well-established rat models of NS, transgenic diphtheria toxin receptor (DTR) and puromycin aminonucleoside (PAN), we compared fibrinolytic markers to disease severity. A range of severity was induced by a single injection of diphtheria toxin (0-75 ng/kg IP) or PAN (0-150 mg/kg IV). On day 10 post-injection, morning spot urines were collected and analyzed for protein:creatinine ratio (uPr:Cr). Rats were then anesthetized and venous blood (IVC) was collected into 0.32% NaCitrate/1.45 µM Corn Trypsin Inhibitor and spun down to platelet poor plasma (PPP). Samples were also collected from a local cohort of pediatric and adult NS patients (n=23), along with the corresponding clinical lab data for each patient. Plasma clot lysis assay (CLA) was performed using urokinase (50 IU) +/- plasminogen (2.4 uM), on clots initiated with high (20 nM) or low (5 nM) thrombin. Clot fibrin network structure was visualized/assessed by laser scanning confocal microscopy using fluorescently-labeled fibrinogen as a tracer. Fibrinolytic markers in plasma were measured by ELISA. Results Hypofibrinolysis: Previous findings of a hypofibrinolytic defect was confirmed with the CLA, such that plasma clot lysis at 60 min was significantly negatively correlated with proteinuria (R2=0.196; P=0.007 & R2=0.214; P=0.010) and significantly positively correlated with hypoalbuminemia (R2=0.310; P<0.001 & R2=0.240; P=0.006), in the DTR & PAN models, respectively. Additionally, plasma clot lysis by CLA was decreased in NS patients with uPrCr ≥2 (n=16) vs. <2 mg/mg (n=7) (96.1 vs 55.2 %, respectively; P=0.041). Similar results were found when the assay was repeated using high or low thrombin concentrations or increased UK (200 IU), with and without the addition of physiologic amounts of plasminogen. When the assay was performed in the absence of UK (0 IU), lysis at 60 min was drastically reduced (~17%) with no difference between groups. Mechanisms of Hypofibrinolysis: Fibrin network density increased with disease severity such that it was positively correlated with proteinuria (P=0.022) and negatively correlated with hypoalbuminemia (P=0.01) in our DTR rat model, with similar results seen in our human samples (Figure). As expected, fibrin network density was negatively correlated with plasma clot lysis (P=0.04), while plasma fibrinogen concentration (P=0.017), and thrombin generation (P=0.047) were positively correlated with fibrin density. There was no correlation with plasma uPA, PAI-1, a2AP, tPA, TAFI, or plasminogen. Conclusions These data suggest that nephrotic plasma forms thrombi with a denser fibrin network that is resistant to fibrinolysis, in a manner that is proportional to disease severity. The significant correlation between thrombin generation and fibrin network density suggest that plasma thrombotic potential may be a key mechanism contributing to the altered clot structure and impaired clot lysis of NS. Current studies are exploring the mechanisms underlying and in vivo significance of fibrinolytic resistance in our rat NS models. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
K A Schutt ◽  
S Maxeiner ◽  
K Lysaja ◽  
M Berger ◽  
S Ruetten ◽  
...  

Abstract Background and aims Alterations of clot structure with thin fibres, small pores and prolonged fibrinolysis are associated with an increased cardiovascular risk. We previously demonstrated complement C3 to be incorporated into fibrin clots resulting in prolongation of fibrinolysis, an effect which was exaggerated in patients with diabetes. Patients with diabetes are known to display higher levels of complement activation. However, the role of complement activation in particular activation of C3 and C5 on clot lysis time remains unexplored. Thus, the present study seeks to determine whether activation of complement C3 and C5 by cobra venom factor (CVF) has an impact on fibrin clot structure and clot lysis. Materials and methods Fibrin clot structure and lysis were determined in a plasma pool of healthy controls in the presence and absence of the complement C3 and C5 activator CVF using a validated turbidimetric assay and scanning electron microscopy. C3 activation was inhibited by the addition of the small 14-AA-peptide Cp40, while C5 activation was blocked by the addition of the FDA approved monoclonal antibody eculizumab (Emab). Results Complement activation with CVF leads to a prothrombotic clot structure with thinner fibres (Co 0.20±0.001 au, CVF 0.13±0.001 au; p<0.0001) and prolongation of clot lysis time (Co 864±32 sec, CVF 1665±17 sec; p<0.0001), which was confirmed by electron microscopy (Co 94.7±1.44 nm, CVF 60.7±0.96 nm; p<0.0001). Inhibition of C3 activation by Cp40 improved clot structure resulting in thicker fibres (Co 0.20±0.001 au, CVF 0.13±0.001 au, CP40 0.20±0.002 au; p<0.0001) and shorter clot lysis time (Co 100%, CVF 181±8.9%, CP40 139±7.8%; p<0.0001), while scrambled protein had no effect on either clot structure or lysis time. As CVF can also activate C5 convertase we next investigated the inhibition of complement C5 activation with eculizumab. The latter improved both fibre thickness (Co 0.20±0.002 au, CVF 0.13±0.003 au, Emab 0.16±0.006 au; p<0.0001) and clot lysis time (Co 100%, CVF 192±12%, Emab 140±11%; p<0.001). The combined inhibition of C3 and C5 activation using both, Cp40 and eculizumab in combination optimized clot structure (Co 0.22±0.001 au, CVF 0.13±0.0006 au, Cp40/Emab 0.21±0.001 au; Co vs. Cp40/Emab p=0.003) and restored clot lysis time (Co 100%, CVF 226±6%, CP40/Emab 104±1%; Co vs. Cp40/Emap p=0.8). The results were confirmed by electron microscopy (fibre thickness: Co 93±1.4 nm, CVF 68±1.3 nm, Cp40 83±1.4 nm, Emab 78±1.7 nm, CP40/Emap 95±1.6 nm). Conclusions Complement activation at the level of complement C3 and C5 has a detrimental impact on clot properties. Blocking C3 and C5 activation can restore both clot density and prolongation of clot lysis time. Further studies are needed to determine the underlying binding sites on fibrin(ogen) to pave the way for molecules improving clot properties without affecting immune responses. Acknowledgement/Funding KS is supported by the German Research Foundation (DFG) (SFB/TRR219 C-07; HE 5666/1-2 to KS (née Hess)]


Blood ◽  
2008 ◽  
Vol 112 (7) ◽  
pp. 2810-2816 ◽  
Author(s):  
Stephanie A. Smith ◽  
James H. Morrissey

Abstract Polyphosphate, a linear polymer of inorganic phosphate, is present in platelet dense granules and is secreted on platelet activation. We recently reported that polyphosphate is a potent hemostatic regulator, serving to activate the contact pathway of blood clotting and accelerate factor V activation. Because polyphosphate did not alter thrombin clotting times, it appeared to exert all its procoagulant actions upstream of thrombin. We now report that polyphosphate enhances fibrin clot structure in a calcium-dependent manner. Fibrin clots formed in the presence of polyphosphate had up to 3-fold higher turbidity, had higher mass-length ratios, and exhibited thicker fibers in scanning electron micrographs. The ability of polyphosphate to enhance fibrin clot turbidity was independent of factor XIIIa activity. When plasmin or a combination of plasminogen and tissue plasminogen activators were included in clotting reactions, fibrin clots formed in the presence of polyphosphate exhibited prolonged clot lysis times. Release of polyphosphate from activated platelets or infectious microorganisms may play an important role in modulating fibrin clot structure and increasing its resistance to fibrinolysis. Polyphosphate may also be useful in enhancing the structure of surgical fibrin sealants.


Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 347
Author(s):  
Zsuzsa Bagoly ◽  
Barbara Baráth ◽  
Rita Orbán-Kálmándi ◽  
István Szegedi ◽  
Réka Bogáti ◽  
...  

Cross-linking of α2-plasmin inhibitor (α2-PI) to fibrin by activated factor XIII (FXIIIa) is essential for the inhibition of fibrinolysis. Little is known about the factors modifying α2-PI incorporation into the fibrin clot and whether the extent of incorporation has clinical consequences. Herein we calculated the extent of α2-PI incorporation by measuring α2-PI antigen levels from plasma and serum obtained after clotting the plasma by thrombin and Ca2+. The modifying effect of FXIII was studied by spiking of FXIII-A-deficient plasma with purified plasma FXIII. Fibrinogen, FXIII, α2-PI incorporation, in vitro clot-lysis, soluble fibroblast activation protein and α2-PI p.Arg6Trp polymorphism were measured from samples of 57 acute ischemic stroke patients obtained before thrombolysis and of 26 healthy controls. Increasing FXIII levels even at levels above the upper limit of normal increased α2-PI incorporation into the fibrin clot. α2-PI incorporation of controls and patients with good outcomes did not differ significantly (49.4 ± 4.6% vs. 47.4 ± 6.7%, p = 1.000), however it was significantly lower in patients suffering post-lysis intracranial hemorrhage (37.3 ± 14.0%, p = 0.004). In conclusion, increased FXIII levels resulted in elevated incorporation of α2-PI into fibrin clots. In stroke patients undergoing intravenous thrombolysis treatment, α2-PI incorporation shows an association with the outcome of therapy, particularly with thrombolysis-associated intracranial hemorrhage.


2014 ◽  
Vol 112 (08) ◽  
pp. 287-296 ◽  
Author(s):  
Magdalena Celińska-Löwenhoff ◽  
Teresa Iwaniec ◽  
Agnieszka Padjas ◽  
Jacek Musiał ◽  
Anetta Undas

SummaryWe tested the hypothesis that plasma fibrin clot structure/function is unfavourably altered in patients with antiphospholipid syndrome (APS). Ex vivo plasma clot permeability, turbidity and susceptibility to lysis were determined in 126 consecutive patients with APS enrolled five months or more since thrombotic event vs 105 controls. Patients with both primary and secondary APS were characterised by 11% lower clot permeability (p<0.001), 4.8% shorter lag phase (p<0.001), 10% longer clot lysis time (p<0.001), and 4.7% higher maximum level of D-dimer released from clots (p=0.02) as compared to the controls. Scanning electron microscopy images confirmed denser fibrin networks composed of thinner fibres in APS. Clots from patients with “triple-antibody positivity” were formed after shorter lag phase (p=0.019) and were lysed at a slower rate (p=0.004) than in the remainder. Clots from APS patients who experienced stroke and/or myocardial infarction were 8% less permeable (p=0.01) and susceptible to lysis (10.4% longer clot lysis time [p=0.006] and 4.5% slower release of D-dimer from clots [p=0.01]) compared with those following venous thromboembolism alone. Multivariate analysis adjusted for potential confounders showed that in APS patients, lupus anticoagulant and “triple-positivity” were the independent predictors of clot permeability, while “triple-positivity” predicted lysis time. We conclude that APS is associated with prothrombotic plasma fibrin clot phenotype, with more pronounced abnormalities in arterial thrombosis. Molecular background for this novel prothrombotic mechanism in APS remains to be established.


2017 ◽  
Vol 117 (09) ◽  
pp. 1739-1749 ◽  
Author(s):  
Agnieszka Janion-Sadowska ◽  
Joanna Natorska ◽  
Jakub Siudut ◽  
Michal Zabczyk ◽  
Andrzej Stanisz ◽  
...  

SummaryWe sought to investigate whether the G20210A prothrombin mutation modifies plasma fibrin clot properties in patients after venous thromboembolism (VTE) and how rivaroxaban treatment affects these alterations. We studied 34 prothrombin mutation heterozygous carriers and sex- and age-matched 34 non-carriers, all at least three months since the first VTE episode, before and during treatment with rivaroxaban. Clot permeability (Ks) and clot lysis time (CLT) with or without elimination of thrombin activatable fibrinolysis inhibitor (TAFI) were assessed at baseline, 2–6 hours (h) after and 20–25 h after intake of rivaroxaban (20 mg/day). At baseline, the prothrombin mutation group formed denser clots (Ks −12 %, p=0.0006) and had impaired fibrinolysis (CLT +14 %, p=0.004, and CLT-TAFI +13 %, p=0.03) compared with the no mutation group and were similar to those observed in 15 healthy unrelated prothrombin mutation carriers. The G20210A prothrombin mutation was the independent predictor for Ks and CLT before rivaroxaban intake. At 2–6 h after rivaroxaban intake, clot properties improved in both G20210A carriers and non-carriers (Ks +38 %, and +37 %, CLT −25 % and −25 %, CLT-TAFI −20 % and −24 %, respectively, all p<0.001), but those parameters were worse in the prothrombin mutation group (Ks −12.8 %, CLT +17 %, CLT-TAFI +13 %, all p<0.001). Rivaroxaban concentration correlated with fibrin clot properties. After 20–25 h since rivaroxaban intake most clot properties returned to baseline. Rivaroxaban-related differences in clot structure were confirmed by scanning electron microscopy images. In conclusion, rivaroxaban treatment, though improves fibrin clot properties, cannot abolish more prothrombotic fibrin clot phenotype observed in prothrombin mutation carriers following VTE.


2021 ◽  
Author(s):  
Malgorzata Wygrecka ◽  
Anna Birnhuber ◽  
Benjamin Seeliger ◽  
Laura Michalick ◽  
Oleg Pak ◽  
...  

The high incidence of thrombotic events suggests a possible role of the contact system pathway in COVID-19 pathology. Here, we demonstrate altered levels of factor XII (FXII) and its activation products in two independent cohorts of critically ill COVID-19 patients in comparison to patients suffering from severe acute respiratory distress syndrome due to influenza virus (ARDS-influenza). Compatible with this data, we report rapid consumption of FXII in COVID-19, but not in ARDS-influenza, plasma. Interestingly, the kaolin clotting time was not prolonged in COVID-19 as compared to ARDS-influenza. Using confocal and electron microscopy, we show that increased FXII activation rate, in conjunction with elevated fibrinogen levels, triggers formation of fibrinolysis-resistant, compact clots with thin fibers and small pores in COVID-19. Accordingly, we observed clot lysis in 30% of COVID-19 patients and 84% of ARDS influenza subjects. Analysis of lung tissue sections revealed wide-spread extra- and intra-vascular compact fibrin deposits in COVID-19. Together, our results indicate that elevated fibrinogen levels and increased FXII activation rate promote thrombosis and thrombolysis resistance via enhanced thrombus formation and stability in COVID-19.


Sign in / Sign up

Export Citation Format

Share Document