scholarly journals Stimulation of human myelopoiesis by leukotrienes B4 and C4: interactions with granulocyte-macrophage colony-stimulating factor

Blood ◽  
1993 ◽  
Vol 81 (2) ◽  
pp. 352-356 ◽  
Author(s):  
L Stenke ◽  
M Mansour ◽  
P Reizenstein ◽  
JA Lindgren

Abstract The regulatory role of leukotrienes (LT) on human myelopoiesis was investigated. Mononuclear bone marrow cells from 31 healthy donors were cultivated in the presence of suboptimal concentrations of recombinant granulocyte-macrophage colony-stimulating factor (GM-CSF) for 10 days in semisolid agar. The addition of LTC4 or LTB4 to the cultures dose- dependently stimulated myeloid stem cell proliferation. Maximal effects were observed at 10(-8) mol/L, at which LTC4 induced a 91% +/- 23% (mean +/- SEM; P = .004) and LTB4 a 73% +/- 22% (P = .008) increase in colony formation. In contrast, addition of the LTB4 isomer 5(S), 12(S)- diHETE did not affect the growth. LTD4 exerted a weak potentiating effect on progenitor proliferation (17% +/- 7% growth stimulation at 10(-10) mol/L; P = .034), whereas LTE4 was without consistent effect. Furthermore, LTC4-induced stimulation of colony formation was insensitive to the LTD4 antagonist ICI 198615. The dual lipoxygenase and prostaglandin endoperoxide synthase inhibitor CL42A potently suppressed the proliferation of myeloid colonies, a suppression that could be reversed by parallel addition of LTB4 or LTC4. The results suggest that both LTB4 and LTC4 possess strong and specific synergistic stimulatory effects on GM-CSF-induced human myeloid progenitor cell growth.

Blood ◽  
1993 ◽  
Vol 81 (2) ◽  
pp. 352-356
Author(s):  
L Stenke ◽  
M Mansour ◽  
P Reizenstein ◽  
JA Lindgren

The regulatory role of leukotrienes (LT) on human myelopoiesis was investigated. Mononuclear bone marrow cells from 31 healthy donors were cultivated in the presence of suboptimal concentrations of recombinant granulocyte-macrophage colony-stimulating factor (GM-CSF) for 10 days in semisolid agar. The addition of LTC4 or LTB4 to the cultures dose- dependently stimulated myeloid stem cell proliferation. Maximal effects were observed at 10(-8) mol/L, at which LTC4 induced a 91% +/- 23% (mean +/- SEM; P = .004) and LTB4 a 73% +/- 22% (P = .008) increase in colony formation. In contrast, addition of the LTB4 isomer 5(S), 12(S)- diHETE did not affect the growth. LTD4 exerted a weak potentiating effect on progenitor proliferation (17% +/- 7% growth stimulation at 10(-10) mol/L; P = .034), whereas LTE4 was without consistent effect. Furthermore, LTC4-induced stimulation of colony formation was insensitive to the LTD4 antagonist ICI 198615. The dual lipoxygenase and prostaglandin endoperoxide synthase inhibitor CL42A potently suppressed the proliferation of myeloid colonies, a suppression that could be reversed by parallel addition of LTB4 or LTC4. The results suggest that both LTB4 and LTC4 possess strong and specific synergistic stimulatory effects on GM-CSF-induced human myeloid progenitor cell growth.


Blood ◽  
1986 ◽  
Vol 67 (1) ◽  
pp. 37-45 ◽  
Author(s):  
D Metcalf ◽  
CG Begley ◽  
GR Johnson ◽  
NA Nicola ◽  
MA Vadas ◽  
...  

Recombinant human granulocyte-macrophage colony-stimulating factor (rH GM-CSF) was purified to homogeneity from medium conditioned by COS cells transfected with a cloned human GM-CSF cDNA and shown to be an effective proliferative stimulus in human marrow cultures for GM and eosinophil colony formation. The specific activity of purified rH GM- CSF in human marrow cultures was calculated to be at least 4 X 10(7) U/mg protein. Clone transfer experiments showed that this proliferation was due to direct stimulation of responding clonogenic cells. Acting alone, rH GM-CSF did not stimulate erythroid colony formation, but in combination with erythropoietin, increased erythroid and multipotential colony formation in cultures of peripheral blood cells. rH GM-CSF had no proliferative effects on adult or fetal murine hematopoietic cells, did not induce differentiation in murine myelomonocytic WEHI-3B cells, and was unable to stimulate the survival or proliferation of murine hematopoietic cell lines dependent on murine multi-CSF (IL 3). rH GM- CSF stimulated antibody-dependent cytolysis of tumor cells by both mature human neutrophils and eosinophils and increased eosinophil autofluorescence and phagocytosis by neutrophils. From a comparison of these effects with those of semipurified preparations of human CSF alpha and -beta, it was concluded that rH GM-CSF exhibited all the biologic activities previously noted for CSF alpha.


Blood ◽  
1989 ◽  
Vol 74 (1) ◽  
pp. 42-48 ◽  
Author(s):  
N Komatsu ◽  
T Suda ◽  
M Moroi ◽  
N Tokuyama ◽  
Y Sakata ◽  
...  

Abstract Recently, a human megakaryoblastic cell line, CMK, was established from the peripheral blood of a megakaryoblastic leukemia patient with Down syndrome. Using this cell line, we studied the proliferation and differentiation of megakaryocytic cells in the presence of highly purified human hematopoietic factors and phorbol 12-myristate-13- acetate (PMA). In a methylcellulose culture system, interleukin-3 (IL- 3) and granulocyte-macrophage colony-stimulating factor (GM-CSF) facilitated colony formation by CMK cells in a dose-dependent manner. The maximum stimulating doses of these factors were 10 and 200 U/mL, respectively. These concentrations were comparable to those that stimulate activity in normal hematopoietic cells. In contrast, granulocyte-colony stimulating factor (G-CSF), macrophage-colony stimulating factor (M-CSF), and erythropoietin (EPO) had no effects on the colony formation of CMK cells. In a liquid culture system, 20% of the CMK cells expressed glycoprotein IIb/IIIa (GPIIb/IIIa) antigen without hematopoietic factors, whereas 40% of the cells expressed GPIIb/IIIa with the addition of IL-3 and GM-CSF. EPO also slightly enhanced expression of GPIIb/IIIa. On the other hand, PMA inhibited growth of CMK cells and induced most of them to express the GPIIb/IIIa antigen. Furthermore, PMA induced CMK cells to produce growth activity toward new inocula of CMK cells. This growth factor (GF) contained colony-stimulating activity (CSA) in normal bone marrow (BM) cells. The activity was believed to be attributable mainly to GM-CSF, since 64% of this activity was neutralized by anti-GM-CSF antibodies and a transcript of GM-CSF was detected in mRNA from PMA-treated CMK cells by Northern blot analysis. These observations suggest that GM-CSF, as well as IL-3, should play an important role in megakaryocytopoiesis.


2016 ◽  
Vol 43 (10) ◽  
pp. 1874-1884 ◽  
Author(s):  
Martijn H. van den Bosch ◽  
Arjen B. Blom ◽  
Rik F. Schelbergen ◽  
Marije I. Koenders ◽  
Fons A. van de Loo ◽  
...  

Objective.The alarmins S100A8 and S100A9 have been shown to regulate synovial activation, cartilage damage, and osteophyte formation in osteoarthritis (OA). Here we investigated the effect of S100A9 on the production of proinflammatory cytokines and matrix metalloprotease (MMP) in OA synovium, granulocyte macrophage colony-stimulating factor (GM-CSF)-differentiated/macrophage colony-stimulating factor (M-CSF)-differentiated macrophages, and OA fibroblasts.Methods.We determined which cell types in the synovium produced S100A8 and S100A9. Further, the production of proinflammatory cytokines and MMP, and the activation of canonical Wnt signaling, was determined in human OA synovium, OA fibroblasts, and monocyte-derived macrophages following stimulation with S100A9.Results.We observed that S100A8 and S100A9 were mainly produced by GM-CSF–differentiated macrophages present in the synovium, and to a lesser extent by M-CSF–differentiated macrophages, but not by fibroblasts. S100A9 stimulation of OA synovial tissue increased the production of the proinflammatory cytokines interleukin (IL) 1β, IL-6, IL-8, and tumor necrosis factor-α. Additionally, various MMP were upregulated after S100A9 stimulation. Experiments to determine which cell type was responsible for these effects revealed that mainly stimulation of GM-CSF–differentiated macrophages and to a lesser extent M-CSF-differentiated macrophages with S100A9 increased the expression of these proinflammatory cytokines and MMP. In contrast, stimulation of fibroblasts with S100A9 did not affect their expression. Finally, stimulation of GM-CSF–differentiated, but not M-CSF–differentiated macrophages with S100A9 activated canonical Wnt signaling, whereas incubation of OA synovium with the S100A9 inhibitor paquinimod reduced the activation of canonical Wnt signaling.Conclusion.Predominantly mediated by M1-like macrophages, the alarmin S100A9 stimulates the production of proinflammatory and catabolic mediators and activates canonical Wnt signaling in OA synovium.


1987 ◽  
Vol 166 (6) ◽  
pp. 1851-1860 ◽  
Author(s):  
D Caracciolo ◽  
N Shirsat ◽  
G G Wong ◽  
B Lange ◽  
S Clark ◽  
...  

Human macrophage colony-stimulating factor (M-CSF or CSF-1), either in purified or in recombinant form, is able to generate macrophagic colonies in a murine bone marrow colony assay, but only stimulates small macrophagic colonies of 40-50 cells in a human bone marrow colony assay. We report here that recombinant human granulocytic/macrophage colony stimulating factor (rhGM-CSF) at concentrations in the range of picograms enhances the responsiveness of bone marrow progenitors to M-CSF activity, resulting in an increased number of macrophagic colonies of up to 300 cells. Polyclonal antiserum against M-CSF did not alter colony formation of bone marrow progenitors incubated with GM-CSF at optimal concentration (1-10 ng/ml) for these in vitro assays. Thus, GM-CSF at higher concentrations (nanogram range) can by itself, elicit macrophagic colonies, and at lower concentrations (picogram range) acts to enhance the responsiveness of these progenitors to M-CSF.


Blood ◽  
1986 ◽  
Vol 68 (5) ◽  
pp. 1074-1081
Author(s):  
SW Chung ◽  
PM Wong ◽  
G Shen-Ong ◽  
S Ruscetti ◽  
T Ishizaka ◽  
...  

We have recently described a system that supports the development of continuously growing and tumorigenic cell lines after infection of individual multilineage hematopoietic colonies with Abelson murine leukemia virus (A-MuLV). We now provide definitive evidence that these transformed lines express features characteristic of mast cells. Although these lines have been maintained in some cases for more than a year in the absence of exogenous growth factors other than those present in fetal calf serum, colony formation could consistently after 2 months, and variably after 5 months, be shown to be increased several fold when pokeweed mitogen-stimulated spleen cell conditioned medium (CM) was added to the cultures. CM from the A-MuLV-transformed lines was then tested for its ability to stimulate hematopoietic colony formation by cells from both fetal and adult tissues. Four of four randomly selected cell lines produced factors that were active on erythropoietic, granulopoietic, and in some cases pluripotent progenitors. Removal of viral particles from the CM from one of the lines (27d1) by either heat inactivation or high-speed centrifugation did not alter the colony-stimulating activity detected. When CM from 27d1 cells was tested for its ability to stimulate the proliferation of interleukin 3 (IL3) granulocyte-macrophage colony-stimulating factor (GM-CSF)-dependent FDC-P1 cells, a positive result was obtained. This stimulatory activity was not reduced in the presence of neutralizing anti-IL 3 immunoglobulin (Ig), suggesting that the activity detected was GM-CSF and not IL 3. This was confirmed by the lack of expression of the IL 3 gene in 27d1 cells as determined by Northern analysis of 27d1 cell RNA. Furthermore, S1 analysis of mRNA from 27d1 cells as well as two other lines indicated that the GM-CSF gene in all three was transcriptionally active. Taken together, these data suggest that A- MuLV transformation of normal mast cells or their precursors under certain conditions commonly activates the production of GM-CSF.


Blood ◽  
1983 ◽  
Vol 62 (3) ◽  
pp. 597-601 ◽  
Author(s):  
Y Yamamoto-Yamaguchi ◽  
M Tomida ◽  
M Hozumi

Abstract The effects of mouse L-cell interferon (IFN) on growth of mouse bone marrow cells and their differentiation into macrophages and granulocytes were investigated in a liquid suspension culture system with two different types of colony-stimulating factor (CSF). Within 7 days, most bone marrow cells differentiated into macrophages in the presence of macrophage colony-stimulating factor (M-CSF) derived from mouse fibroblast L929 cells, but into both granulocytes (40%) and macrophages (23%) in the presence of a granulocyte-macrophage colony- stimulating factor (GM-CSF) from mouse lung tissue. IFN inhibited growth of bone marrow cells with both M-CSF and GM-CSF, but had 20 times more effect on bone marrow cells stimulated with M-CSF than on those stimulated with GM-CSF. A low concentration of IFN (50 IU/ml) stimulated production of macrophages by GM-CSF in liquid culture medium, whereas it selectively inhibited colony formation of macrophages in semisolid agar culture. IFN caused no detectable block of late stages of differentiation; mature macrophages and granulocytes were produced even when cell proliferation was inhibited by IFN. These results indicate that IFN preferentially affects growth and differentiation of the cell lineage of macrophages among mouse bone marrow cells.


Sign in / Sign up

Export Citation Format

Share Document