scholarly journals Efficient killing of chronic B-lymphocytic leukemia cells by superantigen-directed T cells

Blood ◽  
1993 ◽  
Vol 82 (4) ◽  
pp. 1230-1238 ◽  
Author(s):  
A Wallgren ◽  
R Festin ◽  
C Gidlof ◽  
M Dohlsten ◽  
T Kalland ◽  
...  

Abstract In vitro studies have indicated that chronic lymphocytic leukemia of B- cell origin (B-CLL) is resistant to cytotoxic effector lymphocytes such as natural killer and lymphokine activated killer (LAK) cells. We show here that B-cell cells are sensitive to Staphylococcal enterotoxin (SE) A-directed T-cell killing. Activation of the target cells by phorbol ester (tetradecanoyl phorbol acetate, [TPA]) greatly enhances their sensitivity to lysis. In SE-dependent cellular cytotoxicity (SDCC), members of the SE superantigen family form a bridge between T cells and target cells expressing major histocompatability complex class II molecules. Binding of SEA to the T-cell-receptor V beta region induces a strong cytotoxic capacity and cytokine production. Cells from 9 B-CLL patients were cultured in the presence or absence of TPA and used as targets in a 4-hour SDCC assay using an allogeneic T-cell line as effector. At an effector:target cell ratio 30:1, 70% to 80% of TPA- induced B-CLL cells were killed. Even at the effector:target ratio of 3:1, 47% +/- 6% of TPA-activated B-cell cells were lysed compared with 13% +/- 2% of resting cells (P < .001). A T-cell line established from a B-CLL patient killed autologous tumor cells as efficiently as allogeneic effectors. SEA-directed T cells were far more lytic to B-CLL cells compared with LAK cells or lectin (phytohemagglutinin-directed T cells. Mechanisms of SDCC lysis were investigated. Effector plus target cell supernatants contained high levels of tumor necrosis factor (TNF)- alpha and interferon-gamma, but these supernatants were not directly toxic to B-CLL cells in short term culture. High concentrations of recombinant TNF-alpha or TNF-beta had no lytic effect. Addition of neutralizing anti-TNF-alpha and anti-TNF-beta antibodies into the SDCC assay did not inhibit SEA-directed T-cell killing. TPA-activated B-CLL cells showed a 1.2- to 13-fold increased expression of the adhesion molecules intercellular adhesion molecule-1 (ICAM-1), lymphocyte function-associated antigen (LFA)-1, and LFA-3, whereas expression of HLA class II molecules increased up to 5 times. The expression of CD72, CD40, and BB-1/B7 increased 1.8 to 4.5 times. The role of these surface molecules in SDCC was analyzed in blocking experiments with monoclonal antibodies. Antibodies to ICAM-1, CD18, and HLA-DR abolished the cytotoxicity, and a substantial reduction was seen with antibody to CD72.(ABSTRACT TRUNCATED AT 400 WORDS)

Blood ◽  
1993 ◽  
Vol 82 (4) ◽  
pp. 1230-1238
Author(s):  
A Wallgren ◽  
R Festin ◽  
C Gidlof ◽  
M Dohlsten ◽  
T Kalland ◽  
...  

In vitro studies have indicated that chronic lymphocytic leukemia of B- cell origin (B-CLL) is resistant to cytotoxic effector lymphocytes such as natural killer and lymphokine activated killer (LAK) cells. We show here that B-cell cells are sensitive to Staphylococcal enterotoxin (SE) A-directed T-cell killing. Activation of the target cells by phorbol ester (tetradecanoyl phorbol acetate, [TPA]) greatly enhances their sensitivity to lysis. In SE-dependent cellular cytotoxicity (SDCC), members of the SE superantigen family form a bridge between T cells and target cells expressing major histocompatability complex class II molecules. Binding of SEA to the T-cell-receptor V beta region induces a strong cytotoxic capacity and cytokine production. Cells from 9 B-CLL patients were cultured in the presence or absence of TPA and used as targets in a 4-hour SDCC assay using an allogeneic T-cell line as effector. At an effector:target cell ratio 30:1, 70% to 80% of TPA- induced B-CLL cells were killed. Even at the effector:target ratio of 3:1, 47% +/- 6% of TPA-activated B-cell cells were lysed compared with 13% +/- 2% of resting cells (P < .001). A T-cell line established from a B-CLL patient killed autologous tumor cells as efficiently as allogeneic effectors. SEA-directed T cells were far more lytic to B-CLL cells compared with LAK cells or lectin (phytohemagglutinin-directed T cells. Mechanisms of SDCC lysis were investigated. Effector plus target cell supernatants contained high levels of tumor necrosis factor (TNF)- alpha and interferon-gamma, but these supernatants were not directly toxic to B-CLL cells in short term culture. High concentrations of recombinant TNF-alpha or TNF-beta had no lytic effect. Addition of neutralizing anti-TNF-alpha and anti-TNF-beta antibodies into the SDCC assay did not inhibit SEA-directed T-cell killing. TPA-activated B-CLL cells showed a 1.2- to 13-fold increased expression of the adhesion molecules intercellular adhesion molecule-1 (ICAM-1), lymphocyte function-associated antigen (LFA)-1, and LFA-3, whereas expression of HLA class II molecules increased up to 5 times. The expression of CD72, CD40, and BB-1/B7 increased 1.8 to 4.5 times. The role of these surface molecules in SDCC was analyzed in blocking experiments with monoclonal antibodies. Antibodies to ICAM-1, CD18, and HLA-DR abolished the cytotoxicity, and a substantial reduction was seen with antibody to CD72.(ABSTRACT TRUNCATED AT 400 WORDS)


Blood ◽  
1997 ◽  
Vol 89 (6) ◽  
pp. 2089-2097 ◽  
Author(s):  
Cecilia Gidlöf ◽  
Mikael Dohlsten ◽  
Peter Lando ◽  
Terje Kalland ◽  
Christer Sundström ◽  
...  

Abstract The bacterial superantigen staphylococcal enterotoxin A (SEA) is an efficient activator of cytotoxic T cells when presented on major histocompatibility complex (MHC) class II molecules of target cells. Our previous studies showed that such SEA-directed T cells efficiently lysed chronic B-lymphocytic leukemia (B-CLL) cells. Next, we made a mutated SEA–protein A (SEAm-PA) fusion protein with more than 1,000-fold reduced binding affinity for MHC class II compared with native SEA. The fusion protein was successfully used to direct T cells to B-CLL cells coated with different B lineage–directed monoclonal antibodies (MoAbs). In this communication, we constructed a recombinant anti-CD19-Fab-SEAm fusion protein. The MHC class II binding capacity of the SEA part was drastically reduced by a D227A point mutation, whereas the T-cell activation properties were retained. The Fab part of the fusion protein displayed a binding affinity for CD19+ cells in the nanomolar range. The anti-CD19-Fab-SEAm molecule mediated effective, specific, rapid, and perforin-like T-cell lysis of B-CLL cells at low effector to target cell ratios. Normal CD19+ B cells were sensitive to lysis, whereas CD34+ progenitor cells and monocytes/macrophages were resistant. A panel of CD19+ B-cell lines representing different B-cell developmental stages were efficiently lysed, and the sensitivity correlated with surface ICAM-1 expression. The anti-CD19-Fab-SEAm fusion protein mediated highly effective killing of tumor biopsy cells representing several types of B-cell non-Hodgkin's lymphoma (B-NHL). Humanized severe combined immune deficiency (SCID) mice carrying Daudi lymphoma cells were used as an in vivo therapy model for evaluation of the anti-CD19-Fab-SEAm fusion protein. Greater than 90% reduction in tumor weight was recorded in anti-CD19-Fab-SEAm–treated animals compared with control animals receiving an irrelevant Fab-SEAm fusion protein. The present results indicate that MoAb-targeted superantigens (SAgs) may represent a promising approach for T-cell–based therapy of CD19+ B-cell malignancies.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4623-4623 ◽  
Author(s):  
James Kochenderfer ◽  
Steven Feldman ◽  
Yangbing Zhao ◽  
Hui Xu ◽  
Mary Black ◽  
...  

Abstract Adoptive T cell immunotherapy can cause regression of established malignancy. One promising approach is to transfer genes encoding chimeric antigen receptors (CARs) that specifically recognize tumor-associated antigens to T cells before the T cells are adoptively transferred to patients. We have constructed a CAR that consists of an anti-CD19 single chain variable region (scFv) that is coupled to a portion of the CD28 costimulatory molecule and the signaling component of the CD3-zeta chain. CD19 is a promising target for immunotherapy because most malignant B cell express CD19, but the only normal cells that express CD19 are B cells, B cell precursors, and perhaps follicular dendritic cells. We have demonstrated that gamma-retroviruses encoding the anti-CD19 CAR can be used to transduce human T cells and that these transduced T cells specifically recognize CD19+ targets. To transduce T cells, we stimulated T cells with the anti-CD3 monoclonal antibody OKT3 on day 0 then conducted sequential retroviral transductions on day 2 and on day 3. Transductions were performed by spin-loading retroviruses onto RetroNectin (Takara) coated culture plates followed by overnight incubation of the OKT3- stimulated T cells on the plates. Forty-five to sixty-seven percent of T cells expressed the anti-CD19 CAR as measured by flow cytometry 7–8 days after transduction (n=8). Anti-CD19-CAR-transduced CD8+ and CD4+ T cells produced IFNg and IL-2 specifically in response to stimulation with CD19+ target cells. The transduced T cells specifically killed primary chronic lymphocytic leukemia (CLL) cells. T cells from CLL patients that were either untreated or previously treated with fludarabine plus rituximab could be transduced and induced to proliferate sufficiently to provide enough cells for clinical adoptive T cell transfer. In addition, we adapted this protocol for use in CLL patients with very high peripheral blood leukemia cell counts by depleting CD19+ cells using magnetic bead sorting prior to OKT3 stimulation. In preparation for a clinical trial that will enroll patients with advanced B cell malignancies, we have generated a producer cell clone that produces GALV (Gibbon ape leukemia virus)-enveloped gamma-retroviruses encoding the anti-CD19 CAR, and we have produced sufficient retroviral supernatant for the proposed clinical trial under good manufacturing practice (GMP) conditions.


Blood ◽  
1988 ◽  
Vol 71 (4) ◽  
pp. 1012-1020 ◽  
Author(s):  
JS Moore ◽  
MB Prystowsky ◽  
RG Hoover ◽  
EC Besa ◽  
PC Nowell

The consistent occurrence of T cell abnormalities in patients with B cell chronic lymphocytic leukemia (B-CLL) suggest that the non- neoplastic host T cells may be involved in the pathogenesis of this B cell neoplasm. Because potential defects of immunoglobulin regulation are evident in B-CLL patients, we investigated one aspect of this by studying the T cell-mediated immunoglobulin isotype-specific immunoregulatory circuit in B-CLL. The existence of class-specific immunoglobulin regulatory mechanisms mediated by Fc receptor-bearing T cells (FcR + T) through soluble immunoglobulin binding factors (IgBFs) has been well established in many experimental systems. IgBFs can both suppress and enhance B cell activity in an isotype-specific manner. We investigated the apparently abnormal IgA regulation in a B-CLL patient (CLL249) whose B cells secrete primarily IgA in vitro. Enumeration of FcR + T cells showed a disproportionate increase in IgA FcR + T cells in the peripheral blood of this patient. Our studies showed that the neoplastic B cells were not intrinsically unresponsive to the suppressing component of IgABF produced from normal T cells, but rather the IgABF produced by the CLL249 host T cells was defective. CLL249 IgABF was unable to suppress IgA secretion by host or normal B cells and enhanced the in vitro proliferation of the host B cells. Size fractionation of both normal and CLL249 IgABF by gel-filtration high- performance liquid chromatography (HPLC) demonstrated differences in the ultraviolet-absorbing components of IgABF obtained from normal T cells v that from our patient with defective IgA regulation. Such T cell dysfunction may not be restricted to IgA regulation, since we have found similar expansion of isotype-specific FcR + T cells associated with expansion of the corresponding B cell clone in other patients with B-CLL. These data suggest that this T cell-mediated regulatory circuit could be significantly involved in the pathogenesis of B-CLL.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 28-29
Author(s):  
Jie Wang ◽  
Katarzyna Urbanska ◽  
Prannda Sharma ◽  
Mathilde Poussin ◽  
Reza Nejati ◽  
...  

Background: Peripheral T-cell lymphomas (PTCL) encompass a highly heterogeneous group of T-cell malignancies and are generally associated with a poor prognosis. Combination chemotherapy results in consistently poorer outcomes for T-cell lymphomas compared with B-cell lymphomas.1 There is an urgent clinical need to develop novel approaches to treatment of PTCL. While CD19- and CD20-directed immunotherapies have been successful in the treatment of B-cell malignancies, T-cell malignancies lack suitable immunotherapeutic targets. Brentuximab Vedotin, a CD30 antibody-drug conjugate, is not applicable to PTCL subtypes which do not express CD30.2 Broadly targeting pan-T cell markers is predicted to result in extensive T-cell depletion and clinically significant immune deficiency; therefore, a more tumor-specific antigen that primarily targets the malignant T-cell clone is needed. We reasoned that since malignant T cells are clonal and express the same T-cell receptor (TCR) in a given patient, and since the TCR β chain in human α/β TCRs can be grouped into 24 functional Vβ families targetable by monoclonal antibodies, immunotherapeutic targeting of TCR Vβ families would be an attractive strategy for the treatment of T-cell malignancies. Methods: We developed a flexible approach for targeting TCR Vβ families by engineering T cells to express a CD64 chimeric immune receptor (CD64-CIR), comprising a CD3ζ T cell signaling endodomain, CD28 costimulatory domain, and the high-affinity Fc gamma receptor I, CD64. T cells expressing CD64-CIR are predicted to be directed to tumor cells by Vβ-specific monoclonal antibodies that target tumor cell TCR, leading to T cell activation and induction of tumor cell death by T cell-mediated cytotoxicity. Results: This concept was first evaluated in vitro using cell lines. SupT1 T-cell lymphoblasts, which do not express a native functioning TCR, were stably transduced to express a Vβ12+ MART-1 specific TCR, resulting in a Vβ12 TCR expressing target T cell line.3 Vβ family specific cytolysis was confirmed by chromium release assays using co-culture of CD64 CIR transduced T cells with the engineered SupT1-Vβ12 cell line in the presence of Vβ12 monoclonal antibody. Percent specific lysis was calculated as (experimental - spontaneous lysis / maximal - spontaneous lysis) x 100. Controls using no antibody, Vβ8 antibody, and untransduced T cells did not show significant cytolysis (figure A). Next, the Jurkat T cell leukemic cell line, which expresses a native Vβ8 TCR, was used as targets in co-culture. Again, Vβ family target specific cytolysis was achieved in the presence of CD64 CIR T cells and Vβ8, but not Vβ12 control antibody. Having demonstrated Vβ family specific cytolysis in vitro using target T cell lines, we next evaluated TCR Vβ family targeting in vivo. Immunodeficient mice were injected with SupT1-Vβ12 or Jurkat T cells with the appropriate targeting Vβ antibody, and either CD64 CIR T cells or control untransduced T cells. The cell lines were transfected with firefly luciferase and tumor growth was measured by bioluminescence. The CD64 CIR T cells, but not untransduced T cells, in conjunction with the appropriate Vβ antibody, successfully controlled tumor growth (figure B). Our results provide proof-of-concept that TCR Vβ family specific T cell-mediated cytolysis is feasible, and informs the development of novel immunotherapies that target TCR Vβ families in T-cell malignancies. Unlike approaches that target pan-T cell antigens, this approach is not expected to cause substantial immune deficiency and could lead to a significant advance in the treatment of T-cell malignancies including PTCL. References 1. Coiffier B, Brousse N, Peuchmaur M, et al. Peripheral T-cell lymphomas have a worse prognosis than B-cell lymphomas: a prospective study of 361 immunophenotyped patients treated with the LNH-84 regimen. The GELA (Groupe d'Etude des Lymphomes Agressives). Ann Oncol Off J Eur Soc Med Oncol. 1990;1(1):45-50. 2. Horwitz SM, Advani RH, Bartlett NL, et al. Objective responses in relapsed T-cell lymphomas with single agent brentuximab vedotin. Blood. 2014;123(20):3095-3100. 3. Hughes MS, Yu YYL, Dudley ME, et al. Transfer of a TCR Gene Derived from a Patient with a Marked Antitumor Response Conveys Highly Active T-Cell Effector Functions. Hum Gene Ther. 2005;16(4):457-472. Figure Disclosures Schuster: Novartis, Genentech, Inc./ F. Hoffmann-La Roche: Research Funding; AlloGene, AstraZeneca, BeiGene, Genentech, Inc./ F. Hoffmann-La Roche, Juno/Celgene, Loxo Oncology, Nordic Nanovector, Novartis, Tessa Therapeutics: Consultancy, Honoraria.


Blood ◽  
1988 ◽  
Vol 72 (1) ◽  
pp. 102-108 ◽  
Author(s):  
M Yasukawa ◽  
T Shiroguchi ◽  
A Inatsuki ◽  
Y Kobayashi

The ability of B-cell chronic lymphocytic leukemia (B-CLL) cells to present antigen to antigen-specific T cells was investigated. B-CLL cells present herpes simplex virus (HSV) antigen and purified protein derivative (PPD) to HSV- and PPD-specific, interleukin-2-dependent T- cell lines in an antigen-specific manner. Treatment of B-CLL cells with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) induced markedly increased levels of HLA-DR expression. TPA-treated B-CLL cells showed substantially more effective presentation, especially at low antigen concentrations, than did untreated B-CLL cells. By coculturing different allogeneic combinations of B-CLL cells and T cells and by adding anti-HLA-DR monoclonal antibody to cultures, it was found that antigen presentation by B-CLL cells was restricted by HLA-DR in the same way as for macrophages. We concluded from these experiments that B- CLL cells have a capacity to serve as antigen-presenting cells in an HLA class II-restricted fashion and that increasing the amount of HLA class II antigen and activation of B-CLL cells resulted in effective antigen presentation.


2020 ◽  
Vol 29 ◽  
pp. 096368972092082 ◽  
Author(s):  
Zhixiong Wang ◽  
Guomin Zhou ◽  
Na Risu ◽  
Jiayu Fu ◽  
Yan Zou ◽  
...  

Chimeric antigen receptor (CAR) T-cell immunotherapy still faces many challenges in the treatment of solid tumors, one of which is T-cell dysfunction or exhaustion. Immunomodulator lenalidomide may improve CAR T-cell function. In this study, the effects of lenalidomide on CAR T-cell functions (cytotoxicity, cytokine secretion, and cell proliferation) were investigated. Two different CAR T cells (CD133-specific CAR and HER2-specific CAR) were prepared, and the corresponding target cells including human glioma cell line U251 CD133-OE that overexpress CD133 and human breast cancer cell line MDA-MB-453 were used for functional assay. We found that lenalidomide promoted the killing of U251 CD133-OE by CD133-CAR T cells, the cytokine secretion, and the proliferation of CD133-CAR T cells. Lenalidomide also enhanced the cytotoxicity against MDA-MB-453 and the cytokine secretion of HER2-CAR T cells but did not affect their proliferation significantly. Furthermore, lenalidomide may regulate the function of CAR T cells by inducing the degradation of transcription factors Ikaros and Aiolos.


Blood ◽  
1986 ◽  
Vol 67 (2) ◽  
pp. 279-284 ◽  
Author(s):  
O Ayanlar-Batuman ◽  
E Ebert ◽  
SP Hauptman

Abstract The present studies were designed to investigate the mechanism(s) of the defective T cell proliferative response to various stimuli in patients with B cell chronic lymphocytic leukemia B-CLL. In 14 patients with advanced B-CLL (stage III or IV) we found the T cell response in the autologous (auto) and allogeneic (allo) mixed lymphocyte reaction (MLR) to be 35.7% and 30% of the controls, respectively. Proliferation in the MLR depends upon the production of and response to interleukin 2 (IL 2), a T cell growth factor. IL 2 production in eight B-CLL patients was 22% of the control. The response to IL 2 was measured by the increase in the T cell proliferation in the MLR with the addition of IL 2. T cell proliferation in both the auto and allo MLR of CLL patients was significantly lower than in the controls after the addition of IL 2. The proliferative response of normal T cells to stimulation by CLL B cells was 50% of the control. This latter response was increased to control levels when cultures were supplemented with exogenous IL 2, suggesting that CLL B cells could stimulate IL 2 receptor generation in normal T cells in an allo MLR, but not IL 2 production. The presence of IL 2 receptors on activated T cells was directly determined using anti- Tac, a monoclonal antibody with specificity for the IL 2 receptor. Of the mitogen- or MLR-activated T cells in CLL patients, 6% and 10%, respectively, expressed Tac antigen, whereas identically stimulated control T cells were 60% and 47% Tac+, respectively. Our findings suggest that T cells in B-CLL are defective in their recognition of self or foreign major histocompatibility antigens as demonstrated by their impaired responsiveness in the MLR. Thus, these cells are unable to produce IL 2 or generate IL 2 receptors.


Blood ◽  
1999 ◽  
Vol 93 (6) ◽  
pp. 1992-2002 ◽  
Author(s):  
Raymund Buhmann ◽  
Annette Nolte ◽  
Doreen Westhaus ◽  
Bertold Emmerich ◽  
Michael Hallek

Although spontaneous remissions may rarely occur in B-cell chronic lymphocytic leukemia (B-CLL), T cells do generally not develop a clinically significant response against B-CLL cells. Because this T-cell anergy against B-CLL cells may be caused by the inability of B-CLL cells to present tumor-antigens efficiently, we examined the possibility of upregulating critical costimulatory (B7-1 and B7-2) and adhesion molecules (ICAM-1 and LFA-3) on B-CLL cells to improve antigen presentation. The stimulation of B-CLL cells via CD40 by culture on CD40L expressing feeder cells induced a strong upregulation of costimulatory and adhesion molecules and turned the B-CLL cells into efficient antigen-presenting cells (APCs). CD40-activated B-CLL (CD40-CLL) cells stimulated the proliferation of both CD4+ and CD8+ T cells. Interestingly, stimulation of allogeneic versus autologous T cells resulted in the expansion of different effector populations. Allogeneic CD40-CLL cells allowed for the expansion of specific CD8+cytolytic T cells (CTL). In marked contrast, autologous CD40-CLL cells did not induce a relevant CTL response, but rather stimulated a CD4+, Th1-like T-cell population that expressed high levels of CD40L and released interferon-γ in response to stimulation by CD40-CLL cells. Together, these results support the view that CD40 activation of B-CLL cells might reverse T-cell anergy against the neoplastic cell clone, although the character of the immune response depends on the major histocompatibility complex (MHC) background on which the CLL or tumor antigens are presented. These findings may have important implications for the design of cellular immunotherapies for B-CLL.


1983 ◽  
Vol 158 (6) ◽  
pp. 2024-2039 ◽  
Author(s):  
M Howard ◽  
L Matis ◽  
T R Malek ◽  
E Shevach ◽  
W Kell ◽  
...  

Antigen-activated T lymphocytes produce within 24 h of stimulation a factor that is indistinguishable biochemically and functionally from the B cell co-stimulating growth factor, BCGF-I, originally identified in induced EL4 supernatants: Supernatants from antigen-stimulated T cell lines are not directly mitogenic for resting B cells, but synergize in an H-2-unrestricted manner with anti-Ig activated B cells to produce polyclonal proliferation but not antibody-forming-cell development; biochemical studies reveal the B cell co-stimulating factor present in antigen-stimulated T cell line supernatants is identical by phenyl Sepharose chromatography and isoelectric focusing (IEF) to EL4 supernatant BCGF-I. We thus conclude that normal T cells produce BCGF-I in response to antigenic stimulation. Analysis of the mechanism of BCGF-I production by antigen-stimulated T cells showed that optimum amounts of BCGF-I were obtained as quickly as 24 h post-stimulation, and that the factor producing cells in the T cell line investigated bore the Lyt-1+2- phenotype. As few as 10(4) T cells produced sufficient BCGF-I to support the proliferation of 5 X 10(4) purified anti-Ig activated B cells. Finally, the activation of normal T cell lines to produce BCGF-I required either antigen presented in the context of syngeneic antigen-presenting cells (APC) or interleukin 2 (IL-2).


Sign in / Sign up

Export Citation Format

Share Document