scholarly journals Transforming growth factor-beta 1, macrophage inflammatory protein-1 alpha, and interleukin-8 gene expression is lower in stimulated human neonatal compared with adult mononuclear cells

Blood ◽  
1994 ◽  
Vol 84 (1) ◽  
pp. 118-124 ◽  
Author(s):  
M Chang ◽  
Y Suen ◽  
SM Lee ◽  
D Baly ◽  
JS Buzby ◽  
...  

Abstract Hematopoiesis is developmentally immature in the newborn compared with the adult. Diminished gene expression of several positive hematopoietic regulators has been observed in activated cord compared with adult peripheral blood mononuclear cells (MNC; Cairo et al. Pediatr Res, 30:362, 1991 and Cairo et al, Pediatr Res, 31:574, 1992). However, altered expression of negative hematopoietic regulators during states of increased demand may also contribute to the pathogenesis of newborn dyshematopoiesis. To test this hypothesis, we measured protein levels of transforming growth factor-beta 1 (TGF-beta 1) and macrophage inflammatory protein-1 alpha (MIP-1 alpha) in the conditioned media of human umbilical cord and adult MNC using specific enzyme-linked immunosorbent assays. There was significantly less TGF-beta 1 in culture supernatants of cord versus adult MNC after 24, 72, and 120 hours of stimulation (P < .05), and significantly less MIP-1 alpha in cord versus adult supernatants after 72 hours and 120 hours of stimulation (P < .01). We then examined the mRNA expression of the negative regulators TGF-beta 1, MIP-1 alpha, and interleukin-8 (IL-8) in cord and adult MNC using Northern blot hybridization followed by quantitative densitometry. Cord MNC expressed significantly less TGF- beta 1 mRNA than adult MNC 6 hours and 72 hours after stimulation (P < .001). Cord MNC expressed significantly less MIP-1 alpha mRNA than adult MNC 6 hours (P < .01), 24 hours (P < .001), and 72 hours after stimulation (P < .001). Cord MNC also expressed significantly less IL-8 mRNA than adult MNC 6 hours after stimulation (P < .001). Therefore, decreased mRNA accumulation appears to coincide with reduced cytokine expression in the activated cord MNC. There were no significant differences in the transcription rates determined by nuclear run-on assay of either the TGF-beta 1 or MIP-1 alpha gene in cord versus adult MNC after 6 hours of stimulation, suggesting that the reduced TGF-beta 1 and MIP-1 alpha mRNA in activated cord MNC may be secondary to alteration in posttranscriptional regulation. The present results, together with those of our previous studies, suggest that the altered expression of both positive and negative hematopoietic regulators may be involved in the immaturity of host defense in human neonates.

Blood ◽  
1994 ◽  
Vol 84 (1) ◽  
pp. 118-124 ◽  
Author(s):  
M Chang ◽  
Y Suen ◽  
SM Lee ◽  
D Baly ◽  
JS Buzby ◽  
...  

Hematopoiesis is developmentally immature in the newborn compared with the adult. Diminished gene expression of several positive hematopoietic regulators has been observed in activated cord compared with adult peripheral blood mononuclear cells (MNC; Cairo et al. Pediatr Res, 30:362, 1991 and Cairo et al, Pediatr Res, 31:574, 1992). However, altered expression of negative hematopoietic regulators during states of increased demand may also contribute to the pathogenesis of newborn dyshematopoiesis. To test this hypothesis, we measured protein levels of transforming growth factor-beta 1 (TGF-beta 1) and macrophage inflammatory protein-1 alpha (MIP-1 alpha) in the conditioned media of human umbilical cord and adult MNC using specific enzyme-linked immunosorbent assays. There was significantly less TGF-beta 1 in culture supernatants of cord versus adult MNC after 24, 72, and 120 hours of stimulation (P < .05), and significantly less MIP-1 alpha in cord versus adult supernatants after 72 hours and 120 hours of stimulation (P < .01). We then examined the mRNA expression of the negative regulators TGF-beta 1, MIP-1 alpha, and interleukin-8 (IL-8) in cord and adult MNC using Northern blot hybridization followed by quantitative densitometry. Cord MNC expressed significantly less TGF- beta 1 mRNA than adult MNC 6 hours and 72 hours after stimulation (P < .001). Cord MNC expressed significantly less MIP-1 alpha mRNA than adult MNC 6 hours (P < .01), 24 hours (P < .001), and 72 hours after stimulation (P < .001). Cord MNC also expressed significantly less IL-8 mRNA than adult MNC 6 hours after stimulation (P < .001). Therefore, decreased mRNA accumulation appears to coincide with reduced cytokine expression in the activated cord MNC. There were no significant differences in the transcription rates determined by nuclear run-on assay of either the TGF-beta 1 or MIP-1 alpha gene in cord versus adult MNC after 6 hours of stimulation, suggesting that the reduced TGF-beta 1 and MIP-1 alpha mRNA in activated cord MNC may be secondary to alteration in posttranscriptional regulation. The present results, together with those of our previous studies, suggest that the altered expression of both positive and negative hematopoietic regulators may be involved in the immaturity of host defense in human neonates.


1988 ◽  
Vol 8 (6) ◽  
pp. 2479-2483
Author(s):  
C M Machida ◽  
L L Muldoon ◽  
K D Rodland ◽  
B E Magun

Transin is a transformation-associated gene which is expressed constitutively in rat fibroblasts transformed by a variety of oncogenes and in malignant mouse skin carcinomas but not benign papillomas or normal skin. It has been demonstrated that, in nontransformed Rat-1 cells, transin RNA expression is modulated positively by epidermal growth factor (EGF) and negatively by transforming growth factor beta (TGF-beta); other peptide growth factors were found to have no effect on transin expression. Results presented here indicate that both protein synthesis and continuous occupancy of the EGF receptor by EGF were required for sustained induction of transin RNA. Treatment with TGF-beta inhibited the ability of EGF to induce transin, whether assayed at the transcriptional level by nuclear run-on analysis or at the level of transin RNA accumulation by Northern (RNA) blot analysis of cellular RNA. TGF-beta both blocked initial induction of transin transcription by EGF and halted established production of transin transcripts during prolonged treatment. These results suggest that TGF-beta acts at the transcriptional level to antagonize EGF-mediated induction of transin gene expression.


1993 ◽  
Vol 178 (3) ◽  
pp. 925-932 ◽  
Author(s):  
J Maltman ◽  
I B Pragnell ◽  
G J Graham

Transforming growth factor beta 1 (TGF-beta 1) and macrophage inflammatory protein 1 alpha (MIP-1 alpha) have recently been identified as potent inhibitors of hemopoietic stem cell proliferation. From previous studies, these molecules appear to have similar functions in the control of stem cell proliferation. This study was designed to investigate the relationship, if any, between these two negative regulators in an attempt to elucidate possible distinctive roles for each within the hemopoietic system. We report here that both MIP-1 alpha and TGF-beta are capable of inhibiting the same stem cell population (colony-forming unit [CFU]-A/CFU-S) with similar potencies. We further show that TGF-beta potently inhibits MIP-1 alpha gene expression in bone marrow-derived macrophages, the presumed source of MIP-1 alpha in the bone marrow. This inhibition is not specific to MIP-1 alpha in that expression of MIP-1 beta, a related molecule that does not exhibit potent stem cell inhibitory properties, is inhibited in a similar manner. The inhibition of MIP-1 alpha gene expression is also seen as a reduction in MIP-1 alpha protein production, which markedly decreases 24 h after treating RAW 264.7 cells, a murine macrophage cell line, with TGF-beta. These in vitro results suggest that in the presence of active TGF-beta in vivo, and in the absence of upregulators of MIP-1 alpha transcription, very little MIP-1 alpha will be produced. To address how MIP-1 alpha's target cells, the stem cells, would respond to TGF-beta, and the consequently low levels of MIP-1 alpha produced, we analyzed the effect of TGF-beta on MIP-1 alpha receptor levels on FDCP-MIX cells, a murine stem cell line. We show that TGF-beta (100 pM) reversibly downregulates MIP-1 alpha receptor levels on these cells to a maximum of 50-70% after 24 h. This level of downregulation does not change upon increasing the concentration of TGF-beta or the length of exposure of the cells to TGF-beta. Scatchard analysis shows that TGF-beta downregulates MIP-1 alpha receptor numbers with no change in affinity of the remaining receptors. These results suggest that TGF-beta may be capable of interfering with MIP-1 alpha's role as a stem cell inhibitor. Indeed, they suggest that in the presence of active TGF-beta in vivo, MIP-1 alpha is at best a weak contributor to the overall physiological inhibition of stem cells.


1990 ◽  
Vol 10 (11) ◽  
pp. 5983-5990
Author(s):  
R E Wager ◽  
R K Assoian

12-Tetradecanoylphorbol-13-acetate (TPA)-induced differentiation of U937 promonocytes leads to a 30-fold increase in transforming growth factor beta 1 (TGF-beta 1) gene expression, and this effect results from a stabilized mRNA. Similar up-regulation was detected in TPA-treated K562 erythroblasts but was absent from cell lines that do not differentiate in response to TPA. Related studies in vitro showed that postnuclear extracts of U937 promonocytes contain a ribonuclease system that degrades TGF-beta 1 mRNA selectively and that this system is completely blocked by prior treatment of the cells with TPA. These data identify a new mechanism for regulating TGF-beta 1 mRNA levels and allow us to establish the overall basis for control of TGF-beta 1 gene expression by activation of protein kinase C. Our results also provide a new basis for understanding the long-term up-regulation of TGF-beta 1 gene expression that can accompany hematopoietic cell differentiation.


1990 ◽  
Vol 10 (11) ◽  
pp. 5983-5990 ◽  
Author(s):  
R E Wager ◽  
R K Assoian

12-Tetradecanoylphorbol-13-acetate (TPA)-induced differentiation of U937 promonocytes leads to a 30-fold increase in transforming growth factor beta 1 (TGF-beta 1) gene expression, and this effect results from a stabilized mRNA. Similar up-regulation was detected in TPA-treated K562 erythroblasts but was absent from cell lines that do not differentiate in response to TPA. Related studies in vitro showed that postnuclear extracts of U937 promonocytes contain a ribonuclease system that degrades TGF-beta 1 mRNA selectively and that this system is completely blocked by prior treatment of the cells with TPA. These data identify a new mechanism for regulating TGF-beta 1 mRNA levels and allow us to establish the overall basis for control of TGF-beta 1 gene expression by activation of protein kinase C. Our results also provide a new basis for understanding the long-term up-regulation of TGF-beta 1 gene expression that can accompany hematopoietic cell differentiation.


1996 ◽  
Vol 7 (12) ◽  
pp. 2578-2589
Author(s):  
K Tamaki ◽  
S Okuda ◽  
M Nakayama ◽  
T Yanagida ◽  
M Fujishima

The expression of transforming growth factor-beta 1 (TGF-beta 1) for hypertensive renal injury was investigated in Dahl salt-sensitive (Dahl-S) rats fed a high-salt (HS; 8% NaCl) diet or a low-salt (LS; 0.3% NaCl) diet for 4 wk. The HS rats developed severe hypertension and renal damage, including glomerulosclerosis and arteriosclerosis. TGF-beta biosynthesis by isolated glomeruli, the TGF-beta localization, and the gene expression of TGF-beta 1, latent TGF-beta binding protein (LTBP), and TGF-beta receptors (Types I, II, and III) were compared between the HS rats and LS rats. A TGF-beta bioassay revealed that the isolated glomeruli from the HS rats secreted a larger amount of latent TGF-beta than those from the LS rats. Northern blotting analysis demonstrated that the HS diet led to the increases in cortical gene expression of TGF-beta 1, LTBP, and TGF-beta receptors, compared with the LS diet. The glomerular biosynthesis of fibronectin and plasminogen activator inhibitor-1 (PAI-1), and cortical mRNA expression for fibronectin, collagen I, and PAI-1 (which may be affected by TGF-beta) in the HS rats were elevated, compared with the LS rats. The latent TGF-beta immunostained by anti-LTBP antibody was localized on the sclerosing glomeruli and vascular walls. Furthermore, fibronectin, collagen I, and PAI-1 were also localized in the sclerotic area. The TGF-beta 1-positive cells, immunostained by antibody for latency-associated peptide of TGF-beta 1, increased in the glomeruli and vascular walls in the HS rats. These results thus suggested that TGF-beta 1 may be related to hypertensive renal injury in this model.


1997 ◽  
Vol 273 (1) ◽  
pp. L282-L287 ◽  
Author(s):  
J. Zhao ◽  
D. Warburton

Matrix Gla protein (MGP) is a vitamin K-dependent extracellular matrix protein with a wide tissue distribution. The current study was designed to investigate the possible regulation of MGP by exogenous transforming growth factor-beta (TGF-beta) during lung development. Using reverse transcription coupled competitive polymerase chain reaction methodology, we determined that exogenous TGF-beta 1 increases MGP mRNA levels in embryonic mouse lung culture in a concentration-dependent manner. MGP mRNA levels were elevated by 5.0-fold at 50 ng/ml TGF-beta 1 in E11 embryonic mouse lungs explanted for 4 days in serumless culture. MGP mRNA stimulation by TGF-beta 1 was a time-dependent event: MGP message increment was initially detected after 1 day in culture, and MGP mRNA levels continued to increase up to 4 days in the presence of TGF-beta 1. In addition, embryonic lungs in serumless medium without exogenously added TGF-beta 1 showed an increase, although to a lesser extent, in pulmonary MGP mRNA level during culture, indicating that MGP expression is also developmentally regulated. The present results indicate that MGP gene expression can be stimulated by exogenous TGF-beta 1 during early embryonic mouse lung branching morphogenesis in culture.


1988 ◽  
Vol 8 (8) ◽  
pp. 3088-3093
Author(s):  
R J Coffey ◽  
C C Bascom ◽  
N J Sipes ◽  
R Graves-Deal ◽  
B E Weissman ◽  
...  

Transforming growth factor beta (TGF beta) is a potent inhibitor of epithelial cell proliferation. A nontumorigenic epidermal growth factor (EGF)-dependent epithelial cell line, BALB/MK, is reversibly growth arrested by TGF beta. TGF beta will also abrogate EGF-stimulated mitogenesis of quiescent BALB/MK cells. Increased levels of calcium (greater than 1.0 mM) will induce differentiation in BALB/MK cells; in contrast, TGF beta-mediated growth inhibition does not result in induction of terminal differentiation. In the present study, the effects of TGF beta and calcium on growth factor-inducible gene expression were examined. TGF beta markedly decreased c-myc and KC gene expression in rapidly growing BALB/MK cells and reduced the EGF induction of c-myc and KC in a quiescent population of cells. TGF beta exerted its control over c-myc expression at a posttranscriptional level, and this inhibitory effect was dependent on protein synthesis. TGF beta had no effect on c-fos gene expression, whereas 1.5 mM calcium attenuated EGF-induced c-fos expression in quiescent cells. Expression of beta-actin, however, was slightly increased in both rapidly growing and EGF-restimulated quiescent BALB/MK cells treated with TGF beta. Thus, in this system, TGF beta selectively reduced expression of certain genes associated with cell proliferation (c-myc and KC), and at least part of the TGF beta effect was at a posttranscriptional level.


1988 ◽  
Vol 8 (6) ◽  
pp. 2479-2483 ◽  
Author(s):  
C M Machida ◽  
L L Muldoon ◽  
K D Rodland ◽  
B E Magun

Transin is a transformation-associated gene which is expressed constitutively in rat fibroblasts transformed by a variety of oncogenes and in malignant mouse skin carcinomas but not benign papillomas or normal skin. It has been demonstrated that, in nontransformed Rat-1 cells, transin RNA expression is modulated positively by epidermal growth factor (EGF) and negatively by transforming growth factor beta (TGF-beta); other peptide growth factors were found to have no effect on transin expression. Results presented here indicate that both protein synthesis and continuous occupancy of the EGF receptor by EGF were required for sustained induction of transin RNA. Treatment with TGF-beta inhibited the ability of EGF to induce transin, whether assayed at the transcriptional level by nuclear run-on analysis or at the level of transin RNA accumulation by Northern (RNA) blot analysis of cellular RNA. TGF-beta both blocked initial induction of transin transcription by EGF and halted established production of transin transcripts during prolonged treatment. These results suggest that TGF-beta acts at the transcriptional level to antagonize EGF-mediated induction of transin gene expression.


Sign in / Sign up

Export Citation Format

Share Document