A phorbol ester-regulated ribonuclease system controlling transforming growth factor beta 1 gene expression in hematopoietic cells

1990 ◽  
Vol 10 (11) ◽  
pp. 5983-5990
Author(s):  
R E Wager ◽  
R K Assoian

12-Tetradecanoylphorbol-13-acetate (TPA)-induced differentiation of U937 promonocytes leads to a 30-fold increase in transforming growth factor beta 1 (TGF-beta 1) gene expression, and this effect results from a stabilized mRNA. Similar up-regulation was detected in TPA-treated K562 erythroblasts but was absent from cell lines that do not differentiate in response to TPA. Related studies in vitro showed that postnuclear extracts of U937 promonocytes contain a ribonuclease system that degrades TGF-beta 1 mRNA selectively and that this system is completely blocked by prior treatment of the cells with TPA. These data identify a new mechanism for regulating TGF-beta 1 mRNA levels and allow us to establish the overall basis for control of TGF-beta 1 gene expression by activation of protein kinase C. Our results also provide a new basis for understanding the long-term up-regulation of TGF-beta 1 gene expression that can accompany hematopoietic cell differentiation.

1990 ◽  
Vol 10 (11) ◽  
pp. 5983-5990 ◽  
Author(s):  
R E Wager ◽  
R K Assoian

12-Tetradecanoylphorbol-13-acetate (TPA)-induced differentiation of U937 promonocytes leads to a 30-fold increase in transforming growth factor beta 1 (TGF-beta 1) gene expression, and this effect results from a stabilized mRNA. Similar up-regulation was detected in TPA-treated K562 erythroblasts but was absent from cell lines that do not differentiate in response to TPA. Related studies in vitro showed that postnuclear extracts of U937 promonocytes contain a ribonuclease system that degrades TGF-beta 1 mRNA selectively and that this system is completely blocked by prior treatment of the cells with TPA. These data identify a new mechanism for regulating TGF-beta 1 mRNA levels and allow us to establish the overall basis for control of TGF-beta 1 gene expression by activation of protein kinase C. Our results also provide a new basis for understanding the long-term up-regulation of TGF-beta 1 gene expression that can accompany hematopoietic cell differentiation.


1993 ◽  
Vol 13 (6) ◽  
pp. 3588-3597
Author(s):  
L Scotto ◽  
R K Assoian

Chimeric plasmids containing selected reporter coding domains and portions of the transforming growth factor beta 1 (TGF-beta 1) 3' untranslated region (UTR) were prepared and used to identify potential mechanisms involved in regulating the biosynthesis of TGF-beta 1. Transient transfections with core and chimeric constructs containing the chloramphenicol acetyltransferase (CAT) reporter showed that steady-state CAT mRNA levels were decreased two- to threefold in response to the TGF-beta 1 3' UTR. Interestingly, CAT activity was somewhat increased in the same transfectants. Thus, production of CAT protein per unit of mRNA was stimulated by the TGF-beta 1 3' UTR (approximately fourfold in three cell lines of distinct lineage). The translation-stimulatory effect of the TGF-beta 1 3' UTR suggested by these studies in vivo was confirmed in vitro by cell-free translation of core and chimeric transcripts containing the growth hormone coding domain. These studies showed that production of growth hormone was stimulated threefold by the TGF-beta 1 3' UTR. A deletion analysis in vivo indicated that the GC-rich domain in the TGF-beta 1 3' UTR was responsible for both the decrease in mRNA levels and stimulation of CAT activity-mRNA. We conclude that this GC-rich domain can have a bifunctional effect on overall protein expression. Moreover, the notable absence of this GC-rich domain in TGF-beta 2, TGF-beta 3, TGF-beta 4, and TGF-beta 5 indicates that expression of distinct TGF-beta family members can be differentially controlled in cells.


1993 ◽  
Vol 13 (6) ◽  
pp. 3588-3597 ◽  
Author(s):  
L Scotto ◽  
R K Assoian

Chimeric plasmids containing selected reporter coding domains and portions of the transforming growth factor beta 1 (TGF-beta 1) 3' untranslated region (UTR) were prepared and used to identify potential mechanisms involved in regulating the biosynthesis of TGF-beta 1. Transient transfections with core and chimeric constructs containing the chloramphenicol acetyltransferase (CAT) reporter showed that steady-state CAT mRNA levels were decreased two- to threefold in response to the TGF-beta 1 3' UTR. Interestingly, CAT activity was somewhat increased in the same transfectants. Thus, production of CAT protein per unit of mRNA was stimulated by the TGF-beta 1 3' UTR (approximately fourfold in three cell lines of distinct lineage). The translation-stimulatory effect of the TGF-beta 1 3' UTR suggested by these studies in vivo was confirmed in vitro by cell-free translation of core and chimeric transcripts containing the growth hormone coding domain. These studies showed that production of growth hormone was stimulated threefold by the TGF-beta 1 3' UTR. A deletion analysis in vivo indicated that the GC-rich domain in the TGF-beta 1 3' UTR was responsible for both the decrease in mRNA levels and stimulation of CAT activity-mRNA. We conclude that this GC-rich domain can have a bifunctional effect on overall protein expression. Moreover, the notable absence of this GC-rich domain in TGF-beta 2, TGF-beta 3, TGF-beta 4, and TGF-beta 5 indicates that expression of distinct TGF-beta family members can be differentially controlled in cells.


1997 ◽  
Vol 273 (1) ◽  
pp. L282-L287 ◽  
Author(s):  
J. Zhao ◽  
D. Warburton

Matrix Gla protein (MGP) is a vitamin K-dependent extracellular matrix protein with a wide tissue distribution. The current study was designed to investigate the possible regulation of MGP by exogenous transforming growth factor-beta (TGF-beta) during lung development. Using reverse transcription coupled competitive polymerase chain reaction methodology, we determined that exogenous TGF-beta 1 increases MGP mRNA levels in embryonic mouse lung culture in a concentration-dependent manner. MGP mRNA levels were elevated by 5.0-fold at 50 ng/ml TGF-beta 1 in E11 embryonic mouse lungs explanted for 4 days in serumless culture. MGP mRNA stimulation by TGF-beta 1 was a time-dependent event: MGP message increment was initially detected after 1 day in culture, and MGP mRNA levels continued to increase up to 4 days in the presence of TGF-beta 1. In addition, embryonic lungs in serumless medium without exogenously added TGF-beta 1 showed an increase, although to a lesser extent, in pulmonary MGP mRNA level during culture, indicating that MGP expression is also developmentally regulated. The present results indicate that MGP gene expression can be stimulated by exogenous TGF-beta 1 during early embryonic mouse lung branching morphogenesis in culture.


1989 ◽  
Vol 108 (6) ◽  
pp. 2477-2482 ◽  
Author(s):  
M J Czaja ◽  
F R Weiner ◽  
K C Flanders ◽  
M A Giambrone ◽  
R Wind ◽  
...  

Despite extensive efforts, little progress has been made in identifying the factors that induce hepatic fibrosis. Transforming growth factor-beta (TGF-beta) has been shown to enhance collagen production, therefore its role in hepatic fibrosis was investigated. Treatment of cultured hepatic cells with TGF-beta 1 increased type I procollagen mRNA levels 13-fold due to post-transcriptional gene regulation. When two animal models of hepatic fibrosis, murine schistosomiasis and CCl4-treated rats, were examined, they both exhibited increased levels of TGF-beta 1 gene expression at times that somewhat preceded the increase in collagen synthesis. In contrast, in murine schistosomiasis, mRNA levels of tumor necrosis factor and interleukin-1 peaked early in the fibrogenic process. Immunohistochemical analysis showed TGF-beta 1 to be present in normal mouse liver and to be markedly increased in mice infected with schistosomiasis. TGF-beta 1 appeared in the hepatic parenchyma, primarily in hepatocytes. These findings strongly suggest a role for TGF-beta 1 in a pathophysiological state.


1991 ◽  
Vol 173 (3) ◽  
pp. 589-597 ◽  
Author(s):  
G Poli ◽  
A L Kinter ◽  
J S Justement ◽  
P Bressler ◽  
J H Kehrl ◽  
...  

The pleiotropic immunoregulatory cytokine transforming growth factor beta (TGF-beta) potently suppresses production of the human immunodeficiency virus (HIV), the causative agent of the acquired immunodeficiency syndrome, in the chronically infected promonocytic cell line U1. TGF-beta significantly (50-90%) inhibited HIV reverse transcriptase production and synthesis of viral proteins in U1 cells stimulated with phorbol myristate acetate (PMA) or interleukin 6 (IL-6). Furthermore, TGF-beta suppressed PMA induction of HIV transcription in U1 cells. In contrast, TGF-beta did not significantly affect the expression of HIV induced by tumor necrosis factor alpha (TNF-alpha). These suppressive effects were not mediated via the induction of interferon alpha (IFN-alpha). TGF-beta also suppressed HIV replication in primary monocyte-derived macrophages infected in vitro, both in the absence of exogenous cytokines and in IL-6-stimulated cultures. In contrast, no significant effects of TGF-beta were observed in either a chronically infected T cell line (ACH-2) or in primary T cell blasts infected in vitro. Therefore, TGF-beta may play a potentially important role as a negative regulator of HIV expression in infected monocytes or tissue macrophages in infected individuals.


1991 ◽  
Vol 173 (5) ◽  
pp. 1121-1132 ◽  
Author(s):  
R A Fava ◽  
N J Olsen ◽  
A E Postlethwaite ◽  
K N Broadley ◽  
J M Davidson ◽  
...  

We have studied the consequences of introducing human recombinant transforming growth factor beta 1 (hrTGF-beta 1) into synovial tissue of the rat, to begin to better understand the significance of the fact that biologically active TGF-beta is found in human arthritic synovial effusions. Within 4-6 h after the intra-articular injection of 1 microgram of hrTGF-beta 1 into rat knee joints, extensive recruitment of polymorphonuclear leukocytes (PMNs) was observed. Cytochemistry and high resolution histological techniques were used to quantitate the influx of PMNs, which peaked 6 h post-injection. In a Boyden chamber assay, hrTGF-beta 1 at 1-10 fg/ml elicited a chemotactic response from PMNs greater in magnitude than that evoked by FMLP, establishing that TGF-beta 1 is an effective chemotactic agent for PMNs in vitro as well as in vivo. That PMNs may represent an important source of TGF-beta in inflammatory infiltrates was strongly suggested by a demonstration that stored TGF-beta 1 was secreted during phorbol myristate acetate-stimulated degranulation in vitro. Acid/ethanol extracts of human PMNs assayed by ELISA contained an average of 355 ng of TGF/beta 1 per 10(9) cells potentially available for secretion during degranulation of PMNs. [3H]Thymidine incorporation in vivo and autoradiography of tissue sections revealed that widespread cell proliferation was triggered by TGF-beta 1 injection. Synovial lining cells and cells located deep within the subsynovial connective tissue were identified as sources of at least some of the new cells that contribute to TGF-beta 1-induced hyperplasia. Our results demonstrate that TGF-beta is capable of exerting pathogenic effects on synovial tissue and that PMNs may represent a significant source of the TGF-beta present in synovial effusions.


1993 ◽  
Vol 264 (1) ◽  
pp. L36-L42 ◽  
Author(s):  
E. M. Denholm ◽  
S. M. Rollins

Bleomycin-induced fibrosis in rodents has been used extensively as a model of human pulmonary fibrosis. The influx of monocytes observed during the early stages of fibrosis is at least partially regulated by the elaboration of chemotactic factors in the lung. Exposure of alveolar macrophages (AM phi) to bleomycin either in vivo or in vitro stimulated secretion of monocyte chemotactic activity (MCA). This MCA has been previously characterized as being primarily due to fibronectin fragments. The present experiments revealed that bleomycin also induced AM phi to secrete a second chemotactic factor, transforming growth factor-beta (TGF-beta). However, the TGF-beta secreted by macrophages was in latent form, since no TGF-beta activity was detected unless AM phi conditioned medium (CM) was acid-activated. After acidification, chemotactic activity in CM from AM phi stimulated with bleomycin in vitro was increased by 3.6, whereas activity in AM phi CM from fibrotic rats increased by 2 and that of a bleomycin-stimulated AM phi cell line increased by 1.6. This acid-activatable chemotactic activity was inhibited by antibody to TGF-beta. Bleomycin-stimulated AM phi s secreted significantly more TGF-beta than did unstimulated controls. Further, in vitro exposure of AM phi to bleomycin induced TGF-beta mRNA expression in a time- and concentration-dependent manner, with maximal mRNA being detected following a 16-h incubation with 1 microgram/ml bleomycin.


1988 ◽  
Vol 8 (6) ◽  
pp. 2479-2483
Author(s):  
C M Machida ◽  
L L Muldoon ◽  
K D Rodland ◽  
B E Magun

Transin is a transformation-associated gene which is expressed constitutively in rat fibroblasts transformed by a variety of oncogenes and in malignant mouse skin carcinomas but not benign papillomas or normal skin. It has been demonstrated that, in nontransformed Rat-1 cells, transin RNA expression is modulated positively by epidermal growth factor (EGF) and negatively by transforming growth factor beta (TGF-beta); other peptide growth factors were found to have no effect on transin expression. Results presented here indicate that both protein synthesis and continuous occupancy of the EGF receptor by EGF were required for sustained induction of transin RNA. Treatment with TGF-beta inhibited the ability of EGF to induce transin, whether assayed at the transcriptional level by nuclear run-on analysis or at the level of transin RNA accumulation by Northern (RNA) blot analysis of cellular RNA. TGF-beta both blocked initial induction of transin transcription by EGF and halted established production of transin transcripts during prolonged treatment. These results suggest that TGF-beta acts at the transcriptional level to antagonize EGF-mediated induction of transin gene expression.


Sign in / Sign up

Export Citation Format

Share Document