scholarly journals Chronic granulomatous disease and glutathione peroxidase deficiency, revisited

Blood ◽  
1994 ◽  
Vol 84 (11) ◽  
pp. 3861-3869 ◽  
Author(s):  
PE Newburger ◽  
SE Malawista ◽  
MC Dinauer ◽  
T Gelbart ◽  
RC Woodman ◽  
...  

We have restudied two kindreds that formed the basis of the original report of autosomal recessive chronic granulomatous disease (CGD) associated with leukocyte glutathione peroxidase deficiency. Case 1 from the original study and the surviving brother of the originally reported case 2 both have severe CGD, with no detectable respiratory burst activity in purified intact neutrophils. However, their leukocytes exhibit normal glutathione peroxidase enzyme activity and gene expression. Examination of phagocyte nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase components known to be defective in CGD reveals no detectable cytochrome b558 nor any membrane activity in a cell-free NADPH oxidase assay system. Molecular analysis of the genes encoding cytochrome b558 subunits shows, in case 1, a C-->T substitution at nucleotide 688 of the gene encoding the gp91-phox subunit of cytochrome b558, resulting in a termination signal in place of Arginine-226. Levels of gp91-phox mRNA are markedly decreased despite normal levels of gene transcription, indicating a post- transcriptional effect of the nonsense mutation on mRNA processing or stability. The X-linked form of CGD developed in this cytogenetically normal female due to the uniform inactivation of the normal X chromosome in her granulocytes, indicated by the expression in her granulocyte mRNA of only one allele of a glucose-6-phosphate dehydrogenase polymorphisms for which she is heterozygous in genomic DNA. Case 2 (of the present study) has distinct mutations in each allele of the p22-phox gene.(ABSTRACT TRUNCATED AT 250 WORDS)

1996 ◽  
Vol 315 (2) ◽  
pp. 571-575 ◽  
Author(s):  
Colin D. PORTER ◽  
KURIBAYASHI KURIBAYASHI ◽  
Mohamed H. PARKAR ◽  
Dirk ROOS ◽  
Christine KINNON

NADPH oxidase cytochrome b558 consists of two subunits, gp91-phox and p22-phox, defects of which result in chronic granulomatous disease (CGD). The nature of the interaction between these subunits has yet to be determined. Absence of p22-phox in autosomal CGD patient-derived B-cell lines results in detectable levels of an incompletely glycosylated gp91-phox precursor. We have detected this same precursor species in four cell lines from patients with the X-linked form of the disease due to mutations in gp91-phox. Such mutations should delineate regions of gp91-phox important for its biosynthesis, including stable association with p22-phox. One mutation mapped to the putative FAD-binding domain, one mapped to a potential haem-binding domain, and two involved the region encoded by exon 3.


2020 ◽  
Vol 4 (23) ◽  
pp. 5976-5987
Author(s):  
Suk See De Ravin ◽  
Julie Brault ◽  
Ronald J. Meis ◽  
Linhong Li ◽  
Narda Theobald ◽  
...  

Abstract Granulocytes from patients with chronic granulomatous disease (CGD) have dysfunctional phagocyte reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase that fails to generate sufficient antimicrobial reactive oxidative species. CGD patients with severe persistent fungal or bacterial infection who do not respond to antibiotic therapy may be given apheresis-derived allogeneic granulocyte transfusions from healthy volunteers to improve clearance of intractable infections. Allogeneic granulocyte donors are not HLA matched, so patients who receive the donor granulocyte products may develop anti-HLA alloimmunity. This not only precludes future use of allogeneic granulocytes in an alloimmunized CGD recipient, but increases the risk of graft failure of those recipients who go on to need an allogeneic bone marrow transplant. Here, we provide the first demonstration of efficient functional restoration of CGD patient apheresis granulocytes by messenger RNA (mRNA) electroporation using a scalable, Good Manufacturing Practice–compliant system to restore protein expression and NADPH oxidase function. Dose-escalating clinical-scale in vivo studies in a nonhuman primate model verify the feasibility, safety, and persistence in peripheral blood of infusions of mRNA-transfected autologous granulocyte-enriched apheresis cells, supporting this novel therapeutic approach as a potential nonalloimmunizing adjunct treatment of intractable infections in CGD patients.


1994 ◽  
Vol 180 (6) ◽  
pp. 2329-2334 ◽  
Author(s):  
J H Leusen ◽  
B G Bolscher ◽  
P M Hilarius ◽  
R S Weening ◽  
W Kaulfersch ◽  
...  

Src homology 3 (SH3) domains have been suggested to play an important role in the assembly of the superoxide-forming nicotinamide adenine dinucleotide phosphate (NADPH) oxidase upon activation of phagocytes, which involves the association of membrane-bound and cytosolic components. We studied the translocation of the cytosolic proteins to the plasma membrane in neutrophils of a patient with a point mutation in the gene encoding the light chain of cytochrome b558. This mutation leads to a substitution at residue 156 of a proline into a glutamine in a putative SH3 binding domain of p22-phox (Dinauer, M., E. A. Pierce, R. W. Erickson, T. Muhlebach, H. Messner, R. A. Seger, S. H. Orkin, and J. T. Curnutte. 1991. Proc. Natl. Acad. Sci. 88:11231). In PMA-stimulated neutrophils and in a cell-free translocation assay with neutrophil membranes and cytosol, association of the cytosolic proteins p47-phox and p67-phox with the membrane fraction of the patient's neutrophils was virtually absent. In contrast, when solubilized membranes of the patient's neutrophils were activated with phospholipids in the absence of cytosol (Koshkin, V., and E. Pick. 1993. FEBS [Fed. Eur. Biochem. Soc.] Lett. 327:57), the rate of NADPH-dependent oxygen uptake was observed at a rate similar to that of control membranes. We suggest that the binding of an SH3 domain of p47-phox to p22-phox, and thus activation of the oxidase, does not occur in the neutrophils of this patient, although under artificial conditions, electron flow from NADPH to oxygen in cytochrome b558 is possible.


Blood ◽  
1999 ◽  
Vol 93 (10) ◽  
pp. 3521-3530 ◽  
Author(s):  
Lee-Ann H. Allen ◽  
Frank R. DeLeo ◽  
Annabelle Gallois ◽  
Satoshi Toyoshima ◽  
Kensuke Suzuki ◽  
...  

Optimal microbicidal activity of polymorphonuclear leukocytes (PMNs) requires recruitment of a functional nicotinamide adenine dinucleotide phosphate (NADPH) oxidase to the phagosome. In this study, we used a synchronized phagocytosis assay and immunofluorescence microscopy (IFM) to examine the association of cytosolic NADPH oxidase subunits with phagosomes containing opsonized zymosan (OpZ). Ingestion of OpZ began within 30 seconds of particle binding and forming phagosomes were enriched for both F-actin and the actin-binding protein p57. NADPH oxidase subunits p47phox and p67phox were also recruited to forming phagosomes and were retained on mature phagosomes for at least 15 minutes. Colocalization of F-actin, p57, and p47phox on phagosomes was confirmed by immunoblotting. Translocation of p67phox, but not p57, to forming phagosomes was deficient in PMNs lacking p47phox. Surprisingly, we found that in PMNs from six individuals with X-linked chronic granulomatous disease (CGD), p47phox and p67phox accumulated in the periphagosomal area during ingestion of OpZ. However, in marked contrast to normal PMNs, p47phox and p67phox were shed from nascent phagosomes along with F-actin and p57 once OpZ was internalized (≈5 minutes). These data support a model in which flavocytochrome b is required for stable membrane binding of p47phox and p67phox, but not their association with the cytoskeleton or transport to the cell periphery.


1976 ◽  
Vol 88 (4) ◽  
pp. 581-583 ◽  
Author(s):  
Ichiro Matsuda ◽  
Yogo Oka ◽  
Naoyuki Taniguchi ◽  
Masayuki Furuyama ◽  
Susumu Kodama ◽  
...  

Blood ◽  
1990 ◽  
Vol 76 (1) ◽  
pp. 184-188
Author(s):  
F Zavala ◽  
F Veber ◽  
B Descamps-Latscha

This study was aimed at determining whether the peripheral benzodiazepine receptor (PBZDR), which is abundantly expressed on mononuclear phagocytes, is involved in host defense mechanisms depending on phagocyte membrane-associated NADPH-oxidase complex. Analysis by reversible and covalent binding of PBZDR expression on human neutrophils shows that it is modulated during NADPH-oxidase activation with phorbol 12-myristate 13-acetate. Based on a series of 17 patients with chronic granulomatous disease (CGD), results show that PBZDR expression is dramatically impaired in X-linked CGD, an inherited disorder due to a mutation on the gene coding for cytochrome b558 NADPH- oxidase component, whereas it is unaffected in autosomal recessive CGD where cytochrome b558 is normally expressed, suggesting a link between PBZDR and cytochrome b558 expressions. PBZDR can be assigned by covalent binding to an 18-Kd membrane protein. These results suggest that the neutrophil PBZDR, which can accommodate the widely prescribed anxiolytic drug Valium (diazepam), is involved in host defense against pathogens, a function that could be affected by neuroimmune interactions.


2019 ◽  
Vol 3 (8) ◽  
pp. 1272-1284 ◽  
Author(s):  
Vijay K. Sonkar ◽  
Rahul Kumar ◽  
Melissa Jensen ◽  
Brett A. Wagner ◽  
Anjali A. Sharathkumar ◽  
...  

Abstract Deficiency of the Nox2 (gp91phox) catalytic subunit of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is a genetic cause of X-linked chronic granulomatous disease, a condition in which patients are prone to infection resulting from the loss of oxidant production by neutrophils. Some studies have suggested a role for superoxide derived from Nox2 NADPH oxidase in platelet activation and thrombosis, but data are conflicting. Using a rigorous and comprehensive approach, we tested the hypothesis that genetic deficiency of Nox2 attenuates platelet activation and arterial thrombosis. Our study was designed to test the genotype differences within male and female mice. Using chloromethyl-dichlorodihydrofluorescein diacetate, a fluorescent dye, as well as high-performance liquid chromatography analysis with dihydroethidium as a probe to detect intracellular reactive oxygen species (ROS), we observed no genotype differences in ROS levels in platelets. Similarly, there were no genotype-dependent differences in levels of mitochondrial ROS. In addition, we did not observe any genotype-associated differences in platelet activation, adhesion, secretion, or aggregation in male or female mice. Platelets from chronic granulomatous disease patients exhibited similar adhesion and aggregation responses as platelets from healthy subjects. Susceptibility to carotid artery thrombosis in a photochemical injury model was similar in wild-type and Nox2-deficient male or female mice. Our findings indicate that Nox2 NADPH oxidase is not an essential source of platelet ROS or a mediator of platelet activation or arterial thrombosis in large vessels, such as the carotid artery.


2020 ◽  
Vol 7 (2) ◽  
pp. 66-80
Author(s):  
Paria Kashani ◽  
Lara Farras Roca ◽  
David Manson

Introduction: Chronic granulomatous disease (CGD) is one of the most common primary immunodeficiencies of childhood, and is caused by defects in the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex. Alongside neutrophil dysfunction, dysregulation of the immune system predisposes patients to recurrent life-threatening infections as well as granuloma formation, hyperinflammation, and autoimmunity. Examination by imaging (radiography, ultrasound, computed tomography, magnetic resonance) in conjunction with biopsy and tissue or fluid cultures are essential to identify the extent and severity of infections as well as the microorganisms responsible. These modalities also help to guide the management of inflammatory complications. Aim: We highlight the common radiographic findings in 10 pediatric CGD patients followed at our centre over a period of 10 years. Methods: Medical records of patients with confirmed CGD diagnosis were reviewed retrospectively. All had low neutrophil oxidative burst index (NOBI) and pathogenic mutation in 1 of the 5 subunits of the NADPH oxidase. Three patients had autosomal recessive CGD and 7 had X-linked recessive CGD. All but 1 are male. Results: The most common radiographic presentation was hilar lymphadenopathy and pulmonary nodules. Other lung complications include cavitating lesions, lung abscess, pulmonary nodule, and pleuritic nodules. Lymphatic tissue and lymph nodes were involved in 50% of our cohort of patients, while gastrointestinal manifestations were noted in approximately 35% of our patients. These include the presence of pigmented macrophages, multiple granulomas, liver abscess, or detection of Aspergillus in tissue or fluid culture. Discussion: It is essential for clinicians to keep primary immunodeficiency as one of the differential diagnoses in patients who present with severe infection or inflammation. We encourage physicians to consider CGD in patients with above described findings and consider measuring NOBI in patients with early onset infection, inflammation, or granuloma formation. Statement of novelty: We describe the radiographic findings of a pediatric cohort of patients with CGD.


2019 ◽  
Vol 6 (3) ◽  
pp. 107-112
Author(s):  
Paria Kashani ◽  
Haiying Chen

Introduction: Chronic granulomatous disease (CGD) is a primary immunodeficiency caused by defects in the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex. Affected patients suffer recurrent life-threatening infections due to phagocyte dysfunction and dysregulation of the immune system. Histopathological assessment is important to help identify the extent and severity of infection and tissue injury. Aim: We present pathological findings in 5 patients with CGD who were followed at our centre. Methods: Patient information was reviewed retrospectively in accordance with local institutional guidelines. All patients had confirmed diagnosis of CGD with mutation in one of the 5 subunits of the NADPH oxidase. Results: Histopathological features of the gastrointestinal tract, liver, and spleen are noted, and include the presence of granulomatous inflammation and pigmented macrophages. Discussion: It is essential for clinicians to keep primary immunodeficiency as one of the differential diagnoses in patients with severe infection or inflammation, whether in the absence or presence of granuloma formation. The detection of PAS-positive macrophages, diffuse granulomatous inflammation, and hepatic abscesses should raise strong suspicion of CGD. Statement of novelty: We describe the histopathological findings of a paediatric cohort of patients with CGD.


Blood ◽  
1999 ◽  
Vol 94 (7) ◽  
pp. 2505-2514 ◽  
Author(s):  
Pablo J. Patiño ◽  
Julie Rae ◽  
Deborah Noack ◽  
Rich Erickson ◽  
Jiabing Ding ◽  
...  

Chronic granulomatous disease (CGD) is a rare inherited disorder of phagocytes in which defective production of microbicidal oxidants leads to severe recurrent infections. CGD is caused by mutations in any of 4 genes encoding components of nicotinamide adenine dinucleotide phosphate (reduced form; NADPH) oxidase, the multisubunit enzyme that produces the precursor of these oxidants, superoxide. Approximately 5% of CGD patients have an autosomal recessive form of disease caused by a severe deficiency of p67-phox, a 526-amino acid subunit of the oxidase that appears to regulate electron transport within the enzyme. Here we report the biochemical and molecular characterization of 6 unrelated kindreds with p67-phox deficiency. These studies show that, as in gp91-phox and p22-phox deficiencies, the p67-phox CGD patients show a high degree of heterogeneity in the genetic defects that underlie their disease. Five different mutant alleles were identified: (1) a nonsense mutation in exon 4 (C304 → T); (2) a 5-nucleotide (nt) deletion in exon 13 (nts 1169-1173); (3) a splice mutation in the first nucleotide of intron 4 (G → A); (4) a deletion of 1 nt in exon 9 (A728); and (5) a 9-nt in-frame deletion in exon 2 (nts 55-63). The splice mutation was seen in 3 unrelated kindreds, while the 5-nt deletion was seen in 2 apparently unrelated families (both of Palestinian origin). Homozygosity was present in 4 of the kindreds, 2 of which had consanguineous parentage. In the isolated neutrophils of each of the affected patients in the 6 kindreds, there was no measurable respiratory burst activity and no p67-phox protein detected by immunoblot analysis. The level of 67-phox mRNA was less than 10% of normal in the mononuclear leukocytes from 3 of the 4 patients analyzed by Northern blot studies. Thus, this heterogeneous group of mutations in p67-phox all lead to marked instability of mRNA or protein (or both) that results in the complete loss of NADPH oxidase activity.


Sign in / Sign up

Export Citation Format

Share Document