scholarly journals A functionally active retrovirus vector for gene therapy in Fanconi anemia group C

Blood ◽  
1994 ◽  
Vol 84 (2) ◽  
pp. 453-459 ◽  
Author(s):  
CE Walsh ◽  
M Grompe ◽  
E Vanin ◽  
M Buchwald ◽  
NS Young ◽  
...  

Fanconi anemia (FA) is a rare genetic disorder characterized by progressive pancytopenia, congenital abnormalities, and a predisposition to malignancy. Recently, mutation in a novel gene named FACC (Fanconi anemia C complementing) has been identified as causing one type of FA. Here, we report successful functional complementation of four FA(C) cell lines using a retroviral vector to transfer a copy of the normal FACC gene. The hallmark of the FA cell phenotype is extreme sensitivity to cross-linking agents such as mitomycin C (MMC). Cell lines transduced by FACC viral vectors were distinguished by their ability to grow at concentrations of MMC several orders of magnitude higher than those concentrations inhibitory of parental controls. The genetically corrected cell lines were analyzed for susceptibility to MMC-induced chromosomal breakage and were found to have been normalized. These two different assays confirmed that our retroviral vectors were capable of transferring a functional FACC gene to lymphoid cell lines established from FA(C) patients. We next analyzed the ability of our viral vectors to functionally correct hematopoietic progenitor cells from a patient bearing a splice donor mutation. Progenitor cells were purified by an immunoaffinity column to enrich for cells with high CD34 expression. Similar to FA lymphoid cell lines, this patient's CD34-enriched cells were extremely sensitive to MMC. After infection of these progenitor cells with viral vectors bearing normal FACC, increased numbers of colonies formed both in the absence and presence of < or = 5 nmol/L MMC, but no colonies formed from uninfected cells, even in the absence of MMC. Polymerase chain amplification was used to confirm proviral DNA integration. Thus, retroviral vectors can be engineered to transfer a normal FACC gene to lymphoid cell lines and primary hematopoietic cells bearing four different FACC mutations. FA stem cells rescued by gene transduction should have a selective growth advantage within the hypoplastic FA marrow environment in vivo. These experiments suggest that gene therapy may be an effective treatment strategy for FA.

Blood ◽  
1994 ◽  
Vol 84 (2) ◽  
pp. 453-459 ◽  
Author(s):  
CE Walsh ◽  
M Grompe ◽  
E Vanin ◽  
M Buchwald ◽  
NS Young ◽  
...  

Abstract Fanconi anemia (FA) is a rare genetic disorder characterized by progressive pancytopenia, congenital abnormalities, and a predisposition to malignancy. Recently, mutation in a novel gene named FACC (Fanconi anemia C complementing) has been identified as causing one type of FA. Here, we report successful functional complementation of four FA(C) cell lines using a retroviral vector to transfer a copy of the normal FACC gene. The hallmark of the FA cell phenotype is extreme sensitivity to cross-linking agents such as mitomycin C (MMC). Cell lines transduced by FACC viral vectors were distinguished by their ability to grow at concentrations of MMC several orders of magnitude higher than those concentrations inhibitory of parental controls. The genetically corrected cell lines were analyzed for susceptibility to MMC-induced chromosomal breakage and were found to have been normalized. These two different assays confirmed that our retroviral vectors were capable of transferring a functional FACC gene to lymphoid cell lines established from FA(C) patients. We next analyzed the ability of our viral vectors to functionally correct hematopoietic progenitor cells from a patient bearing a splice donor mutation. Progenitor cells were purified by an immunoaffinity column to enrich for cells with high CD34 expression. Similar to FA lymphoid cell lines, this patient's CD34-enriched cells were extremely sensitive to MMC. After infection of these progenitor cells with viral vectors bearing normal FACC, increased numbers of colonies formed both in the absence and presence of < or = 5 nmol/L MMC, but no colonies formed from uninfected cells, even in the absence of MMC. Polymerase chain amplification was used to confirm proviral DNA integration. Thus, retroviral vectors can be engineered to transfer a normal FACC gene to lymphoid cell lines and primary hematopoietic cells bearing four different FACC mutations. FA stem cells rescued by gene transduction should have a selective growth advantage within the hypoplastic FA marrow environment in vivo. These experiments suggest that gene therapy may be an effective treatment strategy for FA.


Blood ◽  
1985 ◽  
Vol 66 (2) ◽  
pp. 342-344 ◽  
Author(s):  
AM Ferraris ◽  
WH Raskind ◽  
BH Bjornson ◽  
RJ Jacobson ◽  
JW Singer ◽  
...  

Abstract In order to study the pattern of B cell involvement in acute nonlymphocytic leukemia (ANLL), multiple B lymphoid cell lines were established by Epstein-Barr virus transformation of peripheral blood mononuclear cells from two patients with the disease who were heterozygous for the X chromosome-linked glucose-6-phosphate dehydrogenase (G6PD). In one patient, the progenitor cells involved by the leukemia exhibited multipotent differentiative expression, whereas in the other patient the cells showed differentiative expression restricted to the granulocytic pathway. In the patient whose abnormal clone showed multipotent expression, the ratio of B-A G6PD in B lymphoid cell lines was skewed in the direction of type B (the enzyme characteristic of the leukemia clone) and significantly different from the 1:1 ratio expected. It is, therefore, likely that the neoplastic event occurred in a stem cell common to the lymphoid series as well as to the myeloid series. In contrast, evidence for B cell involvement was not detected in the patient whose ANLL progenitor cells exhibited restricted differentiative expression. These findings underscore the heterogeneity of ANLL. Clinically and morphologically similar malignancies in these two patients originated in progenitors with different patterns of stem cell differentiative expression. This difference may reflect differences in cause and pathogenesis.


2003 ◽  
Vol 103 (1-2) ◽  
pp. 54-57 ◽  
Author(s):  
H. Popp ◽  
R. Kalb ◽  
A. Fischer ◽  
S. Lobitz ◽  
I. Kokemohr ◽  
...  

Blood ◽  
1985 ◽  
Vol 66 (2) ◽  
pp. 342-344
Author(s):  
AM Ferraris ◽  
WH Raskind ◽  
BH Bjornson ◽  
RJ Jacobson ◽  
JW Singer ◽  
...  

In order to study the pattern of B cell involvement in acute nonlymphocytic leukemia (ANLL), multiple B lymphoid cell lines were established by Epstein-Barr virus transformation of peripheral blood mononuclear cells from two patients with the disease who were heterozygous for the X chromosome-linked glucose-6-phosphate dehydrogenase (G6PD). In one patient, the progenitor cells involved by the leukemia exhibited multipotent differentiative expression, whereas in the other patient the cells showed differentiative expression restricted to the granulocytic pathway. In the patient whose abnormal clone showed multipotent expression, the ratio of B-A G6PD in B lymphoid cell lines was skewed in the direction of type B (the enzyme characteristic of the leukemia clone) and significantly different from the 1:1 ratio expected. It is, therefore, likely that the neoplastic event occurred in a stem cell common to the lymphoid series as well as to the myeloid series. In contrast, evidence for B cell involvement was not detected in the patient whose ANLL progenitor cells exhibited restricted differentiative expression. These findings underscore the heterogeneity of ANLL. Clinically and morphologically similar malignancies in these two patients originated in progenitors with different patterns of stem cell differentiative expression. This difference may reflect differences in cause and pathogenesis.


Toxicology ◽  
2005 ◽  
Vol 210 (1) ◽  
pp. 81-91 ◽  
Author(s):  
Fiorenza Minervini ◽  
Francesca Fornelli ◽  
Giacomo Lucivero ◽  
Ciro Romano ◽  
Angelo Visconti

1981 ◽  
Vol 23 (1) ◽  
pp. 35-38 ◽  
Author(s):  
Ichiro Matsuda ◽  
Izumi Akaboshi ◽  
Jiro Yamamoto ◽  
Noriyuki Nagata

1986 ◽  
Vol 6 (2) ◽  
pp. 703-706
Author(s):  
F Toneguzzo ◽  
A C Hayday ◽  
A Keating

The technique of DNA transfer by electroporation was investigated in an effort to evaluate its utility for the identification of developmentally controlled regulatory sequences. Transient and stable gene expression was detected in a variety of lymphoid cell lines subjected to electroporation. No correlation existed between the levels of chloramphenicol acetyltransferase (acetyl-CoA; chloramphenicol 3-O-acetyltransferase, EC 2.3.1.28) expression and stable transfection frequency. In all lymphoid cell lines tested, the simian virus 40 early region was a better promoter than was the Rous sarcoma virus long terminal repeat.


Sign in / Sign up

Export Citation Format

Share Document