scholarly journals Protein phosphorylation in neutrophils from patients with p67-phox- deficient chronic granulomatous disease

Blood ◽  
1996 ◽  
Vol 87 (10) ◽  
pp. 4404-4410 ◽  
Author(s):  
PG Heyworth ◽  
J Ding ◽  
RW Erickson ◽  
DJ Lu ◽  
JT Curnutte ◽  
...  

Neutrophils are known to contain a major 67-kD protein that undergoes enhanced phosphorylation and translocation to the membrane during cell stimulation. Recent studies have assumed that this 67-kD phosphoprotein is the 67-kD subunit of the phagocyte oxidase (p67-phox). We compare here the protein phosphorylation patterns in lysates of normal neutrophils and neutrophils from patients with chronic granulomatous disease (CGD) that are completely deficient in p67-phox. The phosphoproteins were labeled by incubation of the cells with radioactive inorganic phosphate (32Pi) or by the addition of [gamma- 32P]ATP to electropermeabilized neutrophils. With either method, stimulation of the normal or CGD cells always resulted in an enhanced incorporation of 32p into two proteins in the 67-kD area. The extent of phosphorylation of these two proteins was very similar in the normal and CGD cells when permeabilized neutrophils loaded with [gamma - 32P]ATP were compared. Moreover, no overall differences in the protein phosphorylation patterns were observed between the normal and CGD cells. Our data indicate that the major 67-kD phosphoproteins observed in stimulated neutrophils are clearly different from p67-phox.

Blood ◽  
1988 ◽  
Vol 71 (2) ◽  
pp. 505-507 ◽  
Author(s):  
AJ Verhoeven ◽  
ML van Schaik ◽  
D Roos ◽  
RS Weening

The NADPH:O2 oxidoreductase catalyzing the respiratory burst in activated phagocytes from healthy individuals is not operative in phagocytes from patients with chronic granulomatous disease (CGD). In a microscopic slide test using the dye nitroblue tetrazolium (NBT), carriers of X-linked CGD can be recognized by a mosaic pattern of NBT- positive and NBT-negative cells, governed by the expression of an unaffected or an affected X chromosome, respectively. Until now, it has not been possible to detect carriers of the autosomal form of CGD (other than by family studies) because all cells of these carriers stain positive in the NBT test. We have investigated whether neutrophils from carriers of autosomal CGD can be recognized by measurement of the rate of oxygen uptake upon stimulation of the cells. It was found that with the phorbol ester PMA as a stimulus, the respiratory burst is significantly lower in autosomal CGD carriers. With serum-treated zymosan as a stimulus, no difference between controls and carriers was observed. The addition of f-Met-Leu-Phe (1 microM) to PMA-activated neutrophils of control donors caused a transient increase in oxygen consumption of about 40%. Under these conditions, an increase of more than 100% was observed in neutrophils from carriers of autosomal CGD. These findings provide a simple method for the detection of carriers of the autosomal form of CGD.


1994 ◽  
Vol 179 (1) ◽  
pp. 291-297 ◽  
Author(s):  
S Tsunawaki ◽  
H Mizunari ◽  
H Namiki ◽  
T Kuratsuji

The NADPH-binding site of the respiratory burst oxidase system of neutrophils has been proposed to be either at a cytosolic component or at the beta-subunit of cytochrome b558. In this study, affinity labeling of resting and stimulated membranes, the latter having been assembled by all of the oxidase components from both membrane and cytosol, was carried out using [32P]NADPH dialdehyde (oNADPH). Stimulation of human neutrophils with PMA greatly increased O2(-)-generating activity and caused considerable translocation of the cytosolic components p47phox and p67phox. Nevertheless, PMA stimulation did not produce a labeled band which included positions at 47, 67, and approximately 32 kD. The most intense band reflected a molecular mass of 84 kD regardless of the state of activation, but a labeled band was never found near the beta-subunit (91 kD) of cytochrome b558. This 84-kD protein was further confirmed in neutrophils of 14 patients with gp91phox-deficient X-linked chronic granulomatous disease. These results indicate that the NADPH-binding component is not recruited from the cytosol, and also, that a membranous redox component besides cytochrome b558 must be involved in the NADPH oxidase system.


Blood ◽  
1993 ◽  
Vol 82 (3) ◽  
pp. 940-947
Author(s):  
J Ding ◽  
JA Badwey ◽  
RW Erickson ◽  
KJ Balazovich ◽  
JT Curnutte

A procedure for uncovering novel protein kinases was used to search for enzymes in neutrophils that may catalyze the phosphorylation of the 47- Kd subunit of the NADPH oxidase system (p47-phox). This component of the oxidase can undergo phosphorylation on multiple sites. The method is based on the ability of renatured kinases to recognize exogenous substrates fixed in gels. We report that neutrophils contain several uncharacterized protein kinases that catalyze the phosphorylation of a peptide substrate that corresponds to amino acid residues 297 through 331 of p47-phox. Some of these enzymes are strongly activated on stimulation of the cells with phorbol 12-myristate 13-acetate (PMA). The results indicate that the phosphorylation of p47-phox in neutrophils may be more complicated than previously appreciated and may involve multiple protein kinases. In addition, we have examined both the renaturable protein kinases and the properties of protein kinase C (PKC) in neutrophils from patients with chronic granulomatous disease (CGD) who are deficient in cytochrome b558. Previous studies have shown that these cells exhibit incomplete phosphorylation of p47-phox on stimulation. In this study, we were unable to detect any alterations in the renaturable protein kinases or PKC in CGD neutrophils that could explain these defects in the phosphorylation of p47-phox.


1986 ◽  
Vol 145 (1-2) ◽  
pp. 22-26 ◽  
Author(s):  
E. Ishii ◽  
K. Irita ◽  
I. Fujita ◽  
K. Takeshige ◽  
M. Kobayashi ◽  
...  

Blood ◽  
2010 ◽  
Vol 116 (9) ◽  
pp. 1570-1573 ◽  
Author(s):  
Felix Meissner ◽  
Reinhard A. Seger ◽  
Despina Moshous ◽  
Alain Fischer ◽  
Janine Reichenbach ◽  
...  

Abstract Chronic granulomatous disease (CGD) is an inherited disorder characterized by recurrent infections and deregulated inflammatory responses. CGD is caused by mutations in subunits of the NADPH oxidase, an enzyme that generates reactive oxygen species in phagocytes. To elucidate the contribution of the proinflammatory protease caspase-1 to aberrant inflammatory reactions in CGD, we analyzed cells isolated from patients with defects in the phagocyte oxidase subunits p22phox, p47phox or gp91phox. We report that mononuclear phagocytes from CGD patients activated caspase-1 and produced biologically active interleukin-1β (IL-1β) in response to danger signals. Notably, caspase-1 activation and IL-1β secretion from CGD monocytes was elevated in asymptomatic patients and strongly increased in patients with noninfectious inflammatory conditions. Treatment with IL-1 receptor antagonist reduced IL-1 production in monocytes ex vivo and during medical therapy. Our results identify phagocyte oxidase defective monocytes as a source of elevated IL-1 and provide a potential therapeutic option to ameliorate inflammatory conditions associated with CGD.


2021 ◽  
Vol 22 (16) ◽  
pp. 8701
Author(s):  
Rodrigo Prieto-Bermejo ◽  
Marta Romo-González ◽  
Alejandro Pérez-Fernández ◽  
María Carmen García-Macías ◽  
Carmen Sánchez-Bernal ◽  
...  

Haematopoiesis is a paradigm of cell differentiation because of the wide variety and overwhelming number of mature blood cells produced daily. Under stress conditions, the organism must adapt to a boosted demand for blood cells. Chronic granulomatous disease (CGD) is a genetic disease caused by inactivating mutations that affect the phagocyte oxidase. Besides a defective innate immune system, CGD patients suffer from recurrent hyper-inflammation episodes, circumstances upon which they must face emergency haematopoiesis. The targeting of Cybb and Ncf1 genes have produced CGD animal models that are a useful surrogate when studying the pathophysiology and treatment of this disease. Here, we show that Cyba−/− mice spontaneously develop granuloma and, therefore, constitute a CGD animal model to complement the existing Cybb−/− and Ncf1−/− models. More importantly, we have analysed haematopoiesis in granuloma-bearing Cyba−/− mice. These animals showed a significant loss of weight, developed remarkable splenomegaly, bone marrow myeloid hyperplasia, and signs of anaemia. Haematological analyses showed a sharped decrease of B-cells and a striking development of myeloid cells in all compartments. Collectively, our results show that granuloma inflammatory lesions dramatically change haematopoiesis homeostasis. Consequently, we suggest that besides their defective innate immunity, the alteration of haematopoiesis homeostasis upon granuloma may contribute to the dismal outcome of CGD.


Blood ◽  
1993 ◽  
Vol 82 (3) ◽  
pp. 940-947 ◽  
Author(s):  
J Ding ◽  
JA Badwey ◽  
RW Erickson ◽  
KJ Balazovich ◽  
JT Curnutte

Abstract A procedure for uncovering novel protein kinases was used to search for enzymes in neutrophils that may catalyze the phosphorylation of the 47- Kd subunit of the NADPH oxidase system (p47-phox). This component of the oxidase can undergo phosphorylation on multiple sites. The method is based on the ability of renatured kinases to recognize exogenous substrates fixed in gels. We report that neutrophils contain several uncharacterized protein kinases that catalyze the phosphorylation of a peptide substrate that corresponds to amino acid residues 297 through 331 of p47-phox. Some of these enzymes are strongly activated on stimulation of the cells with phorbol 12-myristate 13-acetate (PMA). The results indicate that the phosphorylation of p47-phox in neutrophils may be more complicated than previously appreciated and may involve multiple protein kinases. In addition, we have examined both the renaturable protein kinases and the properties of protein kinase C (PKC) in neutrophils from patients with chronic granulomatous disease (CGD) who are deficient in cytochrome b558. Previous studies have shown that these cells exhibit incomplete phosphorylation of p47-phox on stimulation. In this study, we were unable to detect any alterations in the renaturable protein kinases or PKC in CGD neutrophils that could explain these defects in the phosphorylation of p47-phox.


Sign in / Sign up

Export Citation Format

Share Document