scholarly journals Expression of the T-Cell Activation Antigen, OX-40, Identifies Alloreactive T Cells in Acute Graft-Versus-Host Disease

Blood ◽  
1997 ◽  
Vol 89 (12) ◽  
pp. 4652-4658 ◽  
Author(s):  
Thomas V. Tittle ◽  
Andrew D. Weinberg ◽  
Cara N. Steinkeler ◽  
Richard T. Maziarz

Abstract The OX-40 molecule is expressed on the surface of recently activated T lymphocytes. The presence of OX-40 on CD4+ T cells was analyzed in a rat haplo-identical (parental → F1) bone marrow transplant model of acute graft-versus-host disease (aGVHD). Increased numbers of activated CD4+ T cells that expressed the OX-40 antigen were detected in peripheral blood soon after transplantation before the earliest sign of disease. The peak of OX-40 expression occurred 12 days posttransplantation with a range of 18% to 36% of circulating T cells and remained 10-fold above background, never returning to baseline. A slight increase in OX-40 expression (range, 1% to 6%) was also detected on peripheral blood lymphocytes from control syngeneic F1 → F1 recipients. OX-40+ T cells were isolated from spleen, skin, lymph node, and liver tissue of rats undergoing aGVHD, but not in syngeneic transplants. OX-40+ T cells isolated from these tissues were of donor origin and were shown to be allo-reactive. These data raise the possibility of using the OX-40 antibody to detect and deplete selectively the T cells that cause aGVHD.

Blood ◽  
2012 ◽  
Vol 119 (20) ◽  
pp. 4786-4797 ◽  
Author(s):  
Parvathi Ranganathan ◽  
Catherine E. A. Heaphy ◽  
Stefan Costinean ◽  
Nicole Stauffer ◽  
Caroline Na ◽  
...  

Abstract Acute graft-versus-host disease (aGVHD) remains a major complication of allogeneic hematopoietic stem cell transplant (alloHSCT), underscoring the need to further elucidate its mechanisms and develop novel treatments. Based on recent observations that microRNA-155 (miR-155) is up-regulated during T-cell activation, we hypothesized that miR-155 is involved in the modulation of aGVHD. Here we show that miR-155 expression was up-regulated in T cells from mice developing aGVHD after alloHSCT. Mice receiving miR-155–deficient donor lymphocytes had markedly reduced lethal aGVHD, whereas lethal aGVHD developed rapidly in mice recipients of miR-155 overexpressing T cells. Blocking miR-155 expression using a synthetic anti–miR-155 after alloHSCT decreased aGVHD severity and prolonged survival in mice. Finally, miR-155 up-regulation was shown in specimens from patients with pathologic evidence of intestinal aGVHD. Altogether, our data indicate a role for miR-155 in the regulation of GVHD and point to miR-155 as a novel target for therapeutic intervention in this disease.


Haematologica ◽  
2020 ◽  
Vol 105 (11) ◽  
pp. 2550-2560
Author(s):  
Mahasweta Gooptu ◽  
John Koreth

Acute graft-versus-host disease (aGvHD) is induced by immunocompetent alloreactive T lymphocytes in the donor graft responding to polymorphic and non-polymorphic host antigens and causing inflammation in primarily the skin, gastrointestinal tract and liver. aGvHD remains an important toxicity of allogeneic transplantation, and the search for better prophylactic and therapeutic strategies is critical to improve transplant outcomes. In this review, we discuss the significant translational and clinical advances in the field which have evolved based on a better understanding of transplant immunology. Prophylactic advances have been primarily focused on the depletion of T lymphocytes and modulation of T-cell activation, proliferation, effector and regulatory functions. Therapeutic strategies beyond corticosteroids have focused on inhibiting key cytokine pathways, lymphocyte trafficking, and immunologic tolerance. We also briefly discuss important future trends in the field, the role of the intestinal microbiome and dysbiosis, as well as prognostic biomarkers for aGvHD which may improve stratification-based application of preventive and therapeutic strategies.


2016 ◽  
Vol 15 (3) ◽  
pp. 233-245 ◽  
Author(s):  
Yifeng Cai ◽  
Shoubao Ma ◽  
Yuejun Liu ◽  
Huanle Gong ◽  
Qiao Cheng ◽  
...  

2015 ◽  
Vol 21 (7) ◽  
pp. 1215-1222 ◽  
Author(s):  
Pooja Khandelwal ◽  
Adam Lane ◽  
Vijaya Chaturvedi ◽  
Erika Owsley ◽  
Stella M. Davies ◽  
...  

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 4-4
Author(s):  
Huihui Liu ◽  
Zhengyu Yu ◽  
Bo Tang ◽  
Shengchao Miao ◽  
Chenchen Qin ◽  
...  

Acute graft-versus-host disease (aGVHD) is a lethal complication after allogeneic hematopoietic stem cell transplantation (allo-HSCT). As a complex immunopathology, aGVHD depends on the recognition of host antigens by donor T cells and induces augmented response of alloreactive T cells. Despite considerable achievements in the treatment of aGVHD, it remains a major clinical problem for the patients undergoing allo-HSCT. Therefore, it is necessary to further illustrate new mechanisms and develop novel therapeutic strategies of aGVHD. Previously we reported LYG1 (Lysozyme G-like 1) as a novel classical secretory protein promoted antitumor function of T cell. In this study, the role of LYG1 in aGVHD was investigated. Firstly, we examined whether LYG1 affected the alloreactivity of CD4+ T cells in vitro by MLR assay and discovered that LYG1 deficiency reduced the activation of CD4+ T cells and Th1 ratio, but increased Treg ratio. Then we confirmed these observations using a major MHC mismatched aGVHD model by transferring T cells sorting from WT B6 or Lyg1-/- mice with bone marrow cells from WT B6 mice into lethally irradiated BALB/c mice. The alloreactive CD4+ T cells and the proportions of Th1 cells decreased whereas the proportions of Treg cells increased in spleens and livers in mice receiving Lyg1-/- T cells. LYG1-deficient T cells attenuated aGVHD severity, inhibited the expression of CXCL9 and CXCL10 and restrained CD4+ T cells infiltrating in livers. Furthermore, administration of recombinant LYG1 protein intraperitoneally aggravated aGVHD by promoting IFN-γ production. More importantly, LYG1 deficiency did not affect GVT (graft-versus-tumor) effects. In summary, we demonstrate LYG1 regulates aGVHD via modulating the alloreactivity of CD4+ T cells and differentiation of Th1/Treg cells. Our study indicates that LYG1 may be a novel target in aGVHD by mitigating aGVHD without impairing GVT function. The therapeutic effect of targeting LYG1 is required in future investigations. Funding This study was supported by grant from The National Natural Science Foundation of China (NSFC) (Grant Number 81600144) and grant from Research Foundation of Peking University First Hospital. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1816-1816
Author(s):  
Takero Shindo ◽  
Takayuki Ishikawa ◽  
Akiko Fukunaga ◽  
Toshiyuki Hori ◽  
Takashi Uchiyama

Abstract Chronic graft-versus-host-disease (GVHD) after allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a serious complication, for which limited therapeutic approaches exist. Thymus-derived autoreactive as well as alloreactive T cells are shown to be involved in the development of chronic GVHD and CD4+ T cells are regarded to play a central role. OX40 (CD134) is known to play an important role in co-stimulation and survival elongation of CD4+ T cells, and murine models revealed that the interaction of OX40/OX40-ligand constitutes an essential parts in autoimmune and alloimmune responses. Since we showed that the increase of CD4+OX40+ T cells in peripheral blood of allo-HSCT recipients precedes the occurrence of chronic GVHD (Kotani A et al. Blood2001; 98: 3162–4), we have paid attention to the role of peripheral blood CD4+OX40+ T cells in the development of chronic GVHD. To further know the characteristics of peripheral blood CD4+OX40+ T cells from patients after allo-HSCT, we analyzed surface phenotype and the ability of cytokine production of CD4+ T cells from 25 allo-HSCT recipients. A majority of CD4+OX40+ T cells showed CD45RO+CD62L+CCR7+, while CD4+OX40− T cells were mainly CD45RO+CD62L−CCR7−. When stimulated with PMA and ionomycin, a significant part of CD4+OX40+ T cells produced interleukin-2 (IL-2). In contrast, a majority of CD4+OX40−HLA-DR+ T cells, the ratio of which also increased in peripheral blood of allo-HSCT recipients, produced interferon-γ (IFN-γ). Thus, the pattern of the expression of activation antigens on CD4+ T cells is a landmark of the potential to produce IL-2 or IFN-γ. When clinical data were combined, patients suffering from chronic GVHD showed increased ratio of IL-2-producing CD4+OX40+ T cells among CD4+ T cells (more than 10%). In fact, it correlates more closely (p=0.016) to the occurrence of chronic GVHD than the ratio of CD4+OX40+ T cells or that of IL-2-producing CD4+ T cells (p=0.06). Interestingly, the ratio of IFN-γ-producing CD4+ T cells does not correlate (p=0.95), suggesting that they do not contribute to the process of ongoing chronic GVHD. As CD4+OX40+ T cells share the characteristics of central memory T cells, we hypothesized that CD4+OX40+ T cells, which home secondary lymphoid organs, are stimulated with antigens and develop into effector cells, some of which induce chronic GVHD. Then we collected CD4+ T cells from recipients of allo-HSCT and sorted them into OX40+ and OX40− fractions. When sorted cells were stimulated with immobilized anti-CD3 and soluble anti-CD28 (CD3/28 stimulation), IL-2-producing cells were detected mainly in OX40+ fraction and IFN-γ-producing cells were abundantly and exclusively observed in OX40− fraction. When sorted cells were stimulated with CD3/28 for 48 hr, followed by 4-day cultivation with IL-2, OX40+ cells showed vigorous growth without reducing viability. In addition, re-stimulation with CD3/CD28 revealed that OX40+ cells produce a large amount of IFN-γ or IL-4. In this way, peripheral blood CD4+OX40+ T cells have potential to easily differenciate into effector cells, which may contribute to the development of chronic GVHD. The signaling from OX40 may also accelerate this process. Targeted therapy against IL2-producing CD4+OX40+ T cells may afford a breakthrough in the treatment of chronic GVHD.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1299-1299 ◽  
Author(s):  
Robert Zeiser ◽  
Vu Nguyen ◽  
Martin Buess ◽  
Mobin Karimi ◽  
Pia Bjorck ◽  
...  

Abstract CD4+CD25+ regulatory T (Treg) cells suppress acute graft versus host disease (aGVHD), prevent autoimmunity and delay allograft rejection. CD30 and other TNF-R family members have been demonstrated to be expressed by Treg and to function as alternative costimulatory pathways for T cell activation. In this study we assessed the significance of the CD30/CD153 pathway in Tregs suppression of aGVHD in a murine major MHC mismatch BMT model. Using bioluminescence imaging proliferation of donor derived luciferase-labeled CD4+ and CD8+ T cells was quantified at serial time points after transplantation. Treg suppressed the early expansion of alloreactive T-cells. Immunofluorescence microscopy revealed a predominant infiltration of donor derived Treg in CD153 positive regions of secondary lymphoid organs, namely parafollicular T cell zones of lymph nodes and the subepithelial dome regions of Peyers Patches. In vivo blockade of the CD30/CD153 pathway with anti CD153 Ab did not alter Treg migration to secondary lymphoid organs but reduced their suppressive effect. Proliferation of donor T cells as measured in photons/second/mouse was significantly higher in animals receiving Treg and CD153 blocking antibodies as compared to recipients of Treg only (p=0.0038). Gene expression profiling of Treg with DNA microarrays indicated a Treg signature that was consistently found in different mouse strains. This Treg signature was altered after CD153 blockade in vitro. Importantly, aGVHD lethality was significantly increased (p=0.021) when CD30-CD153 interaction was blocked during Treg transfer. This study provides direct evidence that the TNF-R family member CD30 is critical for Treg cell function in the regulation of pathological T cell responses that lead to aGVHD.


Sign in / Sign up

Export Citation Format

Share Document