scholarly journals RARα1/RARα2-PML mRNA Expression in Acute Promyelocytic Leukemia Cells: A Molecular and Laboratory-Clinical Correlative Study

Blood ◽  
1997 ◽  
Vol 90 (1) ◽  
pp. 306-312 ◽  
Author(s):  
Yun-Ping Li ◽  
Janet Andersen ◽  
Arthur Zelent ◽  
Sreenivas Rao ◽  
Elisabeth Paietta ◽  
...  

Abstract In addition to the major fusion gene PML-RARα, the t(15; 17) in acute promyelocytic leukemia (APL) produces the reciprocal fusion gene RARα-PML. To determine the scope of RARα-containing mRNA expression in APL cells, we tested PML-RARα–positive APL cells for the presence of mRNAs initiated from two distinct RARα gene promoters, α1 and α2. From the normal allele, both RARα1 and RARα2 mRNAs were expressed in all APL cases (N = 24). From the translocated allele, RARα1-PML mRNA was expressed in 77% and RARα2-PML mRNA in 28% of cases (N = 98). RARα2-PML mRNA was not observed in the absence of RARα1-PML mRNA. There was no association between RARα1-PML or RARα2-PML mRNA expression and the type of PML-RARα mRNA formed by either 5′ or 3′ breaksites in the PML gene. RARα1-PML mRNAs and RARα2-PML mRNAs from 5′ PML breaksite cases coded for full-length RARα-PML proteins but RARα2-PML mRNAs from 3′ PML breaksite cases encoded a truncated RARα2 peptide. RARα1/α2-PML mRNA expression was not associated with differences in APL cell sensitivity to all-trans retinoic acid(tRA)-induced differentiation in vitro or in clinical outcome after tRA or chemotherapy induction therapy (protocol E2491). Our analysis indicated that RARα1/α2-PML mRNA expression markedly differs from normal RARα1/α2 mRNA expression, that the difference in RARα1-PML and RARα2-PML mRNA expression frequency is primarily related to the genomic separation of the RARα1 and RARα2 coding exons, and that variations in RARα1/α2-PML mRNA expression likely have no clinically relevant function in APL cells.

Blood ◽  
1997 ◽  
Vol 90 (1) ◽  
pp. 306-312 ◽  
Author(s):  
Yun-Ping Li ◽  
Janet Andersen ◽  
Arthur Zelent ◽  
Sreenivas Rao ◽  
Elisabeth Paietta ◽  
...  

In addition to the major fusion gene PML-RARα, the t(15; 17) in acute promyelocytic leukemia (APL) produces the reciprocal fusion gene RARα-PML. To determine the scope of RARα-containing mRNA expression in APL cells, we tested PML-RARα–positive APL cells for the presence of mRNAs initiated from two distinct RARα gene promoters, α1 and α2. From the normal allele, both RARα1 and RARα2 mRNAs were expressed in all APL cases (N = 24). From the translocated allele, RARα1-PML mRNA was expressed in 77% and RARα2-PML mRNA in 28% of cases (N = 98). RARα2-PML mRNA was not observed in the absence of RARα1-PML mRNA. There was no association between RARα1-PML or RARα2-PML mRNA expression and the type of PML-RARα mRNA formed by either 5′ or 3′ breaksites in the PML gene. RARα1-PML mRNAs and RARα2-PML mRNAs from 5′ PML breaksite cases coded for full-length RARα-PML proteins but RARα2-PML mRNAs from 3′ PML breaksite cases encoded a truncated RARα2 peptide. RARα1/α2-PML mRNA expression was not associated with differences in APL cell sensitivity to all-trans retinoic acid(tRA)-induced differentiation in vitro or in clinical outcome after tRA or chemotherapy induction therapy (protocol E2491). Our analysis indicated that RARα1/α2-PML mRNA expression markedly differs from normal RARα1/α2 mRNA expression, that the difference in RARα1-PML and RARα2-PML mRNA expression frequency is primarily related to the genomic separation of the RARα1 and RARα2 coding exons, and that variations in RARα1/α2-PML mRNA expression likely have no clinically relevant function in APL cells.


Blood ◽  
2013 ◽  
Vol 121 (8) ◽  
pp. 1432-1435 ◽  
Author(s):  
Dahae Won ◽  
So Youn Shin ◽  
Chan-Jeoung Park ◽  
Seongsoo Jang ◽  
Hyun-Sook Chi ◽  
...  

Key Points A novel fusion gene, OBFC2A/RARA, in variant acute promyelocytic leukemia. In vitro all-trans retinoic acid sensitivity.


Blood ◽  
2001 ◽  
Vol 98 (9) ◽  
pp. 2862-2864 ◽  
Author(s):  
Bruno Cassinat ◽  
Sylvie Chevret ◽  
Fabien Zassadowski ◽  
Nicole Balitrand ◽  
Isabelle Guillemot ◽  
...  

Abstract Acute promyelocytic leukemia (APL) blasts possess a unique sensitivity to the differentiating effects of all-transretinoic acid (ATRA). Multicenter trials confirm that the combination of differentiation and cytotoxic therapy prolongs survival in APL patients. However relapses still occur, and exquisite adaptation of therapy to prognostic factors is essential to aim at a possible cure of the disease. A heterogeneity was previously reported in the differentiation rate of patients' APL blasts, and it was postulated that this may reflect the in vivo heterogeneous outcome. In this study, it is demonstrated that patients of the APL93 trial whose leukemic cells achieved optimal differentiation with ATRA in vitro at diagnosis had a significantly improved event-free survival (P = .01) and lower relapse rate (P = .04). This analysis highlights the importance of the differentiation step in APL therapy and justifies ongoing studies aimed at identifying novel RA-differentiation enhancers.


Oncotarget ◽  
2016 ◽  
Vol 7 (29) ◽  
pp. 46028-46041 ◽  
Author(s):  
Farzaneh Atashrazm ◽  
Ray M. Lowenthal ◽  
Joanne L. Dickinson ◽  
Adele F. Holloway ◽  
Gregory M. Woods

Cancers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1313 ◽  
Author(s):  
Marta Sobas ◽  
Maria Carme Talarn-Forcadell ◽  
David Martínez-Cuadrón ◽  
Lourdes Escoda ◽  
María J. García-Pérez ◽  
...  

It has been suggested that 1–2% of acute promyelocytic leukemia (APL) patients present variant rearrangements of retinoic acid receptor alpha (RARα) fusion gene, with the promyelocytic leukaemia zinc finger (PLZF)/RARα being the most frequent. Resistance to all-trans-retinoic acid (ATRA) and arsenic trioxide (ATO) has been suggested in PLZF/RARα and other variant APLs. Herein, we analyze the incidence, characteristics, and outcomes of variant APLs reported to the multinational PETHEMA (Programa para el Tratamiento de Hemopatias Malignas) registry, and we perform a systematic review in order to shed light on strategies to improve management of these extremely rare diseases. Of 2895 patients with genetically confirmed APL in the PETHEMA registry, 11 had variant APL (0.4%) (9 PLZF-RARα and 2 NPM1-RARα), 9 were men, with median age of 44.6 years (3 months to 76 years), median leucocytes (WBC) 16.8 × 109/L, and frequent coagulopathy. Eight patients were treated with ATRA plus chemotherapy-based regimens, and 3 with chemotherapy-based. As compared to previous reports, complete remission and survival was slightly better in our cohort, with 73% complete remission (CR) and 73% survival despite a high relapse rate (43%). After analyzing our series and performing a comprehensive and critical review of the literature, strong recommendations on appropriate management of variant APL are not possible due to the low number and heterogeneity of patients reported so far.


Blood ◽  
1995 ◽  
Vol 86 (4) ◽  
pp. 1540-1547 ◽  
Author(s):  
RE Gallagher ◽  
YP Li ◽  
S Rao ◽  
E Paietta ◽  
J Andersen ◽  
...  

Of 113 acute promyelocytic leukemia cases documented to have diagnostic PML-RAR alpha hybrid mRNA, 10 cases (8.8%) had fusion sites in PML gene exon 6 (V-forms) rather than in the two common hybrid mRNA configurations resulting from breaksites in either PML gene intron 6 (L- forms) or intron 3 (S-forms). In 4 V-form cases, a common break/fusion site was discovered at PML gene nucleotide (nt) 1685, abutting a 3′ cryptic splice donor sequence. The fusion site was proximal to the common site in 1 case and more distal in 5 cases. The open reading frame encoding a PML-RAR alpha gene was consistently preserved, either by an in-frame fusion site or by the insertion of 3 to 127 unidentified nts. In 2 V-form cases, hybridization analysis of the reverse transcriptase-polymerase chain reaction products with a PML-RAR alpha juction probe was required for discrimination from L-form cases. Two V- form subgroups were defined by in vitro sensitivity to all-trans retinoic acid (tRA)-induced differentiation: 4 of 4 cases tested with fusion sites at or 5′ to nt 1685 (subgroup E6S) had reduced sensitivity (EC50 > or = 10(-7) mol/L), whereas 4 of 4 cases with fusion sites at or 3′ to nt 1709 (subgroup E6L) had high sensitivity (EC50 < 10(-8) mol/L) indistinguishable from that of L-form and S-form cases. These results provide the first link between PML-RAR alpha configuration and tRA sensitivity in vitro and support the importance of subclassifying APL cases according to PML-RAR alpha transcript type.


Blood ◽  
1993 ◽  
Vol 82 (7) ◽  
pp. 2175-2181 ◽  
Author(s):  
L Delva ◽  
M Cornic ◽  
N Balitrand ◽  
F Guidez ◽  
JM Miclea ◽  
...  

Abstract All-trans retinoic acid (ATRA) induces leukemic cell differentiation and complete remission (CR) in a high proportion of patients with acute promyelocytic leukemia (AML3 subtype). However, relapses occur when ATRA is prescribed as maintenance therapy, and resistance to a second ATRA-induction therapy is frequently observed. An induced hypercatabolism of ATRA has been suggested as a possible mechanism leading to reduced ATRA sensitivity and resistance. CRABPII, an RA cytoplasmic binding protein linked to RA's metabolization pathway, is induced by ATRA in different cell systems. To investigate whether specific features of the AML3 cells at relapse could explain the in vivo resistance observed, we studied the CRABP levels and in vitro sensitivity to ATRA of AML3 cells before and at relapse from ATRA. Relapse-AML3 cells (n = 12) showed reduced differentiation induction when compared with “virgin”-AML3 cells (n = 31; P < .05). Dose-response studies were performed in 2 cases at relapse and showed decreased sensitivity to low ATRA concentrations. CRABPII levels and in vitro differentiation characteristics of AML3 cells before and at relapse from ATRA therapy were studied concomittantly in 4 patients. High levels of CRABPII (median, 20 fmol/mg of protein) were detected in the cells of the 4 patients at relapse but were not detected before ATRA therapy. Three of these patients showed a decrease in differentiation induction of their leukemic cells, and a failure to achieve CR with a second induction therapy of ATRA 45 mg/m2/day was noted in all patients treated (n = 3). Results from this study provide evidence to support the hypothesis of induced-ATRA metabolism as one of the major mechanisms responsible for ATRA resistance. Monitoring CRABPII levels after ATRA withdrawal may help to determine when to administer ATRA in the maintenance or relapse therapy of AML3 patients.


Blood ◽  
1997 ◽  
Vol 90 (3) ◽  
pp. 967-973 ◽  
Author(s):  
Tadasu Tobita ◽  
Akihiro Takeshita ◽  
Kunio Kitamura ◽  
Kazunori Ohnishi ◽  
Mitsuaki Yanagi ◽  
...  

Differentiation therapy with all-trans retinoic acid (ATRA) has marked a major advance and become the first choice drug in the treatment of acute promyelocytic leukemia (APL). However, patients who relapse from ATRA-induced complete remission (CR) have difficulty in obtaining a second CR with a second course of ATRA therapy alone. We tested the efficacy of a new synthetic retinoid, Am80, in APL that had relapsed from CR induced by ATRA in a prospective multicenter study. Am80 is approximately 10 times more potent than ATRA as an in vitro differentiation inducer, is more stable to light, heat, and oxidation than ATRA, has a low affinity for cellular retinoic acid binding protein, and does not bind to retinoic acid receptor-γ. Patients received Am80, 6 mg/m2, orally alone daily until CR. Of 24 evaluable patients, 14 (58%) achieved CR. The interval from the last ATRA therapy was not different between CR and failure cases. The clinical response was well correlated with the in vitro response to Am80 in patients examined. Adverse events included 1 retinoic acid syndrome, 1 hyperleukocytosis, 9 xerosis, 8 cheilitis, 16 hypertriglyceridemia, and 15 hypercholesterolemia, but generally milder than those of ATRA, which all patients had received previously. Am80 is effective in APL relapsed from ATRA-induced CR and deserves further trials, especially in combination with chemotherapy.


Sign in / Sign up

Export Citation Format

Share Document