scholarly journals Downregulation of TAP1 in B Lymphocytes by Cellular and Epstein-Barr Virus–Encoded Interleukin-10

Blood ◽  
1997 ◽  
Vol 90 (6) ◽  
pp. 2390-2397 ◽  
Author(s):  
Reinhard Zeidler ◽  
Günther Eissner ◽  
Petra Meissner ◽  
Stephan Uebel ◽  
Robert Tampé ◽  
...  

Virally infected cells degrade intracellular viral proteins proteolytically and present the resulting peptides in association with major histocompatibility complex (MHC) class I molecules to CD8+ cytotoxic T lymphocytes (CTLs). These cells are normally prone to CTL-mediated elimination. However, several viruses have evolved strategies to avoid detection by the immune system that interfere with the pathway of antigen presentation. Epstein-Barr virus (EBV) expresses a predominantly late protein, the BCRF1 gene product vIL-10, that is similar in sequence to the human interleukin-10 (hIL-10). We show here that vIL-10 affects the expression of one of the two transporter proteins (TAPs) associated with antigen presentation. Similarly, hIL-10 showed the same activity. Expression of the LMP2 and TAP1 genes but not expression of TAP2 or LMP7 is efficiently downregulated, indicating a specific IL-10 effect on the two divergently transcribed TAP1 and LMP2 genes. Downregulation of TAP1 by IL-10 hampers the transport of peptide antigens into the endoplasmatic reticulum, as shown in the TAP-specific peptide transporter assay, their loading onto empty MHC I molecules, and the subsequent translocation to the cell surface. As a consequence, IL-10 causes a general reduction of surface MHC I molecules on B lymphocytes that might also affect the recognition of EBV-infected cells by cytotoxic T cells.

Blood ◽  
1997 ◽  
Vol 90 (6) ◽  
pp. 2390-2397 ◽  
Author(s):  
Reinhard Zeidler ◽  
Günther Eissner ◽  
Petra Meissner ◽  
Stephan Uebel ◽  
Robert Tampé ◽  
...  

Abstract Virally infected cells degrade intracellular viral proteins proteolytically and present the resulting peptides in association with major histocompatibility complex (MHC) class I molecules to CD8+ cytotoxic T lymphocytes (CTLs). These cells are normally prone to CTL-mediated elimination. However, several viruses have evolved strategies to avoid detection by the immune system that interfere with the pathway of antigen presentation. Epstein-Barr virus (EBV) expresses a predominantly late protein, the BCRF1 gene product vIL-10, that is similar in sequence to the human interleukin-10 (hIL-10). We show here that vIL-10 affects the expression of one of the two transporter proteins (TAPs) associated with antigen presentation. Similarly, hIL-10 showed the same activity. Expression of the LMP2 and TAP1 genes but not expression of TAP2 or LMP7 is efficiently downregulated, indicating a specific IL-10 effect on the two divergently transcribed TAP1 and LMP2 genes. Downregulation of TAP1 by IL-10 hampers the transport of peptide antigens into the endoplasmatic reticulum, as shown in the TAP-specific peptide transporter assay, their loading onto empty MHC I molecules, and the subsequent translocation to the cell surface. As a consequence, IL-10 causes a general reduction of surface MHC I molecules on B lymphocytes that might also affect the recognition of EBV-infected cells by cytotoxic T cells.


2009 ◽  
Vol 83 (13) ◽  
pp. 6664-6672 ◽  
Author(s):  
Jessica Sorem ◽  
Theodore S. Jardetzky ◽  
Richard Longnecker

ABSTRACT Epstein-Barr virus (EBV) membrane glycoprotein 42 (gp42) is required for viral entry into B lymphocytes through binding to human leukocyte antigen (HLA) class II on the B-cell surface. EBV gp42 plays multiple roles during infection, including acting as a coreceptor for viral entry into B cells, binding to EBV glycoprotein H (gH) and gL during the process of membrane fusion, and blocking T-cell recognition of HLA class II-peptide complexes through steric hindrance. EBV gp42 occurs in two forms in infected cells, a full-length membrane-bound form and a soluble form generated by proteolytic cleavage that is secreted from infected cells due to loss of the N-terminal transmembrane domain. Both the full-length and the secreted gp42 forms bind to gH/gL and HLA class II, and the functional significance of gp42 cleavage is currently unclear. We found that in a virus-free cell-cell fusion assay, enhanced secretion of gp42 promoted fusion with B lymphocytes, and mutation of the site of gp42 cleavage inhibited membrane fusion activity. The site of gp42 cleavage was found to be physically distinct from the residues of gp42 necessary for binding to gH/gL. These results suggest that cleavage and secretion of gp42 are necessary for the process of membrane fusion with B lymphocytes, providing the first indicated functional difference between full-length and cleaved, secreted gp42.


Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 499 ◽  
Author(s):  
Farhad Ghasemi ◽  
Steven F. Gameiro ◽  
Tanner M. Tessier ◽  
Allison H. Maciver ◽  
Joe S. Mymryk

Epstein–Barr virus (EBV) is responsible for approximately 9% of stomach adenocarcinomas. EBV-encoded microRNAs have been reported as reducing the function of the class I major histocompatibility complex (MHC-I) antigen presentation apparatus, which could allow infected cells to evade adaptive immune responses. Using data from nearly 400 human gastric carcinomas (GCs), we assessed the impact of EBV on MHC-I heavy and light chain mRNA levels, as well as multiple other components essential for antigen processing and presentation. Unexpectedly, mRNA levels of these genes were as high, or higher, in EBV-associated gastric carcinomas (EBVaGCs) compared to normal control tissues or other GC subtypes. This coordinated upregulation could have been a consequence of the higher intratumoral levels of interferon γ in EBVaGCs, which correlated with signatures of increased infiltration by T and natural killer (NK) cells. These results indicate that EBV-encoded products do not effectively reduce mRNA levels of the MHC-I antigen presentation apparatus in human GCs.


2015 ◽  
Vol 89 (9) ◽  
pp. 5002-5011 ◽  
Author(s):  
Siva Koganti ◽  
Carissa Clark ◽  
Jizu Zhi ◽  
Xiaofan Li ◽  
Emily I. Chen ◽  
...  

ABSTRACTA major hurdle to killing Epstein-Barr virus (EBV)-infected tumor cells using oncolytic therapy is the presence of a substantial fraction of EBV-infected cells that does not support the lytic phase of EBV despite exposure to lytic cycle-promoting agents. To determine the mechanism(s) underlying this refractory state, we developed a strategy to separate lytic from refractory EBV-positive (EBV+) cells. By examining the cellular transcriptome in separated cells, we previously discovered that high levels of host STAT3 (signal transducer and activator of transcription 3) curtail the susceptibility of latently infected cells to lytic cycle activation signals. The goals of the present study were 2-fold: (i) to determine the mechanism of STAT3-mediated resistance to lytic activation and (ii) to exploit our findings to enhance susceptibility to lytic activation. We therefore analyzed our microarray data set, cellular proteomes of separated lytic and refractory cells, and a publically available STAT3 chromatin immunoprecipitation sequencing (ChIP-Seq) data set to identify cellular PCBP2 [poly(C)-binding protein 2], an RNA-binding protein, as a transcriptional target of STAT3 in refractory cells. Using Burkitt lymphoma cells and EBV+cell lines from patients with hypomorphicSTAT3mutations, we demonstrate that single cells expressing high levels of PCBP2 are refractory to spontaneous and induced EBV lytic activation, STAT3 functions via cellular PCBP2 to regulate lytic susceptibility, and suppression of PCBP2 levels is sufficient to increase the number of EBV lytic cells. We expect that these findings and the genome-wide resources that they provide will accelerate our understanding of a longstanding mystery in EBV biology and guide efforts to improve oncolytic therapy for EBV-associated cancers.IMPORTANCEMost humans are infected with Epstein-Barr virus (EBV), a cancer-causing virus. While EBV generally persists silently in B lymphocytes, periodic lytic (re)activation of latent virus is central to its life cycle and to most EBV-related diseases. However, a substantial fraction of EBV-infected B cells and tumor cells in a population is refractory to lytic activation. This resistance to lytic activation directly and profoundly impacts viral persistence and the effectiveness of oncolytic therapy for EBV+cancers. To identify the mechanisms that underlie susceptibility to EBV lytic activation, we used host gene and protein expression profiling of separated lytic and refractory cells. We find that STAT3, a transcription factor overactive in many cancers, regulates PCBP2, a protein important in RNA biogenesis, to regulate susceptibility to lytic cycle activation signals. These findings advance our understanding of EBV persistence and provide important leads on devising methods to improve viral oncolytic therapies.


2007 ◽  
Vol 82 (4) ◽  
pp. 1679-1687 ◽  
Author(s):  
Mikio Yoshioka ◽  
Michelle M. Crum ◽  
Jeffery T. Sample

ABSTRACT Epstein-Barr virus (EBV) latent infection, and its associated oncogenic potential, is dependent on genome maintenance functions of EBV nuclear antigen 1 (EBNA-1), one of six EBNAs expressed from a common promoter (Wp and then Cp) upon infection of naive B cells. Subsequent host-mediated silencing, however, necessitates the expression of EBNA-1 from the EBNA-1-specific promoter Qp to ensure against genome loss during cell division, including EBV-associated malignancy. Here we addressed the mechanism by which EBNA-1 represses Qp through binding downstream of the transcription start site and the role of this autoregulatory function in EBV latency. Our results revealed that EBNA-1 does not inhibit transcription from Qp, as previously predicted, but acts post- or cotranscriptionally to block the processing of primary transcripts. This does not, however, require the RGG motifs responsible for strong but nonspecific RNA binding by EBNA-1. Within isogenic B-cell lines using either Cp/Wp or Qp, EBNA-1 occupancy of Qp is equivalent, suggesting that autoregulation occurs, albeit to different degrees, during full and restricted EBV latency programs. Finally, in cell lines using Cp or Wp for EBNA expression, unprocessed transcripts from Qp are detectable in the absence of corresponding mRNAs, providing further evidence that this novel mechanism of EBNA-1 action functions during latency. This posttranscriptional mechanism of regulation would provide an efficient means to monitor and regulate EBNA-1 expression from Qp, ensuring levels adequate for genome maintenance but, perhaps more importantly, below an immunogenic threshold above which latently infected cells may be at risk for elimination by EBNA-1-specific cytotoxic T cells.


1999 ◽  
Vol 73 (12) ◽  
pp. 10525-10530 ◽  
Author(s):  
Kenneth M. Kaye ◽  
Kenneth M. Izumi ◽  
Hong Li ◽  
Eric Johannsen ◽  
David Davidson ◽  
...  

ABSTRACT An Epstein-Barr virus (EBV) recombinant (MS231) that expresses the first 231 amino acids (aa) of LMP1 and is truncated 155 aa before the carboxyl terminus transformed resting B lymphocytes into lymphoblastoid cell lines (LCLs) only when the infected cells were grown on fibroblast feeder cells (K. M. Kaye et al., J. Virol. 69:675–683, 1995). Higher-titer MS231 virus has now been compared to wild-type (WT) EBV recombinants for the ability to cause resting primary B-lymphocyte transformation. Unexpectedly, MS231 is as potent as WT EBV recombinants in causing infected B lymphocytes to proliferate in culture for up to 5 weeks. When more than one transforming event is initiated in a microwell, the MS231 recombinant supports efficient long-term LCL outgrowth and fibroblast feeder cells are not required. However, with limited virus input, MS231-infected cells differed in their growth from WT virus-infected cells as early as 6 weeks after infection. In contrast to WT virus-infected cells, most MS231-infected cells could not be grown into long-term LCLs. Thus, the LMP1 amino-terminal 231 aa are sufficient for initial growth transformation but the carboxyl-terminal 155 aa are necessary for efficient long-term outgrowth. Despite the absence of the carboxyl-terminal 155 aa, MS231- and WT-transformed LCLs are similar in latent EBV gene expression, in ICAM-1 and CD23 expression, and in NF-κB and c-jun N-terminal kinase activation. MS231 recombinant-infected LCLs, however, require 16- to 64-fold higher cell density than WT-infected LCLs for regrowth after limiting dilution. These data indicate that the LMP1 carboxyl-terminal 155 aa are important for growth at lower cell density and appear to reduce dependence on paracrine growth factors.


Blood ◽  
1996 ◽  
Vol 87 (7) ◽  
pp. 2918-2929 ◽  
Author(s):  
H Herbst ◽  
HD Foss ◽  
J Samol ◽  
I Araujo ◽  
H Klotzbach ◽  
...  

Tumor cells of Epstein-Barr virus (EBV)-associated Hodgkin's disease (HD) express the viral protein, latent infection membrane protein-1 (LMP1), but evade cytotoxic responses normally directed at this antigen. We tested whether local production of the immunoregulatory interleukins (IL)-4 and -10 may have a role in this process. IL-4 RNA was not detectable in any of the HD cases. By contrast, isotopic in situ hybridization and correlation with the presence of EBV gene products showed significantly higher proportions of cases with IL-10 expressing tumor cells in LMP1-positive (17 of 26, 66%) as compared with LMP1-negative HD cases (six of 37, 16%). Absence of EBV BCRF1 RNA indicated that the transcripts originated from the cellular IL-10 gene. Similarly, an association between IL-10 expression and EBV-infection of tumor cells was found in AIDS-related malignant non-Hodgkin lymphomas (ARL). Very small proportions of EBV-infected cells, mainly blasts, expressed IL-10 in infectious mononucleosis tonsils. Thus, although not entirely exclusive to EBV-positive cases, IL-10 expression is frequently associated with EBV-infection in HD and ARL and appears to be upregulated by EBV, most likely through LMP1. In view of the established inhibitory effects of IL-10 on cell mediated immunity, it is suggested that IL-10 expression may contribute to evasion of LMP1- positive cells from cytotoxicity directed at viral antigens.


mBio ◽  
2019 ◽  
Vol 10 (5) ◽  
Author(s):  
Dagmar Pich ◽  
Paulina Mrozek-Gorska ◽  
Mickaël Bouvet ◽  
Atsuko Sugimoto ◽  
Ezgi Akidil ◽  
...  

ABSTRACT Epstein-Barr virus (EBV) infects and activates resting human B lymphocytes, reprograms them, induces their proliferation, and establishes a latent infection in them. In established EBV-infected cell lines, many viral latent genes are expressed. Their roles in supporting the continuous proliferation of EBV-infected B cells in vitro are known, but their functions in the early, prelatent phase of infection have not been investigated systematically. In studies during the first 8 days of infection using derivatives of EBV with mutations in single genes of EBVs, we found only Epstein-Barr nuclear antigen 2 (EBNA2) to be essential for activating naive human B lymphocytes, inducing their growth in cell volume, driving them into rapid cell divisions, and preventing cell death in a subset of infected cells. EBNA-LP, latent membrane protein 2A (LMP2A), and the viral microRNAs have supportive, auxiliary functions, but mutants of LMP1, EBNA3A, EBNA3C, and the noncoding Epstein-Barr virus with small RNA (EBERs) had no discernible phenotype compared with wild-type EBV. B cells infected with a double mutant of EBNA3A and 3C had an unexpected proliferative advantage and did not regulate the DNA damage response (DDR) of the infected host cell in the prelatent phase. Even EBNA1, which has very critical long-term functions in maintaining and replicating the viral genomic DNA in established cell lines, was dispensable for the early activation of infected cells. Our findings document that the virus dose is a decisive parameter and indicate that EBNA2 governs the infected cells initially and implements a strictly controlled temporal program independent of other viral latent genes. It thus appears that EBNA2 is sufficient to control all requirements for clonal cellular expansion and to reprogram human B lymphocytes from energetically quiescent to activated cells. IMPORTANCE The preferred target of Epstein-Barr virus (EBV) is human resting B lymphocytes. We found that their infection induces a well-coordinated, time-driven program that starts with a substantial increase in cell volume, followed by cellular DNA synthesis after 3 days and subsequent rapid rounds of cell divisions on the next day accompanied by some DNA replication stress (DRS). Two to 3 days later, the cells decelerate and turn into stably proliferating lymphoblast cell lines. With the aid of 16 different recombinant EBV strains, we investigated the individual contributions of EBV’s multiple latent genes during early B-cell infection and found that many do not exert a detectable phenotype or contribute little to EBV’s prelatent phase. The exception is EBNA2 that is essential in governing all aspects of B-cell reprogramming. EBV relies on EBNA2 to turn the infected B lymphocytes into proliferating lymphoblasts preparing the infected host cell for the ensuing stable, latent phase of viral infection. In the early steps of B-cell reprogramming, viral latent genes other than EBNA2 are dispensable, but some, EBNA-LP, for example, support the viral program and presumably stabilize the infected cells once viral latency is established.


2008 ◽  
Vol 82 (21) ◽  
pp. 10436-10443 ◽  
Author(s):  
Fang Lu ◽  
Andreas Weidmer ◽  
Chang-Gong Liu ◽  
Stefano Volinia ◽  
Carlo M. Croce ◽  
...  

ABSTRACT MicroRNAs have been implicated in the modulation of gene expression programs important for normal and cancer cell development. miR-155 is known to play a role in B-cell development and is upregulated in various B-cell lymphomas, including several that are latently infected with Epstein-Barr virus (EBV). We show here that EBV infection of primary human B lymphocytes leads to the sustained elevation of miR-155 and its precursor RNA, BIC. The EBV-encoded latency membrane protein 1 (LMP1) can partially reconstitute BIC activation in B lymphocytes but not in epithelial cell cultures. LMP1 is a potent activator of NF-κB signaling pathways and is essential for EBV immortalization of B lymphocytes. An inhibitor to miR-155 further stimulated NF-κB responsive gene transcription, and IKKε was identified as a potential target of miR-155 translational repression. Remarkably, miR-155 inhibitor reduced EBNA1 mRNA and the EBV copy number in latently infected cells. This suggests that miR-155 contributes to EBV immortalization by modulation of NF-κB signaling and the suppression of host innate immunity to latent viral infection.


Sign in / Sign up

Export Citation Format

Share Document