scholarly journals Development of Autologous, Oligoclonal, Poorly Functioning T Lymphocytes in a Patient With Autosomal Recessive Severe Combined Immunodeficiency Caused by Defects of the Jak3 Tyrosine Kinase

Blood ◽  
1998 ◽  
Vol 91 (3) ◽  
pp. 949-955 ◽  
Author(s):  
Duilio Brugnoni ◽  
Luigi D. Notarangelo ◽  
Alessandra Sottini ◽  
Paolo Airò ◽  
Marta Pennacchio ◽  
...  

Defects of the common gamma chain subunit of the cytokine receptors (γc) or of Jak3, a tyrosine kinase required for γc signal transduction, result in T−B+ severe combined immunodeficiency (SCID). However, atypical cases, characterized by progressive development of T lymphocytes, have been also reported. We describe a child with SCID caused by Jak3 gene defects, which strongly but not completely affect Jak3 protein expression and function, who developed a substantial number (>3,000/μL) of autologous CD3+CD4+ T cells. These cells showed a primed/activated phenotype (CD45R0+ Fas+HLA-DR+ CD62Llo), defective secretion of T-helper 1 and T-helper 2 cytokines, reduced proliferation to mitogens, and a high in vitro susceptibility to spontaneous (caused by downregulation of bcl-2 expression) as well as activation-induced cell death. A restricted T-cell receptor repertoire was observed, with oligoclonal expansion within each of the dominant segments. These features resemble those observed in γc-/y and in Jak3−/−mice, in which a population of activated, anergic T cells (predominantly CD4+) also develops with age. These results suggest that residual Jak3 expression and function or other Jak3-independent signals may also permit the generation of CD4+ T cells that undergo in vivo clonal expansion in humans; however, these mechanisms do not allow development of CD8+ T cells, nor do they fully restore the functional properties of CD4+ T lymphocytes.

Blood ◽  
1998 ◽  
Vol 91 (3) ◽  
pp. 949-955 ◽  
Author(s):  
Duilio Brugnoni ◽  
Luigi D. Notarangelo ◽  
Alessandra Sottini ◽  
Paolo Airò ◽  
Marta Pennacchio ◽  
...  

Abstract Defects of the common gamma chain subunit of the cytokine receptors (γc) or of Jak3, a tyrosine kinase required for γc signal transduction, result in T−B+ severe combined immunodeficiency (SCID). However, atypical cases, characterized by progressive development of T lymphocytes, have been also reported. We describe a child with SCID caused by Jak3 gene defects, which strongly but not completely affect Jak3 protein expression and function, who developed a substantial number (>3,000/μL) of autologous CD3+CD4+ T cells. These cells showed a primed/activated phenotype (CD45R0+ Fas+HLA-DR+ CD62Llo), defective secretion of T-helper 1 and T-helper 2 cytokines, reduced proliferation to mitogens, and a high in vitro susceptibility to spontaneous (caused by downregulation of bcl-2 expression) as well as activation-induced cell death. A restricted T-cell receptor repertoire was observed, with oligoclonal expansion within each of the dominant segments. These features resemble those observed in γc-/y and in Jak3−/−mice, in which a population of activated, anergic T cells (predominantly CD4+) also develops with age. These results suggest that residual Jak3 expression and function or other Jak3-independent signals may also permit the generation of CD4+ T cells that undergo in vivo clonal expansion in humans; however, these mechanisms do not allow development of CD8+ T cells, nor do they fully restore the functional properties of CD4+ T lymphocytes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Masaru Shimizu ◽  
Yuya Kondo ◽  
Reona Tanimura ◽  
Kotona Furuyama ◽  
Masahiro Yokosawa ◽  
...  

AbstractT-bet is a key transcription factor for the T helper 1 lineage and its expression level is negatively correlated to inflammation in patients with rheumatoid arthritis (RA). Our previous study using T-bet transgenic mice revealed over-expression of T-bet completely suppressed collagen-induced arthritis (CIA), a murine model of RA, indicating a potential suppressive role of T-bet in the pathogenesis of autoimmune arthritis. Here, we show T-bet-deficiency exacerbated CIA. T-bet in CD4 + T cells, but not in CD11c + dendritic cells, was critical for regulating the production of IL-17A, IL-17F, IL-22, and TNFα from CD4 + T cells. T-bet-deficient CD4 + T cells showed higher RORγt expression and increased IL-17A production in RORγt-positive cells after CII immunization. In addition, T-bet-deficient naïve CD4 + T cells showed accelerated Th17 differentiation in vitro. CIA induced in CD4-Cre T-betfl/fl (cKO) mice was more severe and T-bet-deficient CD4 + T cells in the arthritic joints of cKO mice showed higher RORγt expression and increased IL-17A production. Transcriptome analysis of T-bet-deficient CD4 + T cells revealed that expression levels of Th17-related genes were selectively increased. Our results indicate that T-bet in CD4 + T cells repressed RORγt expression and function resulting in suppression of arthritogenic Th17 cells and CIA.


1994 ◽  
Vol 180 (4) ◽  
pp. 1273-1282 ◽  
Author(s):  
M B Graham ◽  
V L Braciale ◽  
T J Braciale

T lymphocytes play a primary role in recovery from viral infections and in antiviral immunity. Although viral-specific CD8+ and CD4+ T cells have been shown to be able to lyse virally infected targets in vitro and promote recovery from lethal infection in vivo, the role of CD4+ T lymphocytes and their mechanism(s) of action in viral immunity are not well understood. The ability to further dissect the role that CD4+ T cells play in the immune response to a number of pathogens has been greatly enhanced by evidence for more extensive heterogeneity among the CD4+ T lymphocytes. To further examine the role of CD4+ T cells in the immune response to influenza infection, we have generated influenza virus-specific CD4+ T cell clones from influenza-primed BALB/c mice with differential cytokine secretion profiles that are defined as T helper type 1 (Th1) clones by the production of interleukin 2 (IL-2) and interferon gamma (IFN-gamma), or as Th2 clones by the production of IL-4, IL-5, and IL-10. Our studies have revealed that Th1 clones are cytolytic in vitro and protective against lethal challenge with virus in vivo, whereas Th2 clones are noncytolytic and not protective. Upon further evaluation of these clonal populations we have shown that not only are the Th2 clones nonprotective, but that pulmonary pathology is exacerbated as compared with control mice as evidenced by delayed viral clearance and massive pulmonary eosinophilia. These data suggest that virus-specific CD4+ T cells of the Th2 subset may not play a primary role in virus clearance and recovery and may lead to immune mediated potentiation of injury.


2003 ◽  
Vol 108 (2) ◽  
pp. 159-166 ◽  
Author(s):  
Norimoto Kobayashi ◽  
Kazunaga Agematsu ◽  
Haruo Nagumo ◽  
Kozo Yasui ◽  
Yoshihiko Katsuyama ◽  
...  

2016 ◽  
Vol 91 (5) ◽  
Author(s):  
Junghwa Lee ◽  
Masao Hashimoto ◽  
Se Jin Im ◽  
Koichi Araki ◽  
Hyun-Tak Jin ◽  
...  

ABSTRACT Adenovirus serotype 5 (Ad5) is one of the most widely used viral vectors and is known to generate potent T cell responses. While many previous studies have characterized Ad5-induced CD8 T cell responses, there is a relative lack of detailed studies that have analyzed CD4 T cells elicited by Ad5 vaccination. Here, we immunized mice with Ad5 vectors encoding lymphocytic choriomeningitis virus (LCMV) glycoprotein (GP) and examined GP-specific CD4 T cell responses elicited by Ad5 vectors and compared them to those induced by an acute LCMV infection. In contrast to LCMV infection, where balanced CD4 T helper 1 (Th1) and T follicular helper (Tfh) responses were induced, Ad5 immunization resulted in a significantly reduced frequency of Th1 cells. CD4 T cells elicited by Ad5 vectors expressed decreased levels of Th1 markers, such as Tim3, SLAM, T-bet, and Ly6C, had smaller amounts of cytotoxic molecules like granzyme B, and produced less interferon gamma than CD4 T cells induced by LCMV infection. This defective CD4 Th1 response appeared to be intrinsic for Ad5 vectors and not a reflection of comparing a nonreplicating vector to a live viral infection, since immunization with a DNA vector expressing LCMV-GP generated efficient CD4 Th1 responses. Analysis at early time points (day 3 or 4) after immunization with Ad5 vectors revealed a defect in the expression of CD25 (interleukin-2 [IL-2] receptor alpha chain) on Ad5-elicited CD4 T cells, and administration of exogenous IL-2 following Ad5 immunization partially restored CD4 Th1 responses. These results suggest that impairment of Th1 commitment after Ad5 immunization could be due to reduced IL-2-mediated signaling. IMPORTANCE During viral infection, generating balanced responses of Th1 and Tfh cells is important to induce effective cell-mediated responses and provide optimal help for antibody responses. In this study, to investigate vaccine-induced CD4 T cell responses, we characterized CD4 T cells after immunization with Ad5 vectors expressing LCMV-GP in mice. Ad5 vectors led to altered effector differentiation of LCMV GP-specific CD4 T cells compared to that during LCMV infection. CD4 T cells following Ad5 immunization exhibited impaired Th1 lineage commitment, generating significantly decreased Th1 responses than those induced by LCMV infection. Our results suggest that suboptimal IL-2 signaling possibly plays a role in reduced Th1 development following Ad5 immunization.


2021 ◽  
Author(s):  
Cory J. Knudson ◽  
Maria Férez ◽  
Pedro Alves-Peixoto ◽  
Dan A. Erkes ◽  
Carolina R. Melo-Silva ◽  
...  

Cytotoxic CD4 T lymphocytes (CD4-CTL) are important in anti-viral immunity. For example, we have previously shown that in mice, CD4-CTL are important to control ectromelia virus (ECTV) infection. How viral infections induce CD4-CTL responses remains incompletely understood. Here we demonstrate that not only ECTV but also vaccinia virus and Lymphocytic Choriomeningitis virus induce CD4-CTL, but that the response to ECTV is stronger. Using ECTV, we also demonstrate that in contrast to CD8-CTL, CD4-CTL differentiation requires constant virus replication and ceases once the virus is controlled. We also show that Major Histocompatibility Complex Class II molecules on CD11c + cells are required for CD4-CTL differentiation and for mousepox resistance. Transcriptional analysis indicated that anti-viral CD4-CTL and non-cytolytic T Helper 1 (Th1) CD4 T cells have similar transcriptional profiles, suggesting that CD4-CTL are terminally differentiated classical Th1 cells. Interestingly, CD4-CTL and classical Th1 cells expressed similar mRNA levels of the transcription factors ThPOK and GATA-3, necessary for CD4 T cell linage commitment; and Runx3, required for CD8 T cell development and effector function. However, at the protein level, CD4-CTL had higher levels of the three transcription factors suggesting that further post-transcriptional regulation is required for CD4-CTL differentiation. Finally, using CRISPR-Cas9 deletion of Runx3 in CD4 T cells, we demonstrate that the development of CD4-CTL but not of classical Th1 CD4 T cells requires Runx3 following ECTV infection. These results further our understanding of the mechanisms of CD4-CTL differentiation during viral infection and the role of post-transcriptionally regulated Runx3 in this process. IMPORTANCE While it is well established that cytotoxic CD4 T cells (CD4-CTL) directly contribute to viral clearance, it remains unclear how CD4-CTL are induced. We now show that CD4-CTL require sustained antigen presentation and are induced by CD11c-expressing antigen presenting cells. Moreover, we show that CD4-CTL are derived from the terminal differentiation of classical T helper 1 (Th1) subset of CD4 cells. Compared to Th1 cells, CD4-CTL upregulate protein levels of the transcription factors ThPOK, Runx3 and GATA-3 post-transcriptionally. Deletion of Runx3 in differentiated CD4 T cells prevents CD4-CTL but not of classical Th1 cells. These results advance our knowledge of how CD4-CTL are induced during viral infection.


Science ◽  
2016 ◽  
Vol 352 (6292) ◽  
pp. aad1210-aad1210 ◽  
Author(s):  
G. Arbore ◽  
E. E. West ◽  
R. Spolski ◽  
A. A. B. Robertson ◽  
A. Klos ◽  
...  

2020 ◽  
Author(s):  
Maimun Z Arthamin ◽  
Anis Sulalah ◽  
Resvina Resvina ◽  
Chomsin Widodo ◽  
,Agustina T Endharti ◽  
...  

Although there have been many studies on the effects of electromagnetic fields on humans, scientists still have no agreement on the effects found because several studies showed no statistically significant effects. The effects of radiofrequency electromagnetic fields exposure on the immune system are varied, ranging from no effects to genotoxic effects on lymphocytes. Our study aimed to investigate whether exposure to 1800 MHz radiofrequency electromagnetic fields (RF-EMF) in variable durations and distances could lead to the dysregulation of T helper 1, 2, and 17. The peripheral blood mononuclear cells (PBMCs) cultures from healthy human subjects were exposed to 1800 MHz RF-EMF, with durations of 15, 30, 45, and 60 minutes and distances of 5 and 25 cm. We evaluated the effects of RF-EMF exposure on the number of CD4+ T cells, IL-2, IL-10, and IL-17a after 48 hours of culture with the flow cytometer. The closer the distance, the lower the number of CD4+ T cells. The longer the exposure, the lower the number of CD4+ T cells and the number of IL-2, IL-10, and IL-17a decreases significantly. CD4+ T cells expressing IL-2 increased significantly with the increase of the duration of 1800 MHz RF-EMF exposure (15, 30, and 45 min), but decreased at 60 minutes of exposure when compared to PBMCs without exposure. Sixty minutes of PBMC exposure to RF-EMF with a distance of 5 cm causes a significant reduction in the number of CD4+ T cells, the expression of IL-2, IL-10, and IL-17a.


Sign in / Sign up

Export Citation Format

Share Document