scholarly journals Identification of a Common Developmental Pathway for Thymic Natural Killer Cells and Dendritic Cells

Blood ◽  
1998 ◽  
Vol 91 (8) ◽  
pp. 2760-2771 ◽  
Author(s):  
Carlos Márquez ◽  
César Trigueros ◽  
Jaime M. Franco ◽  
Almudena R. Ramiro ◽  
Yolanda R. Carrasco ◽  
...  

Current data support the notion that the thymus is seeded by a yet uncommitted progenitor cell able to generate T cells, B cells, natural killer (NK) cells, and dendritic cells (DCs). We assess in this report the developmental relationship of DCs and NK cells derived from a small subset of CD34+ human postnatal thymocytes that, like the earliest precursors in the fetal thymus, display low CD33 surface expression. Culture of these isolated CD34+CD33lo thymic progenitors with a mixture of cytokines, including interleukin-7 (IL-7), IL-1α, IL-6, granulocyte-macrophage colony-stimulating factor, and stem cell factor, results in predominant generation of DCs. However, the addition of IL-2 to the cytokine mixture leads to the simultaneous development of DCs and NK cells. Both developmental pathways progress through a transient population of CD34+CD44brightCD5lo/−CD33+ large-sized cells, distinct from small-sized T-lineage precursors, that contain bipotential NK/DC progenitors. These data provide evidence of linked pathways of NK cell and DC development from intrathymic precursors and suggest that NK cells and DCs branch off the T lineage through a common intermediate progenitor.

Blood ◽  
2011 ◽  
Vol 117 (13) ◽  
pp. 3548-3558 ◽  
Author(s):  
Bartosz Grzywacz ◽  
Nandini Kataria ◽  
Niketa Kataria ◽  
Bruce R. Blazar ◽  
Jeffrey S. Miller ◽  
...  

Abstract Because lymphoid progenitors can give rise to natural killer (NK) cells, NK ontogeny has been considered to be exclusively lymphoid. Here, we show that rare human CD34+ hematopoietic progenitors develop into NK cells in vitro in the presence of cytokines (interleukin-7, interleukin-15, stem cell factor, and fms-like tyrosine kinase-3 ligand). Adding hydrocortisone and stromal cells greatly increases the frequency of progenitor cells that give rise to NK cells through the recruitment of myeloid precursors, including common myeloid progenitors and granulocytic-monocytic precursors to the NK-cell lineage. WNT signaling was involved in this effect. Cells at more advanced stages of myeloid differentiation (with increasing expression of CD13 and macrophage colony-stimulating factor receptor [M-CSFR]) could also differentiate into NK cells in the presence of cytokines, stroma, and hydrocortisone. NK cells derived from myeloid precursors (CD56−CD117+M-CSFR+) showed more expression of killer immunoglobulin-like receptors, a fraction of killer immunoglobulin–like receptor-positive–expressing cells that lacked NKG2A, a higher cytotoxicity compared with CD56−CD117+M-CSFR− precursor-derived NK cells and thus resemble the CD56dim subset of NK cells. Collectively, these studies show that NK cells can be derived from the myeloid lineage.


Blood ◽  
2011 ◽  
Vol 117 (10) ◽  
pp. 2874-2882 ◽  
Author(s):  
Karine Crozat ◽  
Céline Eidenschenk ◽  
Baptiste N. Jaeger ◽  
Philippe Krebs ◽  
Sophie Guia ◽  
...  

Abstract Natural killer (NK) cells are innate immune cells that express members of the leukocyte β2 integrin family in humans and mice. These CD11/CD18 heterodimers play critical roles in leukocyte trafficking, immune synapse formation, and costimulation. The cell-surface expression of one of these integrins, CD11b/CD18, is also recognized as a major marker of mouse NK-cell maturation, but its function on NK cells has been largely ignored. Using N-ethyl-N-nitrosourea (ENU) mutagenesis, we generated a mouse carrying an A → T transverse mutation in the Itgb2 gene, resulting in a mutation that prevented the cell-surface expression of CD18 and its associated CD11a, CD11b, and CD11c proteins. We show that β2 integrin–deficient NK cells have a hyporesponsive phenotype in vitro, and present an alteration of their in vivo developmental program characterized by a selective accumulation of c-kit+ cells. NK-cell missing-self recognition was partially altered in vivo, whereas the early immune response to mouse cytomegalovirus (MCMV) infection occurred normally in CD18-deficient mice. Therefore, β2 integrins are required for optimal NK-cell maturation, but this deficiency is partial and can be bypassed during MCMV infection, highlighting the robustness of antiviral protective responses.


Blood ◽  
1999 ◽  
Vol 93 (1) ◽  
pp. 96-106 ◽  
Author(s):  
Jeffrey S. Miller ◽  
Valarie McCullar ◽  
Michael Punzel ◽  
Ihor R. Lemischka ◽  
Kateri A. Moore

Abstract Marrow stromal cultures support adult CD34+/Lin−/HLA-DR− or CD34+/Lin−/CD38− cell differentiation into natural killer (NK) or myeloid cells, but unlike committed lymphoid progenitors (CD34+/Lin−/CD45RA+/CD10+), no B cells are generated. We tested whether different microenvironments could establish a developmental link between the NK and B-cell lineages. Progenitors were cultured in limiting dilutions with interleukin-7 (IL-7), flt3 ligand (FL), c-kit ligand (KL), IL-3, IL-2, and AFT024, a murine fetal liver line, which supports culture of transplantable murine stem cells. NK cells, CD10+/CD19+ B-lineage cells and dendritic cells (DC) developed from the same starting population and IL-7, FL, and KL were required in this process. Single cell deposition of 3,872 CD34+/Lin−/CD38− cells onto AFT024 with IL-7, FL, KL, IL-2, and IL-3 showed that a one time addition of IL-3 at culture initiation was essential for multilineage differentiation from single cells. Single and double lineage progeny were frequently detected, but more importantly, 2% of single cells could give rise to at least three lineages (NK cells, B-lineage cells, and DC or myeloid cells) providing direct evidence that NK and B-lineage differentiation derive from a common lymphomyeloid hematopoietic progenitor under the same conditions. This study provides new insights into the role of the microenvironment niche, which governs the earliest events in lymphoid development.


Blood ◽  
2005 ◽  
Vol 106 (7) ◽  
pp. 2252-2258 ◽  
Author(s):  
Thierry Walzer ◽  
Marc Dalod ◽  
Scott H. Robbins ◽  
Laurence Zitvogel ◽  
Eric Vivier

AbstractSeveral recent publications have focused on the newly described interactions between natural-killer (NK) cells and dendritic cells (DCs). Activated NK cells induce DC maturation either directly or in synergy with suboptimal levels of microbial signals. Immature DCs appear susceptible to autologous NK-cell-mediated cytolysis while mature DCs are protected. NK-cell-induced DC activation is dependent on both tumor necrosis factor-α (TNF-α)/interferon-γ (IFN-γ) secretion and a cell-cell contact involving NKp30. In vitro, interleukin-12 (IL-12)/IL-18, IL-15, and IFN-α/β production by activated DCs enhance, in turn, NK-cell IFN-γ production, proliferation, and cytotoxic potential, respectively. In vivo, NK-cell/DC interactions may occur in lymphoid organs as well as in nonlymphoid tissues, and their consequences are multiple. By inducing DC activation, NK-cell activation induced by tumor cells can indirectly promote antitumoral T-cell responses. Reciprocally, DCs activated through Toll-like receptors (TLRs) induce potent NK-cell activation in antiviral responses. Thus, DCs and NK cells are equipped with complementary sets of receptors that allow the recognition of various pathogenic agents, emphasizing the role of NK-cell/DC crosstalk in the coordination of innate and adaptive immune responses.


1999 ◽  
Vol 189 (5) ◽  
pp. 787-796 ◽  
Author(s):  
Claudia Cantoni ◽  
Cristina Bottino ◽  
Massimo Vitale ◽  
Anna Pessino ◽  
Raffaella Augugliaro ◽  
...  

Surface receptors involved in natural killer (NK) cell triggering during the process of tumor cell lysis have recently been identified. Of these receptors, NKp44 is selectively expressed by IL-2– activated NK cells and may contribute to the increased efficiency of activated NK cells to mediate tumor cell lysis. Here we describe the molecular cloning of NKp44. Analysis of the cloned cDNA indicated that NKp44 is a novel transmembrane glycoprotein belonging to the Immunoglobulin superfamily characterized by a single extracellular V-type domain. The charged amino acid lysine in the transmembrane region may be involved in the association of NKp44 with the signal transducing molecule killer activating receptor–associated polypeptide (KARAP)/DAP12. These molecules were found to be crucial for the surface expression of NKp44. In agreement with data of NKp44 surface expression, the NKp44 transcripts were strictly confined to activated NK cells and to a minor subset of TCR-γ/δ+ T lymphocytes. Unlike genes coding for other receptors involved in NK cell triggering or inhibition, the NKp44 gene is on human chromosome 6.


2006 ◽  
Vol 203 (10) ◽  
pp. 2339-2350 ◽  
Author(s):  
Domenico Mavilio ◽  
Gabriella Lombardo ◽  
Audrey Kinter ◽  
Manuela Fogli ◽  
Andrea La Sala ◽  
...  

In this study, we demonstrate that the in vitro interactions between a CD56neg/CD16pos (CD56neg) subset of natural killer (NK) cells and autologous dendritic cells (DCs) from HIV-1–infected viremic but not aviremic individuals are markedly impaired and likely interfere with the development of an effective immune response. Among the defective interactions are abnormalities in the process of reciprocal NK–DC activation and maturation as well as a defect in the NK cell–mediated editing or elimination of immature DCs (iDCs). Notably, the lysis of mature DCs (mDCs) by autologous NK cells was highly impaired even after the complete masking of major histocompatibility complex I molecules, suggesting that the defective elimination of autologous iDCs is at the level of activating NK cell receptors. In this regard, the markedly impaired expression/secretion and function of NKp30 and TNF-related apoptosis-inducing ligand, particularly among the CD56neg NK cell subset, largely accounts for the highly defective NK cell–mediated lysis of autologous iDCs. Moreover, mDCs generated from HIV-1 viremic but not aviremic patients are substantially impaired in their ability to secrete interleukin (IL)-10 and -12 and to prime the proliferation of neighboring autologous NK cells, which, in turn, fail to secrete adequate amounts of interferon-γ.


Blood ◽  
2002 ◽  
Vol 99 (5) ◽  
pp. 1723-1729 ◽  
Author(s):  
Massimo Vitale ◽  
Jacques Zimmer ◽  
Roberta Castriconi ◽  
Daniel Hanau ◽  
Lionel Donato ◽  
...  

Natural killer (NK) cells are characterized by the ability to kill cells that lack HLA class I molecules while sparing autologous normal (HLA class I+) cells. However, patients with transporter-associated antigen processing (TAP) deficiency, though displaying strong reductions of HLA class I surface expression, in most instances do not experience NK-mediated autoimmune phenomena. A possible mechanism by which TAP−/− NK cells avoid autoreactivity against autologous HLA class I–deficient cells could be based on either quantitative or qualitative defects of surface receptors involved in NK cell triggering. In this study we show that NK cells derived from 2 patients with TAP2−/− express normal levels of all known triggering receptors. As revealed by the analysis of polyclonal and clonal NK cells, these receptors display normal functional capabilities and allow the killing of a panel of NK-susceptible targets, including autologous B-LCLs. On the other hand, TAP2−/− NK cells were unable to kill either allogeneic (HLA class I+) or autologous (HLA class I− ) phytohemagglutinin (PHA) blasts even in the presence of anti-HLA class I monoclonal antibody. These data suggest that TAP2−/− NK cells express still unknown inhibitory receptor(s) capable of down-regulating the NK cell cytotoxicity on binding to surface ligand(s) expressed by T cell blasts. Functional analyses, both at the polyclonal and at the clonal level, are consistent with the concept that the putative inhibitory receptor is expressed by virtually all TAP2−/− NK cells, whereas it is present only in rare NK cells from healthy persons. Another possibility would be that TAP2−/− NK cells are missing a still unidentified triggering receptor involved in NK cell-mediated killing of PHA blasts.


1993 ◽  
Vol 178 (6) ◽  
pp. 2023-2033 ◽  
Author(s):  
E Vivier ◽  
J M Sorrell ◽  
M Ackerly ◽  
M J Robertson ◽  
R A Rasmussen ◽  
...  

Natural killer (NK) cells are CD3:TCR-, CD16+, CD56+ large granular lymphocytes capable of recognizing and eliminating a variety of virus-infected, malignant, and antibody-coated target cells. Two functionally distinct populations of peripheral blood NK cells can be differentiated by their surface expression of an isoform of the neural cell adhesion molecule (CD56). CD56bright NK cells have the attributes of an undifferentiated cell, in that they proliferate in response to exogenous cytokines, but exert poor cytolytic activity. CD56dim NK cells have the attributes of a more differentiated cell, in that they proliferate poorly in response to exogenous cytokines, but are potent cytolytic effector cells. Here we describe the molecular characterization of a NK cell restricted epitope (PEN5) that is selectively expressed on the functionally differentiated CD56dim NK cells. PEN5+ NK cells proliferate poorly in response to interleukin 2 (IL-2), but are potent cytolytic effectors, whereas PEN5- NK cells proliferate in response to IL-2, but are poor cytolytic effectors. Biochemical and immunochemical analyses reveal the PEN5 epitope to be an unusual sulfated poly-N-lactosamine carbohydrate related to keratan sulfate glycosaminoglycans. Immunoprecipitates prepared using a monoclonal antibody reactive with PEN5 include two polydisperse membrane-bound glycoproteins, PEN5 alpha (120-170 kD) and PEN5 beta (210-245 kD). Enzymatic deglycosylation reduces the apparent molecular weight of both PEN5 isoforms by 80-90%, and classifies PEN5 beta as a mucinlike glycoprotein. The surface expression of the PEN5 epitope is downmodulated by stimuli that induce NK cell proliferation, and it is absent from leukemic NK cells of patients with granular lymphocyte proliferative disorder. Taken together, these results indicate that PEN5 is a developmentally regulated poly-N-lactosamine epitope associated with a mucin-type glycoprotein, whose expression is restricted to the population of nonproliferative NK cells fully committed to cytolytic effector function.


Blood ◽  
2010 ◽  
Vol 116 (4) ◽  
pp. 575-583 ◽  
Author(s):  
Lazar Vujanovic ◽  
David E. Szymkowski ◽  
Sean Alber ◽  
Simon C. Watkins ◽  
Nikola L. Vujanovic ◽  
...  

Abstract Recombinant adenovirus-engineered dendritic cells (Ad.DCs) are potent immunologic adjuvants of antiviral and anticancer vaccines. The effectiveness of Ad.DC-based vaccines may depend on the ability of Ad.DCs to crosstalk with natural killer (NK) cells and to activate, polarize, and bridge innate and adaptive immunity. We investigated, for the first time, whether and how human Ad.DCs activate NK cells, and compared the Ad.DC function with that of immature DCs and matured DCs (mDCs). We found that adenovirus transduction and lipopolysaccharide/interferon-γ-induced maturation increased expression of transmembrane tumor necrosis factor (TNF) and trans-presented (trans) interleukin-15 (IL-15) on DCs, leading to enhanced NK cell activation without enhancing DC susceptibility to NK cell-mediated killing. This crosstalk enhanced NK cell CD69 expression, interferon-γ secretion, proliferation, and antitumor activities, with Ad.DCs being significantly more effective than immature DCs, but less effective than mDCs. The Ad.DC and mDC crosstalk with NK cells was largely prevented by physical separation of DCs and NK cells, and neutralization of total TNF and IL-15, but not by selective sequestration of soluble TNF. These findings demonstrate that both Ad.DCs and mDCs can efficiently promote innate immune functions by activation of NK cells through the cooperative activities of tmTNF and trans-IL-15 mediated by cell-to-cell contact.


Blood ◽  
1991 ◽  
Vol 78 (12) ◽  
pp. 3241-3247 ◽  
Author(s):  
A Shibuya ◽  
K Taguchi ◽  
H Kojima ◽  
T Abe

Abstract We investigated the effects of recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) and recombinant human granulocyte colony-stimulating factor (rhG-CSF) therapy on the natural killer (NK) cell lineage in patients with aplastic anemia and myelodysplastic syndrome. Selected bone marrow (BM) cells were prepared by the elimination of nylon wool-adherent cells and mature T and NK cells from BM cells. The frequency of BM NK progenitors relative to BM cells selected was significantly decreased 4 weeks after the start of rhGM- CSF therapy (P less than .01), while the peripheral blood NK cell count and NK activity were also significantly decreased (P less than .05). A return to the pretreatment levels was seen 4 weeks after the cessation of treatment in all cases. No suppressive effect was noted in the patients who received rhG-CSF therapy. These results suggest that rhGM- CSF therapy suppresses the generation of NK cells from human BM NK progenitors.


Sign in / Sign up

Export Citation Format

Share Document