Mice Deficient for the Ecto-Nicotinamide Adenine Dinucleotide Glycohydrolase CD38 Exhibit Altered Humoral Immune Responses

Blood ◽  
1998 ◽  
Vol 92 (4) ◽  
pp. 1324-1333 ◽  
Author(s):  
Debra A. Cockayne ◽  
Tony Muchamuel ◽  
J. Christopher Grimaldi ◽  
Hélène Muller-Steffner ◽  
Troy D. Randall ◽  
...  

Abstract CD38 is a membrane-associated ecto-nicotinamide adenine dinucleotide (NAD+) glycohydrolase that is expressed on multiple hematopoietic cells. The extracellular domain of CD38 can mediate the catalysis of NAD+ to cyclic adenosine diphosphoribose (cADPR), a Ca2+-mobilizing second messenger, adenosine diphosphoribose (ADPR), and nicotinamide. In addition to its enzymatic properties, murine CD38 has been shown to act as a B-cell coreceptor capable of modulating signals through the B-cell antigen receptor. To investigate the in vivo physiological function(s) of this novel class of ectoenzyme we generated mice carrying a null mutation in the CD38 gene. CD38−/− mice showed a complete loss of tissue-associated NAD+ glycohydrolase activity, showing that the classical NAD+ glycohydrolases and CD38 are likely identical. Although murine CD38 is expressed on hematopoietic stem cells as well as on committed progenitors, we show that CD38 is not required for hematopoiesis or lymphopoiesis. However, CD38−/− mice did exhibit marked deficiencies in antibody responses to T-cell–dependent protein antigens and augmented antibody responses to at least one T-cell–independent type 2 polysaccharide antigen. These data suggest that CD38 may play an important role in vivo in regulating humoral immune responses. © 1998 by The American Society of Hematology.

Blood ◽  
1998 ◽  
Vol 92 (4) ◽  
pp. 1324-1333 ◽  
Author(s):  
Debra A. Cockayne ◽  
Tony Muchamuel ◽  
J. Christopher Grimaldi ◽  
Hélène Muller-Steffner ◽  
Troy D. Randall ◽  
...  

CD38 is a membrane-associated ecto-nicotinamide adenine dinucleotide (NAD+) glycohydrolase that is expressed on multiple hematopoietic cells. The extracellular domain of CD38 can mediate the catalysis of NAD+ to cyclic adenosine diphosphoribose (cADPR), a Ca2+-mobilizing second messenger, adenosine diphosphoribose (ADPR), and nicotinamide. In addition to its enzymatic properties, murine CD38 has been shown to act as a B-cell coreceptor capable of modulating signals through the B-cell antigen receptor. To investigate the in vivo physiological function(s) of this novel class of ectoenzyme we generated mice carrying a null mutation in the CD38 gene. CD38−/− mice showed a complete loss of tissue-associated NAD+ glycohydrolase activity, showing that the classical NAD+ glycohydrolases and CD38 are likely identical. Although murine CD38 is expressed on hematopoietic stem cells as well as on committed progenitors, we show that CD38 is not required for hematopoiesis or lymphopoiesis. However, CD38−/− mice did exhibit marked deficiencies in antibody responses to T-cell–dependent protein antigens and augmented antibody responses to at least one T-cell–independent type 2 polysaccharide antigen. These data suggest that CD38 may play an important role in vivo in regulating humoral immune responses. © 1998 by The American Society of Hematology.


PLoS ONE ◽  
2009 ◽  
Vol 4 (3) ◽  
pp. e4736 ◽  
Author(s):  
Takashi Kobayashi ◽  
Tae Soo Kim ◽  
Anand Jacob ◽  
Matthew C. Walsh ◽  
Yuho Kadono ◽  
...  

Blood ◽  
2007 ◽  
Vol 110 (1) ◽  
pp. 193-200 ◽  
Author(s):  
Li-Fan Lu ◽  
Cory L. Ahonen ◽  
Evan F. Lind ◽  
Vanitha S. Raman ◽  
W. James Cook ◽  
...  

The recruitment of tumor necrosis factor receptor–associated factors (TRAFs) 1, 2, 3, 5, and 6 to the CD40 cytoplasmic tail upon CD40 trimerization results in downstream signaling events that ultimately lead to CD40-dependent, thymus-dependent (TD) humoral immune responses. Previously, we have shown signaling through the C-terminal tail of CD40 in the absence of canonical TRAF-binding sites is capable of signaling through an alternative TRAF2-binding site. Here, we demonstrate that B cells from mice harboring CD40 with only the C-terminal tail can activate both canonical and noncanonical NFκB signaling pathways. Moreover, while lacking germinal center formation, several hallmarks of humoral immune responses including clonal B-cell activation/expansion, antibody isotype switching, and affinity maturation remain normal. This study demonstrates a new functional domain in CD40 that controls critical aspects of B-cell immunity in an in vivo setting.


2000 ◽  
Vol 20 (15) ◽  
pp. 5363-5369 ◽  
Author(s):  
Klaus-Peter Knobeloch ◽  
Mark D. Wright ◽  
Adrian F. Ochsenbein ◽  
Oliver Liesenfeld ◽  
Jürgen Löhler ◽  
...  

ABSTRACT CD37 is a membrane protein of the tetraspanin superfamily, which includes CD9, CD53, CD63, CD81, and CD82. Many of these molecules are expressed on leukocytes and have been implicated in signal transduction, cell-cell interactions, and cellular activation and development. We generated and analyzed mice deficient for CD37. Despite the high expression of CD37 on cells of the immune system, no changes in development and cellular composition of lymphoid organs were observed in mice lacking CD37. Analyses of humoral immune responses revealed a reduced level of immunoglobulin G1 (IgG1) in the sera of nonimmunized mice and an alteration of responses to T-cell-dependent antigens. Antibody responses to model antigen administered in the absence of adjuvant and to viral infections were generally poor in CD37-deficient mice. These poor antibody responses could be overcome by the immunization of antigen together with adjuvant. These results suggest a role for CD37 in T-cell–B-cell interactions which manifests itself under suboptimal costimulatory conditions.


1980 ◽  
Vol 152 (3) ◽  
pp. 493-506 ◽  
Author(s):  
F D Finkelham ◽  
V L Woods ◽  
S B Wilburn ◽  
J J Mond ◽  
K E Stein ◽  
...  

Heterologous anti-delta-chain antibodies have an adjuvant effect on specific in vivo humoral immune responses to simultaneously, or subsequently, injected antigens in the rat and rhesus monkey. We have used a hybridoma-secreted antibody that binds murine delta-chain of the allotype (4.22aM delta a) to study this phenomenon in the mouse and to investigate the mechanism of this effect. Injection of 4.22aM delta a into BALB/c mice removes almost all surface IgD (sIgD) from splenic B lymphocites. sIgD does not reappear until the serum level of 4.22aM delta a decreased 5-7 d after injection. 4.22aM delta a fails to induce detectable proliferation or to raise total serum Ig levels substantially above control values. However, 4.22aM dalta a injected 24 h before antigen elicits an approximately twofold enhancement of serum IgM and a 3- to 10-fold enhancement of serum IgG anti-trintriphenyl (TNP) antibodies in response to immunization with optimal doses of TNP-Ficoll or TNP-sheep red blood cells (TNP-SRBC). 4.22aM delta a injected 1 wk before or 3 d after TNP-SRBC, however, has no effect on IgG anti-TNP levels. The adjuvant effect of anti-delta-chain antibody was markedly decreased when suboptimal antigen doses were used. Furthermore, even in the case of TNP-Ficoll, a relatively T-independent antigen, the ability of 4.22aM dalta a to enhance the anti-TNP antibody response was T cell dependent. Our data suggest that the binding of anti-delta-chain antibody to cell sIgD may partially activate B lymphocytes and make them more capable of differentiating into antibody-secreting cells when stimulated by antigen-specific T cell help.


2020 ◽  
Vol 522 (2) ◽  
pp. 442-447
Author(s):  
Joseph C. Lownik ◽  
Jessica L. Wimberly ◽  
Leila Takahashi-Ruiz ◽  
Rebecca K. Martin

2006 ◽  
Vol 203 (3) ◽  
pp. 599-606 ◽  
Author(s):  
Silvia B. Boscardin ◽  
Julius C.R. Hafalla ◽  
Revati F. Masilamani ◽  
Alice O. Kamphorst ◽  
Henry A. Zebroski ◽  
...  

Resistance to several prevalent infectious diseases requires both cellular and humoral immune responses. T cell immunity is initiated by mature dendritic cells (DCs) in lymphoid organs, whereas humoral responses to most antigens require further collaboration between primed, antigen-specific helper T cells and naive or memory B cells. To determine whether antigens delivered to DCs in lymphoid organs induce T cell help for antibody responses, we targeted a carrier protein, ovalbumin (OVA), to DCs in the presence of a maturation stimulus and assayed for antibodies to a hapten, (4-hydroxy-3-nitrophenyl) acetyl (NP), after boosting with OVA-NP. A single DC-targeted immunization elicited long-lived T cell helper responses to the carrier protein, leading to large numbers of antibody-secreting cells and high titers of high-affinity antihapten immunoglobulin Gs. Small doses of DC-targeted OVA induced higher titers and a broader spectrum of anti-NP antibody isotypes than large doses of OVA in alum adjuvant. Similar results were obtained when the circumsporozoite protein of Plasmodium yoelii was delivered to DCs. We conclude that antigen targeting to DCs combined with a maturation stimulus produces broad-based and long-lived T cell help for humoral immune responses.


2011 ◽  
Vol 79 (9) ◽  
pp. 3778-3783 ◽  
Author(s):  
Mingquan Zheng ◽  
Rekha R. Rapaka ◽  
Amy C. Yu ◽  
Judd E. Shellito ◽  
Jay K. Kolls

ABSTRACTCD40 ligand (CD40L) transduction of antigen-pulsed dendritic cells (DCs) can result in antigen-specific humoral immune responses even in CD4+T-cell-depleted settings. Here, we show that CD40L transduction of DCs results in the induction of interleukin-12p40 (IL-12p40), IL-12p70, and IL-23. Using DCs that were deficient in IL-12p40, IL-12p35, or IL-23p19, we show that these molecules are dispensable for primary IgG1 responses toPneumocystis, but IgG2c was dependent on IL-12p40 and IL-23p19 but not IL-12p35. Antigen-specific recall responses in CD4-deficient mice were critically dependent on IL-12p40 and IL-23p19 expression in DCs and were not affected by the lack of IL-12p35. To confirm that this defect in recall was due to IL-23, transduction of IL-12p40−/−DCs with a recombinant adenovirus expressing functional IL-23 restored recall responses in DC-vaccinated CD4-deficient mice. These data show that DC-produced IL-23 is critical for vaccine-induced antigen-specific IgG2c and recall antibody responses in the setting of CD4+T-cell depletion.


Sign in / Sign up

Export Citation Format

Share Document